
Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

Agnostic Active Learning

Jack Bowler

EECS 6890 Presentatoin

1 May 2014

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

Outline

1 Introduction
Authors
Preliminaries
contribution

2 A2 Algorithm

3 Theorems
Correctness
Fall back Analysis

4 Improvements from A2

Exponential Improvement
Effect of Large Noise
Linear Separators under Uniform Distribution

5 Open Questions

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

Authors

Maria-Florina Balcan
Carnegie Mellon University, Pittsburgh, PA

Alina Beygelzimer
IBM T.J. Watson Research Center, Hawthorne, NY

John Langford
Yahoo! research, New York, NY

Agnostic active learning In ICML ’06: Proceedings of the 23rd international
conference on Machine learning (2006), pp. 65-72, doi:10.1145/1143844.1143853 by
Maria F. Balcan, Alina Beygelzimer, John Langford

Agnostic active learning Journal of Computer and System Sciences, Vol. 75, No. 1.
(2009), pp. 78-89 by M. F. Balcan, A. Beygelzimer, J. Langford

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

Background

The algorithm A2 (for agnostic active) is the first active
learning algorithm that finds an ǫ - optimized hypothesis in
any hypothesis class when the underlying distribution as
arbitrary forms of noise.

The only assumption for A2 is that it has access to a stream
of unlabeled samples which are drawn i.i.d. from a fixed
distribution.

Under active learning the algorithm is allowed to draw random
samples unlabeled examples and ask for labels of these
examples.

The only prior belief about the learning problem is that the
target function, or a reasonable approximation to it, belongs
to a given concept class.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

Contributions

The main contribution of this paper is to prove the feasibility of
agnostic active learning.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|Si |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈Hi−1
UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|Si |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈H UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

X is an instance space and Y = {−1, 1} is the set of possible labels. H is

a hypothesis class, which is a set of function mapping from X to Y . We

assume there is a distribution D over instances of X and that the

instances are labeled by a possibly randomized oracle O.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

i ← 1: i iterates over the number of rounds, this is the number of

times that region of uncertainty with respect to D has been reduced

by half.

Di ← D: Di is initialized to the entire distribution

Hi and Hi−1 ← H: Hi refers the the current version space, which is

the set of Hypothesis that are consistent with all labels reveals so

far. Both the current and previous class are initialized to the full

hypothesis space.

Si−1 ← 0: The previous sample space is initialized to 0.

k ← 1: k keeps track of the number of bound calculations

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD
(

Hi−1
)

(

min
h∈Hi−1

UB
(

Si−1, h, δk
)

− min
h∈Hi−1

LB
(

Si−1, h, δk
)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|Si |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈H UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

(1) while DisagreeD
(

Hi−1
)

(

min
h∈Hi−1

UB
(

Si−1, h, δk
)

− min
h∈Hi−1

LB
(

Si−1, h, δk
)

)

> ǫ

DisagreeD (Hi) is the probability that any there exists a pari of
hypotheses in Hi that disagrees on a random example drawn from
D.

DisagreeD (Hi) = Prx∼D [∃h1, h2 ∈ Hi : h1 (x) 6= h2 (x)]

DisagreeD (Hi) is the volume of the current region of uncertainty

with respect to D.

Can be estimated to any desired precision with probability 1 using

an unlabeled dataset with size limited to infinity.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

(1) while DisagreeD
(

Hi−1
)

(

min
h∈Hi−1

UB
(

Si−1, h, δk
)

− min
h∈Hi−1

LB
(

Si−1, h, δk
)

)

> ǫ

A2 relies on a subroutine which computes a lower bound LB (S , h, δ) and an upper

bound UB (S , h, δ) on the true error rate errP (h) of h using sample S of examples

drawn i.i.d. from P. Each of these bounds must hold for all h simultaneously with

probability at least 1− δ.

Definition 1. A subroutine for computing LB and UB is said to be legal if for all

distributions P over X × Y for all 0 < δ < 1/2 and m ∈ N.

LB (S , h, δ) ≤ errP (h) ≤ UB (S , h, δ)

holds for all h ∈ H simultaneously with probability 1− δ over the draw of S according

to Pm

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

(1) while DisagreeD
(

Hi−1
)

(

min
h∈Hi−1

UB
(

Si−1, h, δk
)

− min
h∈Hi−1

LB
(

Si−1, h, δk
)

)

> ǫ

Definition 1. A subroutine for computing LB and UB is said to be legal if for all

distributions P over X × Y for all 0 < δ < 1/2 and m ∈ N.

