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Abstract

We present and analyze an agnostic active learning algorithm that works without
keeping a version space. This is unlike all previous approaches where a restricted
set of candidate hypotheses is maintained throughout learning, and only hypothe-
ses from this set are ever returned. By avoiding this versionspace approach, our
algorithm sheds the computational burden and brittleness associated with main-
taining version spaces, yet still allows for substantial improvements over super-
vised learning for classification.

1 Introduction

In active learning, a learner is given access to unlabeled data and is allowed to adaptively choose
which ones to label. This learning model is motivated by applications in which the cost of labeling
data is high relative to that of collecting the unlabeled data itself. Therefore, the hope is that the
active learner only needs to query the labels of a small number of the unlabeled data, and otherwise
perform as well as a fully supervised learner. In this work, we are interested in agnostic active
learning algorithms for binary classification that are provably consistent,i.e. that converge to an
optimal hypothesis in a given hypothesis class.

One technique that has proved theoretically profitable is tomaintain a candidate set of hypotheses
(sometimes called a version space), and to query the label ofa point only if there is disagreement
within this set about how to label the point. The criteria formembership in this candidate set needs
to be carefully defined so that an optimal hypothesis is always included, but otherwise this set can be
quickly whittled down as more labels are queried. This technique is perhaps most readily understood
in the noise-free setting [1, 2], and it can be extended to noisy settings by using empirical confidence
bounds [3, 4, 5, 6, 7].

The version space approach unfortunately has its share of significant drawbacks. The first is com-
putational intractability: maintaining a version space and guaranteeing thatonly hypotheses from
this set are returned is difficult for linear predictors and appears intractable for interesting nonlinear
predictors such as neural nets and decision trees [1]. Another drawback of the approach is its brittle-
ness: a single mishap (due to, say, modeling failures or computational approximations) might cause
the learner to exclude the best hypothesis from the version space forever; this is an ungraceful fail-
ure mode that is not easy to correct. A third drawback is related to sample re-usability: if (labeled)
data is collected using a version space-based active learning algorithm, and we later decide to use
a different algorithm or hypothesis class, then the earlierdata may not be freely re-used because its
collection process is inherently biased.
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Here, we develop a new strategy addressing all of the above problems given an oracle that returns an
empirical risk minimizing (ERM) hypothesis. As this oraclematches our abstraction of many super-
vised learning algorithms, we believe active learning algorithms built in this way are immediately
and widely applicable.

Our approach instantiates the importance weighted active learning framework of [5] using a rejection
threshold similar to the algorithm of [4] which only accesses hypotheses via a supervised learning
oracle. However, the oracle we require is simpler and avoidsstrict adherence to a candidate set
of hypotheses. Moreover, our algorithm creates an importance weighted sample that allows for
unbiased risk estimation, even for hypotheses from a class different from the one employed by the
active learner. This is in sharp contrast to many previous algorithms (e.g., [1, 3, 8, 4, 6, 7]) that create
heavily biased data sets. We prove that our algorithm is always consistent and has an improved label
complexity over passive learning in cases previously studied in the literature. We also describe a
practical instantiation of our algorithm and report on someexperimental results.

1.1 Related Work

As already mentioned, our work is closely related to the previous works of [4] and [5], both of
which in turn draw heavily on the work of [1] and [3]. The algorithm from [4] extends the selective
sampling method of [1] to the agnostic setting using generalization bounds in a manner similar
to that first suggested in [3]. It accesses hypotheses only through a special ERM oracle that can
enforce an arbitrary number of example-based constraints;these constraints define a version space,
and the algorithm only ever returns hypotheses from this space, which can be undesirable as we
previously argued. Other previous algorithms with comparable performance guarantees also require
similar example-based constraints (e.g., [3, 5, 6, 7]). Our algorithm differs from these in that (i) it
never restricts its attention to a version space when selecting a hypothesis to return, and (ii) it only
requires an ERM oracle that enforces at most one example-based constraint, and this constraint is
only used for selective sampling. Our label complexity bounds are comparable to those proved in [5]
(though somewhat worse that those in [3, 4, 6, 7]).

The use of importance weights to correct for sampling bias isa standard technique for many machine
learning problems (e.g., [9, 10, 11]) including active learning [12, 13, 5]. Our algorithm is based
on the importance weighted active learning (IWAL) framework introduced by [5]. In that work, a
rejection threshold procedure calledloss-weightingis rigorously analyzed and shown to yield im-
proved label complexity bounds in certain cases. Loss-weighting is more general than our technique
in that it extends beyond zero-one loss to a certain subclassof loss functions such as logistic loss. On
the other hand, the loss-weighting rejection threshold requires optimizing over a restricted version
space, which is computationally undesirable. Moreover, the label complexity bound given in [5]
only applies to hypotheses selected from this version space, and not when selected from the entire
hypothesis class (as the general IWAL framework suggests).We avoid these deficiencies using a
new rejection threshold procedure and a more subtle martingale analysis.

Many of the previously mentioned algorithms are analyzed inthe agnostic learning model, where
no assumption is made about the noise distribution (see also[14]). In this setting, the label com-
plexity of active learning algorithms cannot generally improve over supervised learners by more
than a constant factor [15, 5]. However, under a parameterization of the noise distribution related to
Tsybakov’s low-noise condition [16], active learning algorithms have been shown to have improved
label complexity bounds over what is achievable in the purely agnostic setting [17, 8, 18, 6, 7]. We
also consider this parameterization to obtain a tighter label complexity analysis.

2 Preliminaries

2.1 Learning Model

Let D be a distribution overX × Y whereX is the input space andY = {±1} are the labels. Let
(X,Y ) ∈ X × Y be a pair of random variables with joint distributionD. An active learner receives
a sequence(X1, Y1), (X2, Y2), . . . of i.i.d. copies of(X,Y ), with the labelYi hidden unless it is
explicitly queried. We use the shorthanda1:k to denote a sequence(a1, a2, . . . , ak) (so k = 0
correspond to the empty sequence).
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Let H be a set of hypotheses mapping fromX to Y. For simplicity, we assumeH is finite but does
not completely agree on any singlex ∈ X (i.e., ∀x ∈ X , ∃h, h′ ∈ H such thath(x) 6= h′(x)). This
keeps the focus on the relevant aspects of active learning that differ from passive learning. The error
of a hypothesish : X → Y is err(h) := Pr(h(X) 6= Y ). Let h∗ := argmin{err(h) : h ∈ H} be
a hypothesis of minimum error inH. The goal of the active learner is to return a hypothesish ∈ H
with errorerr(h) not much more thanerr(h∗), using as few label queries as possible.

