
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in International Journal of Machine
Learning and Cybernetics. This paper has been peer-reviewed but does not include the final
publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Bouguelia, M-R., Nowaczyk, S., Santosh, K C., Verikas, A. (2018)
Agreeing to disagree: active learning with noisy labels without crowdsourcing
International Journal of Machine Learning and Cybernetics, 9(8): 1307-1319
https://doi.org/10.1007/s13042-017-0645-0

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33365



Noname manuscript No.
(will be inserted by the editor)

Agreeing to disagree: active learning with noisy labels without
crowdsourcing

Mohamed-Rafik Bouguelia · Slawomir Nowaczyk · K.C. Santosh · Antanas Verikas

Received: date / Accepted: date

Abstract We propose a new active learning method for clas-

sification, which handles label noise without relying on mul-

tiple oracles (i.e., crowdsourcing). We propose a strategy

that selects (for labeling) instances with a high influence on

the learned model. An instance x is said to have a high influ-

ence on the model h, if training h on x (with label y = h(x))

would result in a model that greatly disagrees with h on la-

beling other instances. Then, we propose another strategy

that selects (for labeling) instances that are highly influenced

by changes in the learned model. An instance x is said to

be highly influenced, if training h with a set of instances

would result in a committee of models that agree on a com-

mon label for x but disagree with h(x). We compare the

two strategies and we show, on different publicly available

datasets, that selecting instances according to the first strat-

egy while eliminating noisy labels according to the second

strategy, greatly improves the accuracy compared to several

benchmarking methods, even when a significant amount of

instances are mislabeled.

Keywords Active Learning · Classification · Label Noise ·

Mislabeling

1 Introduction

In order to learn a classification model, supervised learn-

ing algorithms need a training dataset where each instance
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is manually labeled. With a large amount of unlabeled in-

stances, one needs to manually label as much instances as

possible. Such instances are randomly selected by a human

labeler or oracle (i.e., passive learning). With this setting, the

learning methods need huge labeled data to produce an op-

timized classifier. Note that labeling is costly and time con-

suming. Semi-supervised learning methods like [21] learn

using both labeled and unlabeled data, and can therefore be

used to reduce the labeling cost to some extent. Nonetheless,

instead of randomly selecting the instances to be labeled,

active learning methods allow to further reduce the labeling

cost by allowing interaction between the learning algorithm

and the oracle. Unlike a passive learning, active learning lets

the learner choose which instances are more appropriate for

labeling, according to an informativeness measure.

The main problem that active learning addresses is about

defining informativeness in a way that reduces the number

of instances to be labeled along with the improvement of

the classifier’s performance. This is an important problem

because in most real-world applications a large amount of

unlabeled data are cheaply available as compared to the la-

beled ones.

We refer to [24] for a survey of active learning strategies.

The most widely used active learning strategies are based on

uncertainty sampling [19, 26, 27, 11]. Those strategies select

instances in regions of the feature space, where the classifier

is most uncertain about its prediction. Such instances are

typically close to the decision boundary and allow to fine-

tune the boundary regardless of the change which is made

to the classifier. Examples of those strategies are presented

in [14]. Other uncertainty based active learning methods,

such as [5], define uncertainty in terms of the change that

a weighted instance brings to the model so that the model

changes its prediction regarding this instance. The classifier

is then considered uncertain about its prediction, if a small

weight is sufficient to change the predicted label. Active



2 Mohamed-Rafik Bouguelia et al.

learning strategies based on query-by-committee [10] can

also be regarded as an uncertainty sampling because they

select instances on which the members of the committee

are most uncertain. Those methods implicitly assume that

the decision boundary is stable and needs just to be finely

tuned. Indeed, stability of a decision boundary is expected

to increase as training progresses (in terms of the number

of labeled instances). However, since our objective is to re-

duce the labeling cost, active learning is initialized with few

labeled instances and starts with a poor decision boundary.