LB (S , h, δ) ≤ errP (h) ≤ UB (S , h, δ)

holds for all h ∈ H simultaneously with probability 1− δ over the draw of S according

to Pm

Classic example of such subroutines are the (distribution independent) VC bound, the

Occam Razar bound or the newer data dependent generalization bounds, for example

those based on Rademacher Complexities.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

(1) while DisagreeD
(

Hi−1
)

(

min
h∈Hi−1

UB
(

Si−1, h, δk
)

− min
h∈Hi−1

LB
(

Si−1, h, δk
)

)

> ǫ

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|Si |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argmin UB (S , h, δ)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set Si ← 0, H ′i ← Hi , k ← k + 1

Initialize the sample Si with 0

Copy Hi into H ′i

Advance the index k

δ follows a schedule dependent on k , such that δk = δ
k(k+1)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|S |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈H UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

(2)while DisagreeD (H ′i) ≥
1
2 DisagreeD (Hi)

Execute this loop until H ′i is found such that for a point

randomly drawn from D the probability that H ′i contains two

hypothesis that are in disagreement is less then 1/2 that of

the original Hi .

This occurs when Si has grown large enough to enough to

eliminate a least half of the current region of uncertainty.

Since the probability Disagreed (Hi) is reduced by 1
2 on every

iteration, the number of iterations cannot be more than

log
(

1
ǫ

)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|S |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈H UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

If Hi represents a hypothesis class that is within the error

bound for sample Si , return the first hypothesis under the

upper bound.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|Si |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈Hi−1
UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

else S ′i = rejection sample 2|Si |+1 samples x from D satisfying
∃h1, h2 ∈ H1 : h1 6= h2 (x)

Draw additional samples from the distribution for which two

hypotheses still under consideration do not agree.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|S |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈H UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

Si ← Si ∪ {(x ,O (x)) : x ∈ S ′i } , k ← k + 1

New labels are requested from the Oracle for some of the data

points were the surviving hypotheses disagree.

Labels are not given to data points where all hypotheses

agree. This means that an optimal surviving hypothesis on Hi

remains an optimal hypothesis on Hi+1

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|S |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′

i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′

h ∈ HiUB
(

Si , h
′, δk

)}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈Hi−1
UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

Update the set of hypotheses included in Hi based on the new

sample set, S ′i and new δk

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

set i ← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← 0, and k ← 1.

(1) while DisagreeD (Hi−1)

(

min
h∈Hi−1

UB (Si−1, h, δk)− min
h∈Hi−1

LB (Si−1, h, δk)

)

> ǫ

set Si ← 0, H′i ← Hi , k ← k + 1

(2)while DisagreeD
(

H′i
)

≥ 1
2
DisagreeD (Hi)

if DisagreeD (Hi) (min h ∈ HiUB (Si , h, δk)−min h ∈ HiLB (Si , h, δk)) ≤ ǫ

(∗) return h = argminh∈Hi
UB (Si , h, δk)

else S ′i = rejection sample 2|S |+ 1 samples x from D satisfying

∃h1, h2 ∈ H1 : h1 6= h2 (x)

Si ← Si ∪
{

(x ,O (x)) : x ∈ S ′i
}

, k ← k + 1

(∗∗)H′i =
{

h ∈ Hi : LB (Si , h, δk) ≤ min ′
h
∈ HiUB (Si , h

′, δk)
}

, k ← k + 1

end if

end while

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

end while

return h = argminh∈Hi−1
UB (Si−1, h, δk)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

A2 Algorithm

Hi+1 ← H′i ,Di+1 ← Di restricted to
{

x : ∃h1, h2 ∈ H′1 : h1 (x) 6= h2 (x)
}

i ← i + 1

Set Hi to the new hypothesis set from the previous iteration.

Restrict the Distribution D to the area under which there are

still hypotheses which do not agree.

Increment i to track the current number of rounds.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

3.1 Correctness

Theorem 3.1 For all H, for all (D,O), for all valid subroutines for
computing UB and LB, for all 0 < ǫ < 1/2 and 0 < δ < 1/2, with
probability 1− δ, A2 returns an ǫ-optimal hypothesis or does not
terminate.

