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Ghrelin, the endogenous ligand of the GH secretagogue re-
ceptor, acts at central level to elicit GH release and regulate
food intake. To elucidate the neural circuit that exerts its
effects, we measured the expression of hypothalamic neu-
ropeptides involved in weight regulation and GH secretion
after ghrelin administration. Adult male rats, fed or fasted for
72 h, were treated centrally (intracerebroventicularly) with a
single dose of ghrelin (5 �g). After 2, 4, and 6 or 8 h, agouti-
related peptide, melanin-concentrating hormone, neuropep-
tide Y, prepro-orexin, GHRH, and somatostatin mRNA levels
were measured by in situ hybridization. We found that ghrelin

increased agouti-related peptide and neuropeptide Y expres-
sion in the arcuate nucleus of the hypothalamus of fed and
fasted rats. In contrast, no change was demonstrated in the
mRNA levels of the other neuropeptides studied at any time
evaluated. Finally, we examined the effect of ghrelin on GHRH
and somatostatin mRNA levels in GH-deficient (dwarf) rats.
Our results show that ghrelin increases somatostatin mRNA
levels in the hypothalamus of these rats. This study furthers
our understanding of the molecular basis and mechanisms
involved in the effect of ghrelin on food intake and GH
secretion. (Endocrinology 144: 544–551, 2003)

GH SECRETAGOGUES (GHSs) are artificial compounds
that release GH in all species tested to date. Until 1999,

these molecules mimicked an unknown endogenous factor
that activates the GHS receptor (GHS-R) (1). The earlier clon-
ing of GHS-R suggested that an endogenous ligand for this
receptor might exist (2). Indeed, after intensive research by
different groups, the isolation of an endogenous ligand of the
GHS-R, ghrelin (3), was recently reported. The purified li-
gand was found to be a peptide of 28 amino acids, in which
the serine 3 residue was n-octanoylated. More recently, a
second endogenous ligand for the GHS-R, des-Gln14-ghrelin,
whose biological activity and sequence are identical to gh-
relin except for one glutamine in position 14, has been pu-
rified and characterized (4). These peptides have been shown
to exert a very potent and specific GH-releasing activity in
vitro and in vivo as well as to increase the transcription rate
of the Pit gene (5, 6). Taking into account that ghrelin is
secreted prevalently from the stomach and circulates in nor-
mal subjects at considerable plasma concentrations, it has
been postulated that this molecule is secreted from the stom-
ach, circulates in the bloodstream, and stimulates GH syn-
thesis and secretion by the somatotrophs (3). Moreover, gh-
relin has emerged as a regulatory signal involved in energy
homeostasis (7), reproduction (8), and gastrointestinal (9, 10)
and cardiovascular (11–13), function among others.

Recent data have led to the recognition that ghrelin plays an

important role in energy homeostasis, and the evidence is as
follows. Ghrelin administration induces a positive energy bal-
ance in rodents by decreasing fat utilization without signifi-
cantly changing energy expenditure or locomotor activity (14,
15). The effect of ghrelin appears to be exerted at the central
level, and its chronic administration is associated with meta-
bolic changes that lead to an efficient metabolic state, resulting
in increased body weight and fat mass (14, 15). In keeping with
this, an inverse relationship has been reported between plasma
ghrelin levels and body mass index in humans (16).

Recent findings have demonstrated the interaction be-
tween ghrelin and orexigenic systems in the rat hypothala-
mus. Therefore, GHS-R mRNA is expressed in neuropeptide
Y/agouti-related peptide (NPY/AgRP) neurons in the arcu-
ate nucleus of the hypothalamus (ARC) (17–19), and the
central administration of ghrelin increases the mRNA con-
tent of NPY and AgRP in the ARC (15, 20, 21). On the other
hand, the lack of expression of the GHS-R in the lateral
hypothalamus (LHA) (17), where a large number of orexi-
genic neurons are located (22, 23), suggested that this hy-
pothalamic nucleus was unlikely to be a target of the effects
of ghrelin on food intake. However, some of the biological
effects of ghrelin might be mediated by as yet unknown
receptors, different from the only one cloned until now (24,
25). In keeping with this possibility, it was found that ghrelin
administration leads to increased c-Fos expression in neu-
rons of the LHA (26). Taking into consideration that the main
central roles of ghrelin appear to be those related to the
regulation of body weight and GH secretion, we decided to
study the hypothalamic expression of neuropeptides impli-
cated in both processes. Specifically, the functional linkage of
ghrelin and body weight homeostasis was carried out by
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measuring hypothalamic AgRP, melanin-concentrating hor-
mone (MCH), NPY, and prepro-orexin (prepro-OX) mRNA
levels. Furthermore, we examined the effect of ghrelin on
AgRP and NPY in the adaptation to fasting, because their
responses are frequently dependent on the nutritional status
of the animals (27, 28).