2.2 Importance Weighted Active Learning

In the importance weighted active learning (IWAL) framework of [5], an active learner looks at
the unlabeled dataX1, X2, . . . one at a time. After each new pointXi, the learner determines a
probabilityPi ∈ [0, 1]. Then a coin with biasPi is flipped, and the labelYi is queried if and only if
the coin comes up heads. The query probabilityPi can depend on all previous unlabeled examples
X1:i−1, any previously queried labels, any past coin flips, and the current unlabeled pointXi.

Formally, an IWAL algorithm specifies arejection thresholdfunctionp : (X ×Y ×{0, 1})∗×X →
[0, 1] for determining these query probabilities. LetQi ∈ {0, 1} be a random variable conditionally
independent of the current labelYi,

Qi ⊥⊥ Yi | X1:i, Y1:i−1, Q1:i−1

and with conditional expectation

E[Qi|Z1:i−1, Xi] = Pi := p(Z1:i−1, Xi).

whereZj := (Xj , Yj , Qj). That is, Qi indicates if the labelYi is queried (the outcome of
the coin toss). Although the notation does not explicitly suggest this, the query probability
Pi = p(Z1:i−1, Xi) is allowed to explicitly depend on a labelYj (j < i) if and only if it has
been queried (Qj = 1).

2.3 Importance Weighted Estimators

We first review some standard facts about the importance weighting technique. For a functionf :
X × Y → R, define theimportance weighted estimatorof E[f(X,Y )] from Z1:n ∈ (X × Y ×
{0, 1})n to be

f̂(Z1:n) :=
1

n

n∑

i=1

Qi

Pi
· f(Xi, Yi).

Note that this quantity depends on a labelYi only if it has been queried (i.e., only if Qi = 1; it also
depends onXi only if Qi = 1). Our rejection threshold will be based on a specializationof this
estimator, specifically theimportance weighted empirical errorof a hypothesish

err(h, Z1:n) :=
1

n

n∑

i=1

Qi

Pi
· 1[h(Xi) 6= Yi].

In the notation of Algorithm 1, this is equivalent to

err(h, Sn) :=
1

n

∑

(Xi,Yi,1/Pi)∈Sn

(1/Pi) · 1[h(Xi) 6= Yi] (1)

whereSn ⊆ X × Y × R is the importance weighted sample collected by the algorithm.

A basic property of these estimators isunbiasedness: E[f̂(Z1:n)] = (1/n)
∑n

i=1 E[E[(Qi/Pi) ·
f(Xi, Yi) | X1:i, Y1:i, Q1:i−1]] = (1/n)

∑n
i=1 E[(Pi/Pi) · f(Xi, Yi)] = E[f(X,Y )]. So, for exam-

ple, the importance weighted empirical error of a hypothesis h is an unbiased estimator of its true
errorerr(h). This holds foranychoice of the rejection threshold that guaranteesPi > 0.

3 A Deviation Bound for Importance Weighted Estimators

As mentioned before, the rejection threshold used by our algorithm is based on importance weighted
error estimateserr(h, Z1:n). Even though these estimates are unbiased, they are only reliable when
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the variance is not too large. To get a handle on this, we need adeviation bound for importance
weighted estimators. This is complicated by two factors that rules out straightforward applications
of some standard bounds:

1. The importance weighted samples(Xi, Yi, 1/Pi) (or equivalently, theZi = (Xi, Yi, Qi))
are not i.i.d. This is because the query probabilityPi (and thus the importance weight1/Pi)
generally depends onZ1:i−1 andXi.

2. The effective range and variance of each term in the estimator are, themselves, random
variables.

To address these issues, we develop a deviation bound using amartingale technique from [19].

Let f : X × Y → [−1, 1] be a bounded function. Consider any rejection threshold function p :
(X ×Y×{0, 1})∗×X → (0, 1] for whichPn = p(Z1:n−1, Xn) is bounded below by some positive
quantity (which may depend onn). Equivalently, the query probabilitiesPn should have inverses
1/Pn bounded above by some deterministic quantityrmax (which, again, may depend onn). The
a priori upper boundrmax on 1/Pn can be pessimistic, as the dependence onrmax in the final
deviation bound will be very mild—it enters in aslog log rmax. Our goal is to prove a bound on
|f̂(Z1:n)− E[f(X,Y )]| that holds with high probability over the joint distribution ofZ1:n.

To start, we establish bounds on the range and variance of each termWi := (Qi/Pi) · f(Xi, Yi) in
the estimator, conditioned on(X1:i, Y1:i, Q1:i−1). Let Ei[ · ] denoteE[ · |X1:i, Y1:i, Q1:i−1]. Note
thatEi[Wi] = (Ei[Qi]/Pi) · f(Xi, Yi) = f(Xi, Yi), so if Ei[Wi] = 0, thenWi = 0. Therefore,
the (conditional) range and variance are non-zero only ifEi[Wi] 6= 0. For the range, we have
|Wi| = (Qi/Pi) · |f(Xi, Yi)| ≤ 1/Pi, and for the variance,Ei[(Wi − Ei[Wi])

2] ≤ (Ei[Q
2
i ]/P

2
i ) ·

f(Xi, Yi)
2 ≤ 1/Pi. These range and variance bounds indicate the form of the deviations we can

expect, similar to that of other classical deviation bounds.

Theorem 1. Pick anyt ≥ 0 andn ≥ 1. Assume1 ≤ 1/Pi ≤ rmax for all 1 ≤ i ≤ n, and let
Rn := 1/min({Pi : 1 ≤ i ≤ n ∧ f(Xi, Yi) 6= 0} ∪ {1}). With probability at least1 − 2(3 +
log2 rmax)e

−t/2,
∣∣∣∣∣
1

n

n∑

i=1

Qi

Pi
· f(Xi, Yi)− E[f(X,Y )]

∣∣∣∣∣ ≤
√

2Rnt

n
+

√
2t

n
+

Rnt

3n
.

We defer all proofs to the appendices.

4 Algorithm

First, we state a deviation bound for the importance weighted error of hypotheses in a finite hypoth-
esis classH that holds for alln ≥ 1. It is a simple consequence of Theorem 1 and union bounds;
the form of the bound motivates certain algorithmic choicesto be described below.

Lemma 1. Pick anyδ ∈ (0, 1). For all n ≥ 1, let

εn :=
16 log(2(3 + n log2 n)n(n+ 1)|H|/δ)

n
= O

(
log(n|H|/δ)

n

)
. (3)

Let (Z1, Z2, . . .) ∈ (X ×Y × {0, 1})∗ be the sequence of random variables specified in Section 2.2
using a rejection thresholdp : (X ×Y × {0, 1})∗ ×X → [0, 1] that satisfiesp(z1:n, x) ≥ 1/nn for
all (z1:n, x) ∈ (X × Y × {0, 1})n ×X and alln ≥ 1.