This theorem makes two claims:

all bound evaluations are valid simultaneously with probability at least

1− δ

the procedure produces an ǫ-optimal hypothesis upon termination

The first proof is based on the fact that the kth bound evaluation fails by, at

most, probability δ
k(k+1)

, which means the union is bounded by the sum,
∑infty

k=1
δ

k(k+1)

The second part of the theorem is based on the observation that in order for the

algorithm to terminate it must meet the condition

DisagreeD (Hi)

(

min
h∈Hi

UB (Si , h, δk)− min
h∈Hi

LB (Si , h, δk)

)

≤ ǫ

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

3.2 Fall back

Theorem 3.2 For all H, for all (D,O), for all UB and LB satisfying the

assumption m (2ǫ, δ,H) ≤ m(ǫ,δ,H)
2 , for all 0 < ǫ < 1/2 and 0 < δ < 1/2,

the algorithm A2 makes at most 2m (ǫ, δ′,H) calls to the oracle

O, where δ′ = δ
N(ǫ,δ,H)(N(ǫ,δ,H)+1) and N (ǫ, δ,H) satisfies

N
(

ǫ, δ′,H
)

≥ ln 1
ǫ2
lnm

(

ǫ, δ
N(ǫ,δ,H)(N(ǫ,δ,H)+1) ,H

)

. Here m (ǫ, δ,H) is the sample complexity of UB and LB

N (ǫ, δ,H) is the number of bound evaluations throughout the life of the

algorithm.

The number of rounds is bounded by log2
1
ǫ

This implies that the maximum number of rounds throughout the life of the

algorithm is log2
1
ǫ
log2 m (ǫ, δ′,H)

Adding up the number of calls to the oracle, O, in all rounds gives at most

′

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

Corollary 3.3

Corollary 3.3For all hypothesis classes H of VC-dimension VH , for
all distributions (D,O) over X × Y , for all 0 < ǫ < 1/2 and
0 < δ < 1/2, the algorithm A2 requires at most
Õ
(

1
ǫ2

(

VH ln 1
ǫ + ln 1

δ

))

labeled examples from the oracle O.

m (ǫ, δ,H) and Theorem 3.2 implies an upper bound on

N = N (ǫ, δ,H)

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

4.1 Exponential Improvements

Theorem 4.1 Let H be the set of thresholds on an interval. For all

distributions (D,O) where D is a continuous probability distribution

function, for any ǫ < 1
2 and ǫ

16 ≥ η, the algorithm A2 makes

O

(

ln

(

1

ǫ
ln

(

ln 1
ǫδ

δ

)))

calls to the oracle O on examples drawn i.i.d. from D, with
probability 1− δ.

An exponential improvement in sample complexity is shown when the noise rate

is small

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

4.2 Effect of Large Noise

Theorem 4.2 Let H be the set of thresholds on an interval.
Suppose that ǫ < 1

2 and η > 16ǫ. For all D, with probability 1− δ,

the algorithm A2 requires at most Õ

(

η2 ln
1
δ

ǫ2

)

labeled samples

A slower improvement is shown when noise rate, η is large. In the extreme case

when η is 1
2
, there is no improvement.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

4.4 Linear Separators under Uniform Distribution

Theorem 4.4 This reflects the exponential saving given by active learning in the

number of labeled examples when the data is drawn uniformly from the unit sphere in

R
d and labels are consistent with a linear separator going through the origin.

A2 provides exponential savings even in the presence of arbitrary forms of noise.

A2 provides the first justification of why one can hope to achieve strong results

(similar to Perceptron-based active learner) in the harder agnostic learning case,

when the noise rate is sufficiently small with respect to the desired error.

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

4.4 Linear Separators under Uniform Distribution

Theorem 4.4 Let X =
{

x ∈ R
d : ||x || = 1

}

(a unit sphere), D is
uniform over X , let H be the class of linear separators through the
origin and LB and UB be the VC bound. Then for any 0 < ǫ < 1

2 ,
0 < η < ǫ

16
√
d
, and δ > 0, with probability 1− δ, A2 requires

O
(

d
(

d ln d + ln 1
δ′

)

ln 1
ǫ

)

calls to the labeling oracle, where δ′ = δ
N(ǫ,δ,H)(N(ǫ,δ,H)+1) and

N (ǫ, δ,H) = O

(

ln
1

ǫ

(

d2 ln d + d ln
d ln 1

ǫ

δ

))

Introduction A2 Algorithm Theorems Improvements from A2 Open Questions

Open Questions

A2 is, like other selective sampling algorithms is non-aggressive in

it’s choice of query points. Using an aggressive querying strategy

has been shown to produce better bounds under certain conditions.