Finally, we assessed the effect of ghrelin on GHRH and
somatostatin (SST) mRNA levels. These two neuropeptides
are the major regulators of GH secretion (29). Furthermore,

in view of the fact that GH feeds back to regulate GHRH and
SST expression at the hypothalamic level, we also studied the
effects of ghrelin in an experimental model of GH deficiency,
namely the dwarf Lewis rat (30–32). This model displays an
autosomal recessive mutation due to a selective failure in
GHRH signaling in the somatotrope cell, which results in
almost undetectable plasma GH levels (30, 31). Therefore,
these rats provide a unique opportunity to study the regulation
of GHRH and SST in the practical absence of endogenous GH.

FIG. 1. Left panels: A, Brightfield photomicrographs of cells in the PeN that were incubated with a 35S-labeled antisense oligonucleotide SST
probe (magnification, �400). B, Brightfield photomicrographs of cells in the ARC that were incubated with a 35S-labeled anti-
sense oligonucleotide GHRH probe (magnification, �400). C, Brightfield photomicrographs of cells in the ARC that were incubated with a
35S-labeled antisense oligonucleotide AgRP probe (magnification, �200). D, Cells in the ARC that were incubated with a 35S-labeled antisense
oligonucleotide NPY probe (magnification, �200). E, Cells in the LHA that were incubated with a 35S-labeled antisense oligonucleotide MCH
probe (magnification, �200). F, Cells in the LHA that were incubated with a 35S-labeled antisense oligonucleotide prepro-OX probe (magni-
fication, �200). Right panels, Autoradiographic images (magnification, �1) of representative brain coronal sections, incubated with a 35S-labeled
antisense oligonucleotide probe in the absence (control) or presence of crescent amounts of nonlabeled (�100, �200, and �500) oligonucleotide
probes. A, SST; B, GHRH; C, AgRP; D, NPY; E, MCH; F, prepro-OX. 3V, Third ventricle.

TABLE 1. Antisense oligonucleotides for rat AgRP, rat GHRH, rat MCH, rat NPY, rat prepro-OX, and rat SST

mRNA GenBank
accession no. Antisense oligonucleotide sequence 5� position

AgRP AF206017 5�-CGACGCGGAGAACGAGACTCGCGGTTCTGTGGATCTAGCACCTCTGCC-3� 136
GHRH U10156 5�-CCGGTAGCTGCTGGTGAAGATGGCGTCTGC-3� 220
MCH M29712 5�-CCAACAGGGTCGGTAGACTCGTCCCAGCAT-3� 529
NPY M20373 5�-AGATGAGATGTGGGGGGAAACTAGGAAAAGTCAGGAGAGCAAGTTTCATT-3� 400
Prepro-OX AF041241 5�-TTCGTAGAGACGGCAGGAACACGTCTTCTGGCGACA-3� 240
SST NM_012659 5�-GTTCGAGTTGGCAGACCTCTGCAGCTCCAG-3� 339
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Materials and Methods
Experimental animals

We used four different rats models: 1) adult male Sprague Dawley
rats (250–300 g, 9–11 wk old; Animalario General University of Santiago
de Compostela, Santiago de Compostela, Spain), 2) dwarf (HsdOla:
dw-4) Lewis rats (150–175 g, 10–12 wk old; Harlan Ibérica, Barcelona,
Spain), 3) Lewis rats age-matched (250–300 g, 10–12 wk old) with dwarf
Lewis rats (Charles River, Lyon, France), and 4) Lewis rats weight-
matched (150–175 g, 6–8 wk old) with dwarf Lewis rats. The animals
were allowed free access to standard laboratory pellets of rat chow and
tap water. The protocols were approved by the ethics committee of the
University of Santiago de Compostela, and experiments were performed
in accordance to the rules of laboratory animal care and international law
on animal experimen-tation.