The following holds with probability at least1− δ. For all n ≥ 1 and allh ∈ H,

|(err(h, Z1:n)− err(h∗, Z1:n))− (err(h)− err(h∗))| ≤
√

εn
Pmin,n(h)

+
εn

Pmin,n(h)
(4)

wherePmin,n(h) = min{Pi : 1 ≤ i ≤ n ∧ h(Xi) 6= h∗(Xi)} ∪ {1} .

We letC0 = O(log(|H|/δ)) ≥ 2 be a quantity such thatεn (as defined in Eq. (3)) is bounded as
εn ≤ C0 · log(n+1)/n. The following absolute constants are used in the description of the rejection
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Algorithm 1
Notes: see Eq. (1) for the definition oferr (importance weighted error), and Section 4 for the
definitions ofC0, c1, andc2.
Initialize: S0 := ∅.
Fork = 1, 2, . . . , n:

1. Obtain unlabeled data pointXk.

2. Let

hk := argmin{err(h, Sk−1) : h ∈ H}, and
h′

k := argmin{err(h, Sk−1) : h ∈ H ∧ h(Xk) 6= hk(Xk)}.

LetGk := err(h′

k, Sk−1)− err(hk, Sk−1), and

Pk :=

{
1 if Gk ≤

√
C0 log k
k−1 + C0 log k

k−1

s otherwise

(
= min

{
1, O

(
1

G2
k

+
1

Gk

)
· C0 log k

k − 1

})

wheres ∈ (0, 1) is the positive solution to the equation

Gk =

(
c1√
s
− c1 + 1

)
·
√

C0 log k

k − 1
+
(c2
s

− c2 + 1
)
· C0 log k

k − 1
. (2)

3. Toss a biased coin withPr(heads) = Pk.

If heads, then queryYk, and letSk := Sk−1 ∪ {(Xk, Yk, 1/Pk)}.
Else, letSk := Sk−1.

Return:hn+1 := argmin{err(h, Sn) : h ∈ H}.

Figure 1: Algorithm for importance weighted active learning with an error minimization oracle.

threshold and the subsequent analysis:c1 := 5 + 2
√
2, c2 := 5, c3 := ((c1 +

√
2)/(c1 − 2))2,

c4 := (c1 +
√
c3)

2, c5 := c2 + c3 .

Our proposed algorithm is shown in Figure 1. The rejection threshold (Step 2) is based on the
deviation bound from Lemma 1. First, the importance weighted error minimizing hypothesishk and
the “alternative” hypothesish′

k are found. Note that both optimizations are over the entire hypothesis
classH (with h′

k only being required to disagree withhk on xk)—this is a key aspect where our
algorithm differs from previous approaches. The difference in importance weighted errorsGk of
the two hypotheses is then computed. IfGk ≤

√
(C0 log k)/(k − 1) + (C0 log k)/(k − 1), then

the query probabilityPk is set to1. Otherwise,Pk is set to the positive solutions to the quadratic
equation in Eq. (2). The functional form ofPk is roughlymin{1, (1/G2

k +1/Gk) · (C0 log k)/(k−
1)}. It can be checked thatPk ∈ (0, 1] and thatPk is non-increasing withGk. It is also useful to note
that(log k)/(k−1) is monotonically decreasing withk ≥ 1 (we use the conventionlog(1)/0 = ∞).

In order to apply Lemma 1 with our rejection threshold, we need to establish the (very crude) bound
Pk ≥ 1/kk for all k.

Lemma 2. The rejection threshold of Algorithm 1 satisfiesp(z1:n−1, x) ≥ 1/nn for all n ≥ 1 and
all (z1:n−1, x) ∈ (X × Y × {0, 1})n−1 ×X .

Note that this is a worst-case bound; our analysis shows thatthe probabilitiesPk are more like
1/poly(k) in the typical case.

5 Analysis

5.1 Correctness

We first prove a consistency guarantee for Algorithm 1 that bounds the generalization error of the
importance weighted empirical error minimizer. The proof actually establishes a lower bound on
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the query probabilitiesPi ≥ 1/2 for Xi such thathn(Xi) 6= h∗(Xi). This offers an intuitive
characterization of the weighting landscape induced by theimportance weights1/Pi.

Theorem 2. The following holds with probability at least1− δ. For anyn ≥ 1,

0 ≤ err(hn)− err(h∗) ≤ err(hn, Z1:n−1)− err(h∗, Z1:n−1) +

√
2C0 log n

n− 1
+

2C0 log n

n− 1
.

This implies, for alln ≥ 1,

err(hn) ≤ err(h∗) +

√
2C0 log n

n− 1
+

2C0 log n

n− 1
.

Therefore, the final hypothesis returned by Algorithm 1 after seeingn unlabeled data has roughly
the same error bound as a hypothesis returned by a standard passive learner withn labeled data. A
variant of this result under certain noise conditions is given in the appendix.

5.2 Label Complexity Analysis

We now bound the number of labels requested by Algorithm 1 after n iterations. The following
lemma bounds the probability of querying the labelYn; this is subsequently used to establish the
final bound on the expected number of labels queried. The key to the proof is in relating empirical
error differences and their deviations to the probability of querying a label. This is mediated through
thedisagreement coefficient, a quantity first used by [14] for analyzing the label complexity of the
A2 algorithm of [3]. The disagreement coefficientθ := θ(h∗,H,D) is defined as

θ(h∗,H,D) := sup

{
Pr(X ∈ DIS(h∗, r))

r
: r > 0

}

where

DIS(h∗, r) := {x ∈ X : ∃h′ ∈ H such thatPr(h∗(X) 6= h′(X)) ≤ r andh∗(x) 6= h′(x)}
(the disagreement region aroundh∗ at radiusr). This quantity is bounded for many learning prob-
lems studied in the literature; see [14, 6, 20, 21] for more discussion. Note that the supremum can
instead be taken overr > ǫ if the target excess error isǫ, which allows for a more detailed analysis.

Lemma 3. Assume the bounds from Eq.(4) holds for allh ∈ H andn ≥ 1. For anyn ≥ 1,

E[Qn] ≤ θ · 2 err(h∗) +O

(
θ ·
√

C0 log n

n− 1
+ θ · C0 log

2 n

n− 1

)
.