Therefore, the performance of those strategies may be lim-

ited. In the light of the aforementioned issues, some active

learning strategies define informative instances as those hav-

ing a great influence on the model [33, 6, 25, 23]. The in-

fluence of a candidate instance can be measured by the re-

duction in the overall uncertainty of the model [33, 23], the

change in the probabilistic output of the model [6], or most

commonly the change in specific parameters of the model

before and after training on that instance. As an example,

the authors in [25] use this strategy specifically with a dis-

criminative probabilistic model where gradient-based opti-

mization is used. The influence of an instance on the model

is measured by the magnitude of the training gradient if the

model is trained based on that instance. However, unlike the

uncertainty-based active learning, those strategies highly de-

pend on the type of the used classification model, because

they evaluate the change in specific parameters of the model.

The active learning method that we propose in this paper,

measures the informativeness of instances by their influence

on the predictive capability of the classification model, not

on its parameters, and can be used with any base classifica-

tion model.

Further, most existing active learning methods assume

that the labels given by the oracle are perfectly correct. How-

ever, the oracle is usually subject to accidental labeling er-

rors, especially in complex applications such as document

analysis [15], entity recognition in text [7], biomedical im-

age processing [1] and video annotation [29], where the la-

beling task is tedious and time consuming. Such labeling

errors not only reduce the accuracy of the classifier, but also

mislead the active learner, causing it to query for the label

of instances that are not necessarily informative. Many ex-

isting methods, like [17] and those surveyed in [9], address

the problem of noisy labels in a passive supervised learning

setting. Such methods allow to repeatedly correct or remove

the possibly mislabeled instances from a dataset of labeled

instances which is already available. This is different from

the active learning setting where labeling errors only affects

instances whose labels are queried during training. Such in-

stances are located in regions of high informativeness, which

naturally makes labeling errors not equally likely for all pos-

sible instances in the feature space. In this context, active

learning with noisy labels is primarily tackled in the liter-

ature based on crowdsourcing techniques [16, 32, 13, 2].

However, those techniques can not be used with a single or-

acle because they rely on the redundancy of labels that are

queried for each instance from multiple oracles, which in-

duces a high additional labeling cost. Very few methods that

are independent of a specific classifier, try to address this

problem without relying on crowdsourcing. A strategy pro-

posed in [20] rely on the classifier’s confidence to actively

ask the correction of the suspected (i.e., possibly mislabeled)

instances from an expert, however, the learning in itself is

passive. The same strategy has been investigated for active

learning in [12] and [4], where suspected instances can be

relabeled or discarded. The active learning method proposed

in [33], suggests that a suspiciously mislabeled instance is

the one that minimizes the expected entropy over the un-

labeled dataset if it is labeled with a new label other than

the one given by the oracle. Some more restrictive active

learning methods like [28, 8] assume that labeling errors are

due to uncertain domain knowledge of the oracle. They ad-

dress this problem by modeling the knowledge of the oracle

and querying for the label of an instance only if it is part of

his/her knowledge. However, those methods do not handle

labeling errors that are simply due to inattention, and they

require the oracle to remain the same over time. The active

learning method that we propose in this paper, handles label-

ing errors without using crowdsourcing and without making

assumptions about the oracle’s domain knowledge.

More specifically, the proposed active learning method

relies on two strategies. In order to measure the informative-

ness of an instance x under a classification model h, the first

strategy (see Section 3) trains h on x and evaluates its out-

put on other unlabeled instances, whereas the second strat-

egy (see Section 4) trains h on other instances and evaluates

the output on x. A modification of the later strategy (see

Section 6), allows to characterize mislabeled instances. The

experimental evaluation that we present in Section 7 shows

that querying labels according to the first strategy and reduc-

ing noisy labels according to the second strategy, allows to

improve the performance of the active learner compared to

several commonly used active learning strategies from the

literature.

2 Preliminaries and notations

A brief summary of the active learning can be generalized

as follows. Let X ⊆ R
d be a d dimensional feature space.

The input x ∈ X is called an instance. Let Y be a finite set

of classes where each class y ∈ Y is a discrete value called

class label. The classifier is then a function h that associates

an instance x ∈ X with a class y ∈ Y (see Eq. 1). Most

classifiers not only return the predicted class y but also give
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a score or an estimate of the posterior probability P (y|x, h),

i.e., probability that x belongs to class y under the model h.

h :

∣

∣

∣

∣

X −→ Y

x 7−→ y = h(x).
(1)

Let U be a set of unlabeled instances, L be the set of

labeled instances that are queried so far, and h be the cur-

rent classification model trained on L. In active learning, the

learner is given the set U and has to iteratively select an in-

stance x ∈ U in order to ask an oracle for the corresponding

class label y ∈ Y and add it to L. In this way, the goal is to

learn an efficient classification model h : X −→ Y using a

minimum number of queried labels.