Implantation of intracerebroventricular (icv) cannulas and
ghrelin treatment

Chronic icv cannulas were implanted under ketamine-xylazine an-
esthesia (50 mg/kg, ip), as described previously (33, 34) and were dem-
onstrated to be located in the lateral ventricle by methylene blue staining.
The animals were caged individually and used for the experiments 1 wk
later. During this postoperative recovery period the rats became accus-
tomed to the handling procedure under nonstressful conditions. After
this time one group of rats continued to have food available ad libitum
(fed rats), and the other group was deprived of food for 72 h (fast 72 h).

To confirm the efficiency of the food deprivation, plasma leptin levels
were measured in the described experimental groups of animals, using
a commercial kit (Linco Research, Inc., St. Charles, MO) (35). Food
deprivation for 72 h significantly decreased plasma leptin levels (fed
rats, 5.1 � 0.7 ng/ml; fast 72 h rats, 0.1 � 0.04 ng/ml; P � 0.001).
Thereafter, rats received either a single administration of ghrelin
(Bachem, Bubendorf, Switzerland; 5 �g/rat dissolved in 5 �l distilled
water saturated with argon) or vehicle (control rats). Two, 4, 6, or 8 h
after the treatment, vehicle- and ghrelin-treated animals were quickly
decapitated in an independent room, and their brains were removed
rapidly. For in situ hybridization, the whole brains were maintained at
–80 C until processed. All treatments started in the lights on phase (0900
h). Six to eight animals were used in each experimental group.

In situ hybridization

Coronal hypothalamic sections (16 �m) were cut on a cryostat and
immediately stored at �80 C until hybridization. For AgRP, MCH, NPY,
prepro-OX, GHRH, and SST mRNA detection we employed the specific
antisense oligodeoxynucleotides (Table 1). These probes were 3�-end
labeled with [�-35S]deoxy-ATP using terminal deoxynucleotidyl trans-
ferase. The specificity of the probes was confirmed by incubating the
sections with an excess of the unlabeled probes (Fig. 1). In situ hybrid-
izations were performed as previously reported (34, 36). The frozen
sections were fixed with 4% paraformaldehyde in 0.1 m phosphate buffer
(pH 7.4) at room temperature for 30 min. They were then dehydrated
using 70%, 80%, 90%, 95%, and absolute ethanol (5 min each). The

FIG. 2. A, Upper panel, Autoradiographic images (magnification, �5) of representative brain coronal sections, incubated with a 35S-labeled
antisense oligonucleotide AgRP probe, in the vehicle- and ghrelin-treated groups for 2 h. Areas delineated in both sections are shown at higher
magnification in the bottom (magnification, �60). Lower panel, AgRP mRNA levels in the ARC of the described experimental groups. *, P �
0.05 vs. vehicle treated for 2 and 4 h, respectively. 3V, Third ventricle. B, Upper panel, Autoradiographic images (magnification, �5) of
representative brain coronal sections, incubated with a 35S-labeled antisense olignucleotide NPY probe, in the vehicle-treated group and the
ghrelin-treated group for 2 h. Areas delineated in both sections are shown at higher magnification in the bottom (magnification, �60). 3V, Third
venticle. Lower panel, NPY mRNA levels in the ARC of the described experimental groups. *, P � 0.05 vs. vehicle treated for 2 h.
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hybridization was carried out overnight at 37 C in a moist chamber.
Hybridization solution contained 5 � 105 (AgRP, prepro-OX, SST, and
GHRH) or 1 � 106 cpm (MCH and NPY) per slide of the labeled probe,
4� standard saline citrate (SSC), 50% deionized formamide, 1� Den-
hardt’s solution, 10% dextran sulfate, and 10 �g/ml sheared, single-
stranded salmon sperm DNA. Afterward, the hybridization sections
were sequentially washed in 1� SSC at room temperature, four times in
1� SSC at 42 C (30 min/wash), and once in 1� SSC at room temperature
(1 h), and then rinsed in water and ethanol. Finally, the sections were
air-dried and exposed to Hyperfilm �-Max (Amersham International,
Little Chalfont, UK) at room temperature for 4–6 d for AgRP, MCH,
NPY, SST, and prepro-OX and for 14 d for GHRH. After the films were
developed, sections were dipped in Ilford K5 autoradiographic emul-
sion (Ilford, UK) and exposed for 2 wk (AgRP, MCH, NPY, SST, and
prepro-OX) or 6 wk (GHRH) at 4 C. The slides were then developed in
Kodak D-19 developer (Eastman Kodak Co., Rochester, NY), fixed
(Kodak fixer), and counterstained with methylene blue.