Designing an aggressive agnostic active learning algorithm remains

an open problem.

Generally the conditions sufficient and necessary for active learning

in the agnostic case have not been derived. Another open question

would be to derive and analyze the optimal agnostic active learning

strategy.

Most of the current active learning is focused on the binary

classification problem. Future work could involve implementing

other loss functions.

LARGE-SCALE LIVE ACTIVE

LEARNING: TRAINING OBJECT

DETECTORS WITH CRAWLED DATA

AND CROWDS

Sudheendra Vijayanarasimhan and Kristen Grauman

Mo Zhou, Electrical Engineering Dept., Columbia University

BACKGROUND

 Supervised learning, semi-supervised learning,

unsupervised learning - active learning

 In object recognition, active learning can be used

to build up training sets efficiently

 Only ‘sandbox’ data are currently tested

 Most crowd-sourced collection processes need

human fine-tuning repeatedly

GOAL

 Test on uncompromised datasets and make the

whole process automatic

CHALLENGE

 Large number of candidate windows in each

image and most are useless

 1000 windows/image results to millions examples

APPROACH: LINEAR CLASSIFICATION

 Part-based detector amenable to linear SVM

 Given root window r, multiple part windows p1,

p2, … pm that overlap the root, and context

windows c1, c2, … cn surrounding an object

 Root window: global summary of object

 Part window: local feature summary

 Context window: incorporate contextual cues, i.e.

sky, ground, road, etc.

 Concatenate max-pooled responses from a sparse

coding of the features within each window

APPROACH: LINEAR CLASSIFICATION

APPROACH: WINDOW GENERATION

 Use a grid-based, Hough-like projections to

generate windows from unlabeled images

 Divide a training window into N × M grid and

record visual word, grid location, bounding box

 Rank according to frequency of occurrence and

use the top 3000 boxes from each image

APPROACH: ACTIVE SELECTION

 Initialize system with a trained linear SVM

 Put all generated unlabeled windows into a hash-

table using hyperplane hash function

 Hash detector directly to the bin during selection

 APPROACH: ANNOTATION COLLECTION

 Post selected images on Mechanical Turk

 Provide multiple options to avoid incorrect boxes

 Post same image to 5-10 annotators for

consensus

APPROACH: GLOBAL VIEW

RESULTS: EXAMPLES

 True positives:

RESULTS: EXAMPLES

 False positives:

RESULTS: ACCURACY ON PASCAL

RESULTS: ACCURACY ON FLICKR

RESULTS: COMPUTATION TIME

 Time mostly spent on pooling sparse codes

 Efficiency in selecting useful images and

retraining the classifier makes live learning

practical

Active Selection Training Detection/image

[1] + active 10 mins 5 mins 150 secs

[1] + passive 0 mins 5 mins 150 secs

LSVM [2] 3 hrs 4 hrs 2 secs

SP + MKL [3] 93 hrs > 2 d 67 secs

CONCLUSION

 A novel efficient part-based linear detector that

delivers excellent performance

 A jumping window and hashing scheme suitable

for the proposed detector that retrieves relevant

instances among millions of candidates

 The first active learning results for which both

image data and annotations are automatically

obtained, with minimal involvement from vision

experts

 Overall: An effective end-to-end system for online

learning of object detectors

REFERENCES

 [1] Large-Scale Live Active Learning: Training
Object Detectors with Crawled Data and Crowds,
S. Vijayanarasimhan, K. Grauman, CVPR 2011

 [2] Object Detection with Discriminatively
Trained Part Based Models, P. Felzenszwalb, R.
Girshick, D. McAllester, D. Ramanan, TPAMI,
99(1), 2009

 [3] Multiple Kernels for Object Detection, A.
Vedaldi, V. Gulshan, M. Varma, A. Zisserman,
ICCV 2009

 [4] Large-Scale Live Active Learning: Training
Object Detectors with Crawled Data and Crowds,
http://vision.cs.utexas.edu/projects/livelearning/

http://vision.cs.utexas.edu/projects/livelearning/