The uncertainty based active learning strategies select

(for labeling) instances for which the model h is most uncer-

tain about their class. For example, if y1 = maxy∈Y P (y|x, h)

is the most probable class label for x, then the most com-

mon uncertainty strategy simply selects instances with a low

confidence P (y1|x, h) or with a high conditional entropy

−
∑

y∈Y P (y|x, h) logP (y|x, h) which is a measure of un-

certainty.

A general active learning procedure is illustrated in Al-

gorithm 1. The input is a classification model h, a set of

unlabeled instances U and an initial set of labeled instances

L. At each iteration the algorithm queries for the true class

label of the instance which maximizes some informativeness

measure F (e.g., uncertainty).

Algorithm 1 General pool-based active learning

1: Input: classifier h, unlabeled set U , initial labeled set

L, informativeness measure F

2: repeat

3: Train h on L

4: Select x̂ = argmaxx∈U F (x)

5: Query for y the label of x̂ from an oracle

6: L← L ∪ {(x̂, y)}

7: U ← U − {x̂}

8: until Labeling budget exhausted

In the next sections, we will use the notation hx to de-

note the classification model after being trained on L in

addition to some labeled instance x (i.e., trained on L ∪

{(x, y)}), and the notation x̄ to denote an unlabeled instance

which is candidate for labeling.

3 Disagreement 1 (selecting the most influencing

instance)

This strategy measures the informativeness of an unlabeled

instance x̄ (candidate for labeling) based on the disagree-

ment between the current classification model h and hx̄ (the

model trained on L after including x̄). If the two models

greatly disagree on labeling the unlabeled instances of U ,

then x̄ is informative, and its true class label is queried from

an oracle.

In order to define the disagreement between two classifi-

cation models a and b, let us assume that instances are drawn

i.i.d. from an underlying probability distribution D. We can

then define a metric d which represents the disagreement be-

tween a and b as follows:

d(a, b) = P
x∼D

[a(x) 6= b(x)] ≃
|{x ∈ U : a(x) 6= b(x)}|

|U |
.

(2)

As shown in Eq. 2, we can practically define this met-

ric as the number of unlabeled instances on which the two

models disagree about their predicted labels.

Let us consider the candidate instance x̄ ∈ U for label-

ing. If we decide to query for the true class label of x̄, then

d(h, hx̄) would express how many instances are affected by

this decision. In order to compute the informativeness of x̄

before querying for its true label, we define hx̄ as the classi-

fication model trained on L∪{(x̄, h(x̄))}. In this way, if we

query for the true label of x̄, then the resulting model will

most likely be hx̄ because h(x̄) is the most probable class

label for x̄. Based on Eq. 2 we can define the informative-

ness of x̄ as

F1(x̄) =
∑

x∈U

✶(h(x) 6= hx̄(x)), (3)

where ✶(C) is the 0-1 indicator function of condition C,

defined as

✶(C) =

{

1 if C is true

0 otherwise.

Note that in Eq. 3, the informativeness of the candidate in-

stance x̄ is determined by training a model hx̄ on L includ-

ing x̄, and testing on every instance x ∈ U .

Instead of expressing disagreement 1 as how many in-

stances are affected (i.e., their predicted label change), we

can also express it as how much those instances are affected.

This is done by introducing a weight as described in Eq. 4

F ′
1(x̄) =

∑

x∈U

[

✶(h(x) 6= hx̄(x))× wx

]

, (4)

where wx = |max
y∈Y

P (y|x, hx̄) −max
y∈Y

P (y|x, h)| is the dif-

ference in the confidence of the predicted label of x under

hx̄ and h respectively.

The time H required for training a model h on a set of

instances L depends mainly on the size of L. However, in

our case, L increases by only one instance after each iter-

ation, and its final size |L| is very small compared to |U |.