Theorem 3. With probability at least1 − δ, the expected number of labels queried by Algorithm 1
aftern iterations is at most

1 + θ · 2 err(h∗) · (n− 1) +O
(
θ ·
√
C0n log n+ θ · C0 log

3 n
)
.

The bound is dominated by a linear term scaled byerr(h∗), plus a sublinear term. The linear term
err(h∗) · n is unavoidable in the worst case, as evident from label complexity lower bounds [15, 5].
Whenerr(h∗) is negligible (e.g., the data is separable) andθ is bounded (as is the case for many
problems studied in the literature [14]), then the bound represents a polynomial label complex-
ity improvement over supervised learning, similar to that achieved by the version space algorithm
from [5].

5.3 Analysis under Low Noise Conditions

Some recent work on active learning has focused on improved label complexity under certain noise
conditions [17, 8, 18, 6, 7]. Specifically, it is assumed thatthere exists constantsκ > 0 and0 < α ≤
1 such that

Pr(h(X) 6= h∗(X)) ≤ κ · (err(h)− err(h∗))
α (5)

for all h ∈ H. This is related to Tsybakov’s low noise condition [16]. Essentially, this condition
requires that low error hypotheses not be too far from the optimal hypothesish∗ under the disagree-
ment metricPr(h∗(X) 6= h(X)). Under this condition, Lemma 3 can be improved, which in turn
yields the following theorem.
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Theorem 4. Assume that for some value ofκ > 0 and0 < α ≤ 1, the condition in Eq.(5) holds
for all h ∈ H. There is a constantcα > 0 depending only onα such that the following holds. With
probability at least1− δ, the expected number of labels queried by Algorithm 1 aftern iterations is
at most

θ · κ · cα · (C0 log n)
α/2 · n1−α/2.

Note that the bound is sublinear inn for all 0 < α ≤ 1, which implies label complexity improve-
ments wheneverθ is bounded (an improved analogue of Theorem 2 under these conditions can be
established using similar techniques). The previous algorithms of [6, 7] obtain even better rates
under these noise conditions using specialized data dependent generalization bounds, but these al-
gorithms also required optimizations over restricted version spaces, even for the bound computation.

6 Experiments

Although agnostic learning is typically intractable in theworst case, empirical risk minimization can
serve as a useful abstraction for many practical supervisedlearning algorithms in non-worst case
scenarios. With this in mind, we conducted a preliminary experimental evaluation of Algorithm 1,
implemented using a popular algorithm for learning decision trees in place of the required ERM
oracle. Specifically, we use theJ48 algorithm from Weka v3.6.2 (with default parameters) to select
the hypothesishk in each roundk; to produce the “alternative” hypothesish′

k, we just modify
the decision treehk by changing the label of the node used for predicting onxk. Both of these
procedures are clearly heuristic, but they are similar in spirit to the required optimizations. We
setC0 = 8 andc1 = c2 = 1—these can be regarded as tuning parameters, withC0 controlling
the aggressiveness of the rejection threshold. We did not perform parameter tuning with active
learning although the importance weighting approach developed here could potentially be used for
that. Rather, the goal of these experiments is to assess the compatibility of Algorithm 1 with an
existing, practical supervised learning procedure.

6.1 Data Sets

We constructed two binary classification tasks using MNIST and KDDCUP99 data sets. For MNIST,
we randomly chose4000 training3s and5s for training (using the3s as the positive class), and used
all of the1902 testing3s and5s for testing. For KDDCUP99, we randomly chose5000 examples
for training, and another5000 for testing. In both cases, we reduced the dimension of the data to25
using PCA.

To demonstrate the versatility of our algorithm, we also conducted a multi-class classification exper-
iment using the entire MNIST data set (all ten digits, so60000 training data and10000 testing data).
This required modifying howh′

k is selected: we forceh′

k(xk) 6= hk(xk) by changing the label of
the prediction node forxk to the next best label. We used PCA to reduce the dimension to40.

6.2 Results

We examined the test error as a function of (i) the number of unlabeled data seen, and (ii) the number
of labels queried. We compared the performance of the activelearner described above to a passive
learner (one that queries every label, so (i) and (ii) are thesame) usingJ48 with default parameters.

In all three cases, the test errors as a function of the numberof unlabeled data were roughly the same
for both the active and passive learners. This agrees with the consistency guarantee from Theorem 2.
We note that this is a basic propertynot satisfied by many active learning algorithms (this issue is
discussed further in [22]).

In terms of test error as a function of the number of labels queried (Figure 2), the active learner
had minimal improvement over the passive learner on the binary MNIST task, but a substantial
improvement over the passive learner on the KDDCUP99 task (even at small numbers of label
queries). For the multi-class MNIST task, the active learner had a moderate improvement over the
passive learner. Note that KDDCUP99 is far less noisy (more separable) than MNIST3s vs5s task,
so the results are in line with the label complexity behaviorsuggested by Theorem 3, which states
that the label complexity improvement may scale with the error of the optimal hypothesis. Also,
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Figure 2: Test errors as a function of the number of labels queried.

the results from MNIST tasks suggest that the active learnermay require an initial random sampling
phase during which it is equivalent to the passive learner, and the advantage manifests itself after
this phase. This again is consistent with the analysis (alsosee [14]), as the disagreement coefficient
can be large at initial scales, yet much smaller as the numberof (unlabeled) data increases and the
scale becomes finer.

7 Conclusion

This paper provides a new active learning algorithm based onerror minimization oracles, a depar-
ture from the version space approach adopted by previous works. The algorithm we introduce here
motivates computationally tractable and effective methods for active learning with many classifier
training algorithms. The overall algorithmic template applies to any training algorithm that (i) op-
erates by approximate error minimization and (ii) for whichthe cost of switching a class prediction
(as measured by example errors) can be estimated. Furthermore, although these properties might
only hold in an approximate or heuristic sense, the created active learning algorithm will be “safe”
in the sense that it will eventually converge to the same solution as a passive supervised learning
algorithm. Consequently, we believe this approach can be widely used to reduce the cost of labeling
in situations where labeling is expensive.

Recent theoretical work on active learning has focused on improving rates of convergence. However,
in some applications, it may be desirable to improve performance at much smaller sample sizes, per-
haps even at the cost of improved rates as long as consistencyis ensured. Importance sampling and
weighting techniques like those analyzed in this work may beuseful for developing more aggressive
strategies with such properties.
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A Proof of Deviation Bound for Importance Weighted Estimators

The techniques here are mostly developed in [19]; for completeness, we detail the proofs for our
particular application. The first two lemmas establish a basic bound in terms of conditional moment
generating functions.