To compare anatomically similar regions, the slides were matched
according to the rat brain atlas of Paxinos and Watson (37). The slides
from control and treated animals at each treatment time were always
exposed to the same autoradiographic film. All sections were scanned,
and the specific hybridization signal was quantified by densitometry
using a digital imaging system (Molecular Analyst, Bio-Rad Laborato-
ries, Inc., Richmond, CA) (34, 38). The OD of the hybridization signal was
determined and subsequently corrected by the OD of its adjacent back-
ground value. For this reason a rectangle, with the same dimensions in
each case, was drawn enclosing the hybridization signal over each
nucleus and over adjacent brain areas of each section (background). We

used 16–20 sections for each animal (4–5 slides, 4 sections/slide). The
mean of these 16–20 values was used as the densitometry value for each
animal. The coefficients of intraindividual variation were 5.8% for AgRP,
6.3% for MCH, 6.9% for NPY, 5.4% for prepro-OX, 6.6% for GHRH, and
6.0% for SST.

Statistical analysis and data presentation

In experiments with wild-type normal rats, the data were analyzed
using a nonparametric Mann-Whitney test. We compared control with
treated animals. To analyze the time dependence effect of the treatment,
we performed an ordinary ANOVA followed by a post hoc Bonferroni
test for the treated groups at the different time points. For each test,
significance was set at P � 0.05.

In experiments with dwarf Lewis rats treated with ghrelin, the data
were analyzed using ANOVA. Therefore, we compared Lewis rats (age-
and weight-matched) treated with vehicle, dwarf rats treated with ve-
hicle, and dwarf rats treated with ghrelin. The data (mean � sem) were
expressed as the percentage of change in relation to Lewis rats age-
matched and treated with vehicle (100%).

Because of the presence of circadian changes in the hypothalamic
mRNA content of the neuropeptides evaluated in this study (39–44), the
results were normalized by making comparisons with control animals
killed the same day and at the same hour. The coefficients of interin-
dividual variation were 20.7% for AgRP, 12.7% for MCH, 20.9% for NPY,
10.9% for prepro-OX, 13.1% (wild-type rats) and 14.4% (dwarf rats) for
GHRH, and 10.8% (wild-type rats) and 12.7% (dwarf rats) for SST.

In each case the data (mean � sem) were expressed as the percentage

FIG. 3. Effect of ghrelin on mRNA levels of MCH in the LHA (A), prepro-OX in the LHA (B), GHRH in the ARC (C), and SST in the PeN (D).
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of change in relation to control values (vehicle-treated animals � 100%).
All statistical analyses and graphical representations presented in this
work have been performed using 1 data point/animal, obtained from the
mean of the 16–20 sections for each animal.

Results

In agreement with previous reports (36, 45), our in situ
hybridization histochemistry showed SST mRNA-positive
cells distributed widely throughout the hypothalamus. The
highest density of positive cells was located in the periven-
tricular nucleus of the hypothalamus (PeN) (Fig. 1A). In situ
hybridization with an oligoprobe for GHRH mRNA dem-
onstrated labeling in numerous cells in the ventrolateral part
of the ARC (36, 45) (Fig. 1B).

In agreement with previous reports (46) our in situ hy-
bridization histochemistry showed AgRP (Fig. 1C) and NPY
(Fig. 1D) mRNA-positive cells located in the ARC. In situ

hybridization with oligoprobes for MCH (Fig. 1E) and pre-
pro-OX (Fig. 1F) mRNA demonstrated labeling of numerous
cells in the LHA, as previously reported (46, 47). In all cases,
incubation of the sections with an excess (100-, 200-, and
500-fold) of the unlabeled probes displaced the positive sig-
nal (Fig. 1, right panels).

Treatment with ghrelin increases AgRP and NPY mRNA
levels in the ARC of fed rats

Using in situ hybridization analysis, a significant increase
in AgRP (Fig. 2A) and NPY (Fig. 2B) mRNA levels was
observed in the ARC after treatment with ghrelin. This in-
crease was transient, being evident 2 and 4 h after treatment
in the case of AgRP and 2 h after treatment in the case of NPY.
On the other hand, we did not find any change in the mRNA
content of MCH, prepro-OX (in the LHA), GHRH (in the