As the final |L| is bounded by a fixed labeling budget, we

can consider H as a constant (representing the upper bound
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training time) in our time complexity analysis. At each it-

eration, the disagreement 1 is computed (using Eq. 3 or 4)

for all instances x̄ ∈ U . Then, the instance with the highest

disagreement 1 is selected for labeling. Since H is constant,

the complexity of computing disagreement 1 for a single in-

stance x̄ is O(n) where n = |U |. Since the disagreement

1 needs to be computed for all instances (to select the one

with highest score), the complexity of this query strategy is

O(n2).

4 Disagreement 2 (selecting the most influenced

instance)

We define another disagreement measure that we call dis-

agreement 2. While the objective of disagreement 1 was to

favour instances having a large impact on the model output,

the objective of disagreement 2 is to favour the instances

whose label is wrongly predicted by the current classifica-

tion model h.

Let us consider the committee (or ensemble) of classi-

fication models C = {hx : x ∈ U}. The disagreement 2

strategy computes how many models in the committee C

disagree with h on the label of a candidate instance x̄. If

many members of the committee disagree with h(x̄), then

h(x̄) is likely to be wrong, and the true label of x̄ is worth

querying:

F2(x̄) =
∑

x∈U

✶(h(x̄) 6= hx(x̄)). (5)

Note that while Eq. 5 looks similar to Eq. 3, it is different.

Eq. 3 trains a model hx̄ on the candidate instance x̄ and tests

the output on every instance x ∈ U , and Eq. 5 trains a model

hx on each instance x ∈ U and tests on x̄.

According to Eq. 5, it is likely that h(x̄) is wrong if many

members of the committee C disagree with h(x̄). However,

we can get more confidence about that if such committee

members agree on a common label (different from h(x̄)).

Therefore, another version of disagreement 2 which quan-

tifies how much a committee of models disagree with h(x̄)

and agree on a common label for x̄, would be expressed as

follows:

max
y∈Y

∑

x∈U

✶(h(x̄) 6= hx(x̄) ∧ hx(x̄) = y).

Instead of using the 0-1 indicator function ✶(hx(x̄) = y)

to indicate the agreement of a committee member hx on

the label y for x̄, we can rather consider the probability

P (y|x̄, hx), that is, the confidence of the committee member

hx about assigning the label y for x̄. The weighted version

of disagreement 2 can then be expressed (according to Eq.

6) as

F ′
2(x̄) = max

y∈Y

∑

x∈U

[

✶(h(x̄) 6= hx(x̄))× P (y|x̄, hx)
]

. (6)

Regarding the time complexity of disagreement 2, it is

worth noting that at any given iteration, the committee of

models C = {hx : x ∈ U} is independent of the candidate

instance x̄ ∈ U . At each iteration, the set of models C can

be computed once and used to evaluate the disagreement 2

for each instance x̄ ∈ U (based on Eq. 5 or 6). Therefore,

the complexity of this query strategy is also O(n2).

5 Discussion on disagreements 1 and 2

To summarize, the simple version of disagreement 1 (Eq. 3)

is quantifying how many predictions change if the model is

trained by adding the candidate instance x̄. The weighted

version (Eq. 4) is quantifying how big is the change in those

predictions. There is a relation between this proposed (dis-

agreement 1) strategy and an optimal active learning strat-

egy. Indeed, since the ultimate objective of active learning is

to produce a high accuracy classifier with a minimum num-

ber of labeled training instances, an optimal strategy would

be to select at each iteration the instance x̄ that leads to the

maximum increase in accuracy if labeled and used for train-

ing1. However, this strategy can never be used because it

requires knowing beforehand the true class labels of the in-

stances in U to evaluate the gain in accuracy of the classifier.