Lemma 4. For all n ≥ 1 and all functionalsΞi := ξi(Z1:i),

E

[
exp

(
n∑

i=1

Ξi −
n∑

i=1

lnEi[exp(Ξi)]

)]
= 1.

Proof. A straightforward induction onn.

Lemma 5. For all t ≥ 0, λ ∈ R, n ≥ 1, and functionalsΞi := ξi(Z1:i),

Pr

(
λ

n∑

i=1

Ξi −
n∑

i=1

lnEi[exp(λΞi)] ≥ t

)
≤ e−t.

Proof. The claim follows by Markov’s inequality and Lemma 4 (replacing Ξi with λΞi).

In order to specialize Lemma 5 for our purposes, we first analyze the conditional moment generating
function ofWi − Ei[Wi].

Lemma 6. If 0 < λ < 3Pi, then

lnEi[exp(λ(Wi − Ei[Wi]))] ≤ 1

Pi
· λ2

2(1− λ/(3Pi))
.

If Ei[Wi] = 0, then
lnEi[exp(λ(Wi − Ei[Wi]))] = 0.

Proof. Let g(x) := (exp(x)− x− 1)/x2 for x 6= 0, soexp(x) = 1+ x+ x2 · g(x). Note thatg(x)
is non-decreasing. Thus,

Ei [exp(λ(Wi − Ei[Wi]))]

= Ei

[
1 + λ(Wi − Ei[Wi]) + λ2(Wi − Ei[Wi])

2 · g(λ(Wi − Ei[Wi]))
]

= 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2 · g(λ(Wi − Ei[Wi]))
]

≤ 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2 · g(λ/Pi)
]

= 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2
]
· g(λ/Pi)

≤ 1 + (λ2/Pi) · g(λ/Pi)

where the first inequality follows from the range bound|Wi| ≤ 1/Pi and the second follows from
variance boundEi[(Wi−Ei[Wi])

2] ≤ 1/Pi. Now the first claim follows from the definition ofg(x),
the factsexp(x)− x− 1 ≤ x2/(2(1− x/3)) for 0 ≤ x < 3 andln(1 + x) ≤ x.

The second claim is immediate from the definition ofWi and the factEi[Wi] = f(Xi, Yi).

We now combine Lemma 6 and Lemma 5 to bound the deviation of theimportance weighted esti-
matorf̂(Z1:n) from (1/n)

∑n
i=1 Ei[Wi].

Lemma 7. Pick anyt ≥ 0, n ≥ 1, andpmin > 0, and letE be the (joint) event

1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

1

pmin
· 2t
n

+
1

pmin
· t

3n

and min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin.

ThenPr(E) ≤ e−t.
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Proof. With foresight, let

λ := 3pmin ·

√
1

3pmin

· 2t
3n

1 +
√

1
3pmin

· 2t
3n

.

Note that0 < λ < 3pmin. By Lemma 6 and the choice ofλ, we have that ifmin{Pi : 1 ≤ i ≤
n ∧ Ei[Wi] 6= 0} ≥ pmin, then

1

nλ
·

n∑

i=1

lnEi[exp(λ(Wi − Ei[Wi]))] ≤ 1

pmin
· λ

2(1− λ/(3pmin))
=

√
1

pmin
· t

2n
(6)

and
t

nλ
=

√
1

pmin
· t

2n
+

1

pmin
· t

3n
. (7)

LetE′ be the event that

1

n
·

n∑

i=1

(Wi − Ei[Wi])−
1

nλ
·

n∑

i=1

lnEi[exp(λ(Wi − Ei[Wi]))] ≥ t

nλ

and letE′′ be the eventmin{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin. Together, Eq. (6) and Eq. (7)
imply E ⊆ E′ ∩E′′. And of course,E′ ∩E′′ ⊆ E′, soPr(E) ≤ Pr(E′ ∩E′′) ≤ Pr(E′) ≤ e−t by
Lemma 5.

To do away with the joint event in Lemma 7, we use the standard trick of taking a union bound over
a geometric sequence of possible values forpmin.

Lemma 8. Pick anyt ≥ 0 andn ≥ 1. Assume1 ≤ 1/Pi ≤ rmax for all 1 ≤ i ≤ n, and let
Rn := 1/min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ∪ {1}. We have

Pr

(∣∣∣∣∣
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi]

∣∣∣∣∣ ≥
√

2Rnt

n
+

Rnt

3n

)
≤ 2(2 + log2 rmax)e

−t/2.

Proof. The assumption onPi implies 1 ≤ Rn ≤ rmax. Let rj := 2j for −1 ≤ j ≤ m :=
⌈log2 rmax⌉. Then

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2Rnt

n
+

Rnt

3n

)

=
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2Rnt

n
+

Rnt

3n
∧ rj−1 < Rn ≤ rj

)

≤
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2rj−1t

n
+

rj−1t

3n
∧ Rn ≤ rj

)

=
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2rj(t/2)

n
+

rj(t/2)

3n
∧ Rn ≤ rj

)

≤ (2 + log2 rmax)e
−t/2

where the last inequality follows from Lemma 7. ReplacingWi with −Wi bounds the probability
of deviations in the other direction in exactly the same way.The claim then follows by the union
bound.

Proof of Theorem 1.By Hoeffding’s inequality and the fact|f(Xi, Yi)| ≤ 1, we have

Pr

(∣∣∣∣∣
1

n

n∑

i=1

f(Xi, Yi)− E[f(X,Y )]

∣∣∣∣∣ ≥
√

2t

n

)
≤ 2e−t/2.

SinceEi[Wi] = f(Xi, Yi), the claim follows by combining this and Lemma 8 with the triangle
inequality and the union bound.
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B Remaining Proofs

In this section, we use the notationεk := C0 log(k + 1)/k.