FIG. 4. A, Upper panel, Autoradiographic images (magnification, �1.6) of representative brain coronal sections, incubated with a 35S-labeled
antisense oligonucleotide AgRP probe, in the vehicle-treated group for 4 h, the 72-h fasted group treated with vehicle for 4 h, and the 72-h fasted group
treated with ghrelin for 4 h. Areas delineated in the sections are shown at higher magnification in the bottom (magnification, �15). 3V, Third ventricle.
Lower panel, AgRP mRNA levels in the ARC of the described experimental groups. *, P � 0.05 vs. vehicle-treated for 2, 4, and 8 h, respectively; ***,
P � 0.001 vs. vehicle-treated for 4 h; ##, P � 0.01, 72-h fasted treated with vehicle for 4 h vs. 72-h fasted treated with ghrelin for 4 h. B, Upper panel,
Autoradiographic images of representative brain coronal sections, incubated with a 35S-labeled antisense oligonucleotide NPY probe, in the vehicle-
treated group for 4 h, the 72-h fasted group treated with vehicle for 4 h, and the 72-h fasted group treated with ghrelin for 4 h. Areas delineated in
the sections are shown at higher magnification in the bottom. 3V, Third ventricle. Lower panel, NPY mRNA levels in the ARC of the described
experimental groups. *, P � 0.05 vs. vehicle treated for 2 h and 4 h, respectively; **, P � 0.01 vs. vehicle treated for 8 h; ***, P � 0.001 vs. vehicle
for 4 h; #, P � 0.05, 72-h fasted treated with vehicle for 4 h vs. 72-h fasted treated with ghrelin for 4 h.
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ARC), and SST (in the PeN) at any time point (2, 4, and 6 h)
as assessed by in situ hybridization (Fig. 3).

Treatment with ghrelin increases NPY and AgRP mRNA
levels in the ARC of fasted rats

Using in situ hybridization analysis, a significant increase
in AgRP (Fig. 4A) and NPY (Fig. 4B) mRNA levels was
observed in the ARC after 72 h of food deprivation. In fasted
rats treated with ghrelin, we observed a further increase in
AgRP and NPY mRNA content in the ARC 4 h after the
treatment compared with fasted vehicle-treated rats (Fig. 4).

Ghrelin increases SST mRNA levels in the PeN of dwarf
Lewis rats

Using in situ hybridization analysis, we detected a signif-
icant decrease in SST mRNA content in the PeN of dwarf

Lewis rats compared with vehicle-treated, wild-type (age-
and weight-matched) Lewis rats (Fig. 5A). Treatment with
ghrelin increased SST mRNA levels in the PeN of dwarf
Lewis rats 6 h after treatment, reaching levels observed in
vehicle-treated (age- and weight-matched) Lewis rats (Fig.
5A). The GHRH mRNA content in the ARC was increased in
dwarf Lewis rats compared with vehicle-treated wild-type
(age- and weight-matched) Lewis rats. Ghrelin did not
change GHRH mRNA levels in dwarf Lewis rats 6 h after
treatment (Fig. 5B).

Discussion

In agreement with previous studies (15, 20, 21) we found
that in vivo ghrelin administration to ad libitum fed rats led
to a clear-cut increase in AgRP and NPY mRNA contents in
the medial ARC, thus indicating that AgRP/NPY neurons

FIG. 5. A, Upper panel, Autoradiographic images (magnification, �1) of representative brain coronal sections, incubated with a 35S-labeled
antisense oligonucleotide SST probe, in age-matched Lewis rats treated with vehicle for 6 h, weight-matched Lewis rats treated with vehicle
for 6 h, dwarf Lewis rats treated with vehicle for 6 h, and dwarf Lewis rats treated with ghrelin for 6 h. Areas delineated in the sections are
shown at higher magnification in the bottom (magnification, �10). 3V, Third ventricle. Lower panel, SST mRNA levels in the PeN of the described
experimental groups. ***, P � 0.001 vs. dwarf Lewis vehicle treated for 6 h; ###, P � 0.001 vs. age-matched Lewis rats treated with vehicle
for 6 h; !!!, P � 0.001 vs. weight-matched Lewis rats treated with vehicle for 6 h. B, Upper panel, Autoradiographic images (�1) of representative
brain coronal sections, incubated with a 35S-labeled antisense oligonucleotide GHRH probe, in age-matched Lewis rats treated with vehicle for
6 h, weight-matched Lewis rats treated with vehicle for 6 h, dwarf Lewis rats treated with vehicle for 6 h, and dwarf Lewis rats treated with
ghrelin for 6 h. Areas delineated in the sections are shown at higher magnification in the bottom (�6). 3V, Third ventricle. Lower panel, GHRH
mRNA levels in the ARC of the described experimental groups. ###, P � 0.001 vs. age-matched Lewis rats treated with vehicle for 6 h; !!!,
P � 0.001 vs. weight-matched Lewis rats treated with vehicle for 6 h.
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are the primary targets of ghrelin orexigenic actions in the
hypothalamus. The effect appears to be quite specific, as
MCH and prepro-OX mRNA contents in the LHA were un-
changed after treatment with ghrelin, thus indicating that
these two orexigenic neuropeptides are not involved in the
induction of food intake elicited by ghrelin. This was some-
what surprising, because it was recently shown that icv treat-
ment with GHRP-6 (a synthetic GHS) induces c-Fos immu-
noreactivity in orexin-containing neurons in the LHA (26). It
is therefore possible that other neuropeptides synthesizing
neurons in this area, such as dynorphin (48) or galanin (49),
are targets of ghrelin. Alternatively, it is possible that the
effect of GHRP-6 at this level is mediated through a receptor
not activated by ghrelin. The finding that the cloned GHS-R
does not appear to be expressed in the LHA supports this
latter possibility (17). Moreover, similar discrepancies have
been shown between the effects of ghrelin and synthetic GHS
in other peripheral cell types (50–52).