For simplification purposes, let us consider a binary clas-

sification task (i.e., with only two possible classes). Let y∗x
be the (unknown) true class label of an instance x ∈ U . The

overall gain in accuracy of the model induced by training on

a candidate instance x̄ is expressed as

G =
1

|U |
×

∑

x∈U

g(x),

where g(x) is the gain in accuracy regarding a single in-

stance x.

g(x) = ✶(hx̄(x) = y∗x)− ✶(h(x) = y∗x)

The value of g(x) would be 1 if the label of x is correctly

predicted by hx̄ only, −1 if it is correctly predicted by h

only, and 0 if the two models h and hx̄ predict the same

label for x (either correctly or wrongly). To illustrate the re-

lation between disagreement 1 and the optimal active learn-

ing, g(x) can be re-written as a factor of ✶(h(x) 6= hx̄(x))

(which is used in equations 3 and 4) as follows:

g(x) =
[

✶(hx̄(x) = y∗x)− ✶(hx̄(x) 6= y∗x)
]

× ✶(h(x) 6= hx̄(x)). (7)

1 This is optimal given that we are only allowed to query for the

label of one instance at each iteration, and it is only optimal for the

given classifier.
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While it is impossible to evaluate the left-hand side fac-

tor in Eq. 7 because y∗x is unknown, it is obvious that if

✶(hx̄(x) 6= h(x)) = 0, there is no gain in accuracy regard-

ing the instance x. Therefore, the disagreement between h

and hx̄ is a necessary (but not necessarily sufficient) condi-

tion to improve the accuracy.

Disagreement 2 is a measure of how likely h(x̄) is wrong.

The simple version of disagreement 2 (Eq. 5) is quantifying

how many models disagree with h regarding the predicted

label of the candidate instance x̄. The weighted version (Eq.

6) is quantifying how much the different models commonly

agree to disagree with h regarding the predicted label of

x̄. Conceptually, the proposed (disagreement 2) strategy has

some similarity with the active learning strategies based on

query-by-committee and uncertainty sampling, because it

allows to query for the label of instances on which h is un-

certain (i.e., instances whose labels are likely wrongly pre-

dicted by h). However, those strategies define the most un-

certain instance as the one being closest to the current deci-

sion boundary. This may result in querying for the label of

an instance which has not a great impact on the model even

if its label is wrongly predicted by h. Unlike those strategies,

disagreement 2 selects at each iteration (for labeling) an in-

stance which is still close to the decision boundary (not com-

pletely far from it) but not necessarily the closest one, which

makes it have a larger influence on the classification model.

The reason why this may improve the results is that the cur-

rent decision boundary (especially at early iterations of the

active learning) is poorly defined. Fine tuning the poorly de-

fined decision boundary by always selecting the closest in-

stance to it, is likely to slow down the early stages of the

learning process2.

It is worth mentioning that the disagreement 1 and the

disagreement 2 measures have different objectives and there

is not a simple linear correlation between them. This is demon-

strated by Fig. 1 which shows the informativeness of some

instances according to the weighted versions of disagree-

ment 1 and disagreement 2, for different datasets. As dis-

agreement 1 and 2 have different objectives, they may give

a conflicting informativeness regarding some candidate in-

stances. For example, disagreement 1 may be large while

disagreement 2 is small. Indeed, if we look at Eq. 3, we

see that for a candidate instance, disagreement 1 maximizes

the number of unlabeled instances whose predicted labels

change. However, we are not guaranteed that all those pre-

dicted labels change towards the true class labels. For this

reason, disagreement 1 may, in some cases, over-estimate (to

some degree) the informativeness of a candidate instance,

while this informativeness is still small with disagreement

2. These observations opens-up for further future work on

combining the two disagreement measures.

2 As the decision boundary becomes more stable (over time), fine

tuning it becomes more effective.

In the next section, we show that a simple modification

of the disagreement 2 measure, allows it to be used as a mis-

labeling measure to characterize noisy labels.

6 Dealing with noisy labels

As indicated in Section 1, the oracle is potentially subject to

labeling errors. We consider random labeling errors, where

the oracle has a probability α ∈ [0, 1] for giving a wrong

label for each query (i.e., α represents the noise intensity).

Let (xq, yq) be a labeled instance from L whose label yq
was queried from the oracle. As a reminder, we previously

used the notation hx to denote the classification model after

being trained on L in addition to the instance x with its pre-

dicted label h(x). In other words, hx is the classifier trained

on L ∪ {(x, h(x))}. Let us now use the notation hx\xq
to

denote the same model as hx, but trained after (temporarily)

excluding the instance xq from L.