B.1 Proof of Lemma 2

By induction onn. Trivial for n = 1 (sincep(empty sequence, x) = 1 for all x ∈ X ), so now fix
anyn ≥ 2 and assume as the inductive hypothesispn−1 = p(z1:n−2, x) ≥ 1/(n − 1)n−1 for all
(z1:n−2, x) ∈ (X×Y×{0, 1})n−2×X . Fix any(z1:n−1, x) ∈ (X×Y×{0, 1})n−1×X , and consider
the error differencegn := err(h′

n, z1:n−1)− err(hn, z1:n−1) used to determinepn := p(z1:n−1, x).
We only have to consider the casegn >

√
εn−1 + εn−1. By the inductive hypothesis and triangle

inequality, we havegn ≤ 2(n− 1)n−1. Solving the quadratic in Eq. (2) implies

√
pn =

c1 · √εn−1 +
√

c21 · εn−1 + 4 ·
(
gn + (c1 − 1) · √εn−1 + (c2 − 1) · εn−1

)
· c2 · εn−1

2
(
gn + (c1 − 1) · √εn−1 + (c2 − 1) · εn−1

)

>

√
4 ·
(
gn + (c1 − 1) · √εn−1 + (c2 − 1) · εn−1

)
· c2 · εn−1

2
(
gn + (c1 − 1) · √εn−1 + (c2 − 1) · εn−1

) (dropping terms)

=

√
c2 · εn−1

gn + (c1 − 1) · √εn−1 + (c2 − 1) · εn−1

≥
√

c2 · εn−1

gn + (c1 − 1) · √εn−1 + (c1 − 1) · εn−1
(sincec2 ≤ c1)

≥
√

c2 · εn−1

c1 · gn
(sincegn >

√
εn−1 + εn−1)

=

√
c2 · C0 log n

c1 · (n− 1) · gn

≥
√

c2 · C0 log n

2c1 · (n− 1) · (n− 1)n−1
(inductive hypothesis)

>

√
1

e(n− 1)n
(sinceC0 ≥ 2, n ≥ 2, and(c2 · C0 log 2)/(2c1) > 1/e)

≥
√

1

nn
(since(n/(n− 1))n ≥ e)

as required.

B.2 Proof of Theorem 2

We condition on the1 − δ probability event that the deviation bounds from Lemma 1 hold (also
using Lemma 2). The proof now proceeds by induction onn. The claim is trivially true forn = 1.
Now pick anyn ≥ 2 and assume as the (strong) inductive hypothesis that

0 ≤ err(hk)− err(h∗) ≤ err(hk, Z1:k−1)− err(h∗, Z1:k−1) +
√
2εk−1 + 2εk−1 (8)

for all 1 ≤ k ≤ n− 1. We need to show Eq. (8) holds fork = n.

Let Pmin := min{Pi : 1 ≤ i ≤ n − 1 ∧ hn(Xi) 6= h∗(Xi)} ∪ {1}. If Pmin ≥ 1/2, then
Eq. (4) implies that Eq. (8) holds fork = n as needed. So assume for sake of contradiction that
Pmin < 1/2, and letn0 := max{i ≤ n − 1 : Pi = Pmin ∧ hn(Xi) 6= h∗(Xi)}. By definition of
Pn0

, we have

err(h′

n0
, Z1:n0−1)−err(hn0

, Z1:n0−1) =

(
c1√
Pmin

− c1 + 1

)√
εn0−1+

(
c2

Pmin
− c2 + 1

)
εn0−1.
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Using this fact together with the inductive hypothesis, we have

err(h′

n0
, Z1:n0−1)− err(h∗, Z1:n0−1)

= err(h′

n0
, Z1:n0−1)− err(hn0

, Z1:n0−1) + err(hn0
, Z1:n0−1)− err(h∗, Z1:n0−1)

≥
(

c1√
Pmin

− c1 + 1

)
· √εn0−1 +

(
c2

Pmin
− c2 + 1

)
· εn0−1 −

√
2εn0−1 − 2εn0−1

=

(
c1√
Pmin

− c1 + 1−
√
2

)
· √εn0−1 +

(
c2

Pmin
− c2 − 1

)
· εn0−1 . (9)

We use the assumptionPmin < 1/2 to lower bound the righthand side to get the inequality

err(h′

n0
, Z1:n0−1)− err(h∗, Z1:n0−1) > (c1 − 1) · (

√
2− 1) · √εn0−1 + (c2 − 1) · εn0−1 > 0.

which implieserr(h′

n0
, Z1:n0−1) > err(h∗, Z1:n0−1). Sinceh′

n0
minimizeserr(h, Z1:n0−1) among

hypothesesh ∈ H that disagree withhn0
onXn0

, it must be thath∗ agrees withhn0
onXn0

. By
transitivity and the definition ofn0, we conclude thathn(Xn0

) = h′

n0
(Xn0

); soerr(hn, Z1:n0−1) ≥
err(h′

n0
, Z1:n0−1). Then

err(hn, Z1:n−1)− err(h∗, Z1:n−1)

≥ err(hn)− err(h∗)−
√

1

Pmin
· εn−1 −

1

Pmin
· εn−1

≥ err(hn, Z1:n0−1)− err(h∗, Z1:n0−1)− 2 ·
√

1

Pmin
· εn0−1 − 2 · 1

Pmin
· εn0−1

≥
(

c1 − 2√
Pmin

− c1 + 1−
√
2

)
· √εn0−1 +

(
c2 − 2

Pmin
− c2 − 1

)
· εn0−1

>
(
(c1 − 1) · (

√
2− 1)− 2

√
2
)
· √εn0−1 + (c2 − 5) · εn0−1

where Eq. (4) is used in the first two inequalities, Eq. (9) andthe fact err(hn, Z1:n0−1) ≥
err(h′

n0
, Z1:n0−1) are used in the third inequality, and the factPmin < 1/2 is used in the last

inequality. This final quantity is non-negative, so we have the contradictionerr(hn, Z1:n−1) >
err(h∗, Z1:n−1).

B.3 Proof of Lemma 3

First, we establish a property of the query probabilities that relates error deviations (viaPmin)
to empirical error differences (viaPn). Both quantities play essential roles in bounding the label
complexity through the disagreement metric structure aroundh∗.

Lemma 9. Assume the bounds from Eq.(4) hold for all h ∈ H andn ≥ 1. For anyn ≥ 1, we have
Pn ≤ c3 · Pmin, wherePmin := min({Pi : 1 ≤ i ≤ n− 1 ∧ h(Xi) 6= h∗(Xi)} ∪ {1}) and

h :=

{
hn if hn disagrees withh∗ onXn

h′

n if h′

n disagrees withh∗ onXn. (10)

Proof. We can assumePmin < 1/c3, since otherwise the claim is trivial. Pick anyn0 ≤ n − 1
such thath(Xn0

) 6= h∗(Xn0
) andPn0

= Pmin (such ann0 is guaranteed to exist given the above
assumption). We now proceed as in the proof of Theorem 2. We first show a lower bound on
err(h, Z1:n0−1)− err(h∗, Z1:n0−1). Note that

err(h′

n0
, Z1:n0−1)− err(h∗, Z1:n0−1)

= err(h′

n0
, Z1:n0−1)− err(hn0

, Z1:n0−1) + err(hn0
, Z1:n0−1)− err(h∗, Z1:n0−1)

≥
(

c1√
Pmin

− c1 + 1

)
· √εn0−1 +

(
c2

Pmin
− c2 + 1

)
· εn0−1 −

√
2εn0−1 − 2εn0−1

=

(
c1√
Pmin

− c1 + 1−
√
2

)
· √εn0−1 +

(
c2

Pmin
− c2 − 1

)
· εn0−1 (11)
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where the inequality follows from Theorem 2. The righthand side is positive, soh∗ must disagree
with h′

n0
on Xn0

. By transitivity (recalling thath(Xn0
) 6= h∗(Xn0

)), h must agree withh′

n0
on

Xn0
. Thereforeerr(h, Z1:n0−1) − err(h′

n0
, Z1:n0−1) ≥ 0, so the inequality in Eq. (11) holds with

h in place ofh′

n0
on the lefthand side.