To further characterize the role of ghrelin on the AgRP/
NPY neurons we studied its effects in food-deprived ani-
mals. It is known that the nutritional status of the animals
markedly influences the hypothalamic expression of neu-
ropeptides involved in the regulation of food intake as well
as their set-point and responsiveness to a vast array of stimuli
(22, 23, 27, 28). As expected, we found that AgRP and NPY
mRNA levels in the ARC were increased after 72 h of food
deprivation. Taking into account that fasting increases
ghrelin-circulating levels (53, 54), it is possible that the ele-
vation of AgRP and NPY mRNA content could be mediated
at least in part by ghrelin. This suggestion is reinforced by
recent data showing that starvation-induced feeding was
suppressed after central administration of antighrelin anti-
serum (15). It is noteworthy that even in this situation of
increased circulating ghrelin levels, the administration of this
peptide to food-deprived rats led to a further increase in
AgRP and NPY mRNA contents in the ARC. This suggests
that the dose-response characteristics of ghrelin on these
hypothalamic target neurons at the level of mRNA expres-
sion are maintained across a broad range and that there is an
apparent lack of desensitization in this experimental setting.

To fully understand the possible functional linkage be-
tween ghrelin and the somatotropic axis, we determined the
effects of ghrelin administration (icv) on hypothalamic SST
and GHRH mRNA levels. In agreement with previous data
(20), we failed to find any meaningful effect of ghrelin in
intact normal rats. Nevertheless, these data were somewhat
surprising because there is indirect evidence indicating that,
at least from a functional point of view, SST mediates some
of the effects of ghrelin on GH secretion (55, 56). Taking into
account that GH has been found to markedly affect SST and
GHRH mRNA levels, and that SST and GHRH neurons ex-
press GH receptors (29, 57), it was possible that the ghrelin-
induced increase in circulating GH levels could be masking
their effects on SST and GHRH mRNA levels. Using dwarf
rats we could study GHRH and SST expression in the ab-
sence of the feedback exerted by GH, which could be mask-
ing the effects of ghrelin at this level. Our data showed, as
found in other GH-deficient models (32, 58, 59), that in these
animals there is a decrease in SST mRNA content in the PeN

and an increase in GHRH mRNA levels in the ARC com-
pared with wild-type (age- and weight-matched) Lewis rats.

We found that, similar to intact rats, ghrelin failed to
influence GHRH mRNA content. In contrast, we found a
clear-cut stimulatory effect of SST mRNA content in the PeN
after ghrelin administration to dwarf rats. These data indi-
cate that SST neurons in the PeN are influenced by ghrelin
through a non-GH-dependent mechanism.

In summary, our data confirm that ghrelin administration
to ad libitum-fed rats increased NPY and AgRP mRNA con-
tents in the ARC. Furthermore, our study provides the first
evidence that this effect is independent of the nutritional
status in fasted rats. Contrary to previous hypotheses, we
demonstrate that ghrelin does not appear to regulate MCH
and prepro-OX mRNA levels in the LHA. Finally, we showed
that ghrelin administration does not modify mRNA levels in
the ARC, but increases the SST mRNA content in the PeN of
dwarf Lewis rats. This study furthers our understanding of
the mechanism involved in the effects of ghrelin on food
intake and GH secretion.
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