Now err(h, Z1:n−1) − err(h∗, Z1:n−1) is related toerr(h, Z1:n0−1) − err(h∗, Z1:n0−1) through
err(h)− err(h∗) using the deviation bound from Eq. (4) (as well as the factεn0−1 ≥ εn−1):

err(h, Z1:n−1)− err(h∗, Z1:n−1)

≥ err(h, Z1:n0−1)− err(h∗, Z1:n0−1)− 2 ·
√

1

Pmin
· εn0−1 − 2 · 1

Pmin
· εn0−1

≥
(

c1 − 2√
Pmin

− c1 + 1−
√
2

)
· √εn−1 +

(
c2 − 2

Pmin
− c2 − 1

)
· εn−1 > 0. (12)

If h = hn, thenerr(h, Z1:n−1)− err(h∗, Z1:n−1) = err(hn, Z1:n−1)− err(h∗, Z1:n−1) ≤ 0 by the
minimality of err(hn, Z1:n−1); this contradicts Eq. (12). Therefore it must be thath = h′

n. In this
case,

err(h, Z1:n−1)− err(h∗, Z1:n−1) ≤ err(h′

n, Z1:n−1)− err(hn, Z1:n−1)

=

(
c1√
Pn

− c1 + 1

)
· √εn−1 +

(
c2
Pn

− c2 + 1

)
· εn−1 (13)

where the inequality follows from the minimality oferr(hn, Z1:n−1), and the subsequent step fol-
lows from the definition ofPn. Combining the lower bound in Eq. (12) and the upper bound in
Eq. (13) implies that

c1√
Pn

· √εn−1 +
c2
Pn

· εn−1 ≥
(

c1 − 2√
Pmin

−
√
2

)
· √εn−1 +

(
c2 − 2

Pmin
− 2

)
· εn−1.

It is easily checked that this impliesPn ≤ c3 · Pmin.

Proof of Lemma 3.Defineh as in Eq. (10). By Lemma 9, we havemin({Pi : 1 ≤ i ≤ n − 1 ∧
h(Xi) 6= h∗(Xi)} ∪ {1}) ≥ Pn/c3. We first show that

err(h)− err(h∗) ≤ err(h, Z1:n−1)− err(h∗, Z1:n−1) +

√
c3
Pn

· εn−1 +
c3
Pn

· εn−1

≤
√

c4
Pn

· √εn−1 +
c5
Pn

· εn−1. (14)

The first inequality follows from Eq. (4) and Lemma 9. For the second inequality, we consider two
cases depending onh. If h = h′

n, then we bounderr(h, Z1:n−1) − err(h∗, Z1:n−1) from above by
err(h′

n, Z1:n−1)− err(hn, Z1:n−1) (by definition ofh and minimality oferr(hn, Z1:n−1)), and then
simplify

err(h′

n, , Z1:n−1)− err(hn, Z1:n−1) +

√
c3
Pn

· εn−1 +
c3
Pn

· εn−1

≤
(
c1 +

√
c3√

Pn

− c1 + 1

)
· √εn−1 +

(
c2 + c3
Pn

− c2 + 1

)
· εn−1 ≤

√
c4
Pn

· √εn−1 +
c5
Pn

· εn−1

using the definition ofPn and the factsc1 ≥ 1 andc2 ≥ 1. If insteadh = hn, then we use the facts
err(h, Z1:n−1)− err(h∗, Z1:n−1) = err(hn, Z1:n−1)− err(h∗, Z1:n−1) ≤ 0 andc3 ≤ min{c4, c5}.

If err(h) − err(h∗) = γ > 0, then solving the quadratic inequality in Eq. (14) forPn gives the
bound

Pn ≤ min

{
1,

3

2
·
(
c4
γ2

+
c5
γ

)
· εn−1

}
.

If err(h)− err(h∗) ≤ γ̄, then by the triangle inequality we have

Pr(h∗(X) 6= h(X)) ≤ err(h∗) + err(h) ≤ 2 err(h∗) + γ̄
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which in turn impliesXn ∈ DIS(h∗, 2 err(h∗)+ γ̄). Note thatPr(Xn ∈ DIS(h∗, 2 err(h∗)+ γ̄)) ≤
θ · (2 err(h∗) + γ̄) by definition ofθ, soPr(err(h)− err(h∗) ≤ γ̄) ≤ θ · (2 err(h∗) + γ̄).

Let f(γ) := ∂ Pr(err(h) − err(h∗) ≤ γ)/∂γ be the probability density (mass) function of the
error differenceerr(h) − err(h∗); note that this error difference is a function of(Z1:n−1, Xn). We
compute the expected value ofQn by conditioning onerr(h) − err(h∗) and integrating (an upper
bound on)E[Qn| err(h)− err(h∗) = γ] with respect tof(γ).

Let γ0 > 0 be the positive solution to1.5(c4/γ2 + c5/γ)εn−1 = 1. It can be checked thatγ0 >√
1.5c4εn−1. We have
E[Qn] = E[E[Qn|Z1:n−1, Xn]] (the outer expectation is over(Z1:n−1, Xn))

=

∫ 1

0

(
∂

∂γ
Pr(err(h)− err(h∗) ≤ γ)

)
· E[Qn| err(h)− err(h∗) = γ] · dγ

≤
∫ 1

0

(
∂

∂γ
Pr(err(h)− err(h∗) ≤ γ)

)
·min

{
1,

3

2
·
(
c4
γ2

+
c5
γ

)
· εn−1

}
· dγ

≤ 3

2
· (c4 + c5) · εn−1 · Pr(err(h)− err(h∗) ≤ 1)

−
∫ 1

0

(
∂

∂γ
min

{
1,

3

2
·
(
c4
γ2

+
c5
γ

)
· εn−1

})
· Pr(err(h)− err(h∗) ≤ γ) · dγ

≤ 3

2
· (c4 + c5) · εn−1 +

∫ 1

γ0

3

2
·
(
2c4
γ3

+
c5
γ2

)
· εn−1 · θ · (2 err(h∗) + γ) · dγ

=
3

2
· (c4 + c5) · εn−1 + θ · 2 err(h∗) · 3

2
·
(
c4

(
1

γ2
0

− 1

)
+ c5

(
1

γ0
− 1

))
· εn−1

+ θ · 3
2
·
(
2c4

(
1

γ0
− 1

)
+ c5 ln

1

γ0

)
· εn−1

≤ 3

2
· (c4 + c5) · εn−1 + θ · 2 err(h∗) + θ ·

√
6c4εn−1 + θ · 3c5

4
· εn−1 · ln

1

1.5c4εn−1

where the first inequality uses the bound onE[Qn| err(h) − err(h∗) = γ]; the second inequality
uses integration-by-parts; the third inequality uses the fact that the integrand from the previous line
is 0 for 0 ≤ γ ≤ γ0, as well as the bound onPr(err(h) − err(h∗) ≤ γ); and the fourth inequality
uses the definition ofγ0.

B.4 Proof of Theorem 4

The theorem is a simple consequence of the following analogue of Lemma 3.
Lemma 10. Assume that for some value ofκ > 0 and0 < α ≤ 1, the condition in Eq.(5) holds
for all h ∈ H. Assume the bounds from Eq.(4) holds for allh ∈ H andn ≥ 1. There is a constant
cα > 0 such that the following holds. For anyn ≥ 1,

E[Qn] ≤ θ · κ · cα ·
(
C0 log n

n− 1

)α/2

.

Proof. For the most part, the proof is the same as that of Lemma 3. The key difference is to use the
noise condition in Eq. (5) to directly boundPr(h(X) 6= h∗(X)) ≤ κ · (err(h) − err(h∗))α, which
in turn implies the boundPr(err(h) − err(h∗) ≤ γ) ≤ θκγα. As before, letγ0 >

√
1.5c4εn−1 be

the solution to1.5(c4/γ2 + c5/γ)εn−1 = 1. First consider the caseα < 1. Then, the expectation of
Qn can be bounded as

E[Qn] ≤
3

2
· (c4 + c5) · εn−1 +

∫ 1

γ0

3

2
·
(
2c4
γ3

+
c5
γ2

)
· εn−1 · Pr(err(h)− err(h∗) ≤ γ) · dγ

≤ 3

2
· (c4 + c5) · εn−1 +

∫ 1

γ0

3

2
·
(
2c4
γ3

+
c5
γ2

)
· εn−1 · θκγα · dγ

≤ 3

2
· (c4 + c5) · εn−1 + θ · κ · 3

2
·
(

2c4
2− α

· 1

γ2−α
0

+
c5

1− α
· 1

γ1−α
0

)
· εn−1.
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The caseα = 1 is handled similarly.

B.5 Analogue of Theorem 2 under Low Noise Conditions

We first state a variant of Lemma 1 that takes into account the probability of disagreement between
a hypothesish and the optimal hypothesish∗.
Lemma 11. There exists an absolute constantc > 0 such that the following holds. Pick any
δ ∈ (0, 1). For all n ≥ 1, let

εn :=
c · log((n+ 1)|H|/δ)

n
.

Let (Z1, Z2, . . .) ∈ (X ×Y × {0, 1})∗ be the sequence of random variables specified in Section 2.2
using a rejection thresholdp : (X ×Y × {0, 1})∗ ×X → [0, 1] that satisfiesp(z1:n, x) ≥ 1/nn for
all (z1:n, x) ∈ (X × Y × {0, 1})n ×X and alln ≥ 1.

The following holds with probability at least1− δ. For all n ≥ 1 and allh ∈ H,

|(err(h, Z1:n)− err(h∗, Z1:n))− (err(h)− err(h∗))| ≤
√

Pr(h(X) 6= h∗(X))

Pmin,n(h)
· εn +

εn
Pmin,n(h)

wherePmin,n(h) = min{Pi : 1 ≤ i ≤ n ∧ h(Xi) 6= h∗(Xi)} ∪ {1}.

Proof sketch.The proof of this lemma follows along the same lines as that ofLemma 1. A key
difference comes in Lemma 7: the joint event is modified to also conjoin with

1

n

n∑

i=1

1(Ei[f(Xi, Yi)] ≤ 0) ≤ a

for some fixeda > 0. In the proof, the parameterλ should be chosen as

λ := 3pmin ·

√
1

3pmin

· 2at
3n

a+
√

1
3pmin

· 2at
3n

.

Lemma 8 is modified to also take a union bound over a sequence ofpossible values fora (in fact,
only n + 1 different values need to be considered). Finally, instead of combining with Hoeffding’s
inequality, we use Bernstein’s inequality (or a multiplicative form of Chernoff’s bound) so the re-
sulting bound (an analogue of Theorem 1) involves an empirical average inside the square-root term:
with probability at least1−O(n · log2 rmax)e

−t/2,∣∣∣∣∣
1

n

n∑

i=1

Qi

Pi
· f(Xi, Yi)− E[f(X,Y )]

∣∣∣∣∣ ≤ O

(√
RnAnt

n
+

Rnt

3n

)

where

An :=
1

n

n∑

i=1

1(f(Xi, Yi) 6= 0).

Finally, we apply this deviation bound to obtain uniform error bounds over all hypothesesH (a
few extra steps are required to replace the empirical quantity An in the bound with a distributional
quantity).

Using the previous lemma, a modified version of Theorem 2 follows from essentially the same proof.
We note that the quantityC1 := O(log(|H|/δ)) used here may differ fromC0 by constant factors.
Lemma 12. The following holds with probability at least1− δ. For anyn ≥ 1,

0 ≤ err(hn)− err(h∗) ≤ err(hn, Z1:n−1)− err(h∗, Z1:n−1)

+

√
2Pr(hn(X) 6= h∗(X))C1 log n

n− 1
+

2C1 log n

n− 1
.

This implies, for alln ≥ 1,

err(hn) ≤ err(h∗) +

√
2Pr(hn(X) 6= h∗(X))C1 log n

n− 1
+

2C0 log n

n− 1
.
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Finally, using the noise condition to boundPr(hn(X) 6= h∗(X)) ≤ κ · (err(hn) − err(h∗))α, we
obtain the final error bound.

Theorem 5. The following holds with probability at least1− δ. For anyn ≥ 1,

err(hn) ≤ err(h∗) + cκ ·
(
C1 log n

n− 1

) 1

2−α

wherecκ is a constant that depends only onκ.
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