According to the idea of disagreement 2, if many mod-

els highly agree on a common label for xq , which is different

from the queried label yq (i.e., agreeing to disagree with yq),

then we can suspect yq to be wrong. Therefore, a mislabel-

ing measure can be expressed based on Eq. 6 for a labeled

instance (xq, yq), as follows:

M(xq, yq) =

max
y∈Y

∑

x∈U

[

✶(yq 6= hx\xq
(xq))× P (y|xq, hx\xq

)
]

. (8)

A labeled instance with a high value of M(xq, yq) is po-

tentially mislabeled. In order to reduce the effect of such

instance on the active learning, three main alternatives exist

in the literature (with different mislabeling measures).

The first alternative is to manually review and correct

the label of the instance by an expert oracle. This alternative

may induce an additional relabeling cost, because the ex-

pert is assumed to be reliable. The second alternative simply

consists in removing the instance from L. Note that this al-

ternative may occasionally remove an informative instance

that was actually correctly labeled. The third alternative is

softer than the previous ones. If the classifier accepts train-

ing with weighted instances [30, 22], then every instance in

(xq, yq) ∈ L can be weighted by a weight 1
M(xq,yq)

which

is the inverse of the mislabeling measure, that is, instances

with a higher mislabeling measure have a smaller weight

(i.e., smaller impact on the model). However, this alterna-

tive highly depends on the used classifier.

As one can notice, each alternative has its benefits and

drawbacks. For our experiments, in order to remain inde-

pendent of any specific classifier, we evaluate active learn-

ing with the proposed mislabeling measure (Eq. 8) against

other mislabeling measures from the literature, for the two
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Fig. 1 Disagreement 1 with respect to disagreement 2 on different datasets

Fig. 2 A general flowchart of the developed system.

first alternatives (i.e., relabeling and removing). Those al-

ternatives require to periodically select an instance with the

highest mislabeling measure from L. To ensure a fair com-

parison between the mislabeling measures, we simply set

this period to 1
α

. For example, if α = 0.1, then after each

10 queries, the most likely mislabeled instance is either re-

labeled or removed from the set L.

As a recapitulation, Fig. 2 shows a general flowchart of

the developed system. First, a model h is trained on an ini-

tial set of labeled instances L. If a stopping criterion is not

yet fulfilled (e.g. reaching a given labeling budget), then the

most informative instance is selected for labeling accord-

ing to one of the proposed disagreement measures, and is

added to L. If the number of iterations is multiple of 1
α

then

the most likely mislabeled instance is either relabeled or re-

moved from L. The whole process is then repeated again for

another iteration.

7 Experiments

In this section, we evaluate the proposed active learning strate-

gies. First, we present the datasets and evaluation metrics

as well as the benchmarking methods used for comparison.

Then, we present the experimental results.

7.1 Datasets

We consider in our experimental evaluation seven different

datasets of a variable size and number of classes, where six

of them are considered as publicly available datasets and are

described in the UCI machine learning repository [3]. The

other dataset is a set of real-world administrative documents

that are represented as bag of textual words (i.e., sparse vec-

tor containing the occurrence count of each word in the doc-

ument). Table 1 shows a brief summary of each dataset in-

cluding the number of categories (column class), the dimen-

sionality (column dim), the number of instances (column

size), and the percentage of instances kept for testing (col-

umn test). This percentage is presented for each dataset as it

is originally available in the UCI repository.

7.2 Evaluation metrics

There is no absolute measure for evaluating active learn-

ing strategies. Most authors demonstrate the performance

of active learning strategies visually by plotting curves of

the classifier’s accuracy (on a test set) with respect to the

number of labeled samples used for training. The higher
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the curve, the better the active learning strategy. We also

present some of such plots in our experiments (see Figs. 3

and 4). Nonetheless, this method does not provide a quanti-

tative evaluation of the active learning strategy for the whole

learning session. A straightforward way to achieve this is to

compute the average accuracy (over iterations) for the whole

active learning session:

1

|L|

|L|
∑

t=1

Acct,

where Acct is the test accuracy achieved by the classifier af-

ter querying for the t’th label. However, this measure gives a

higher score to strategies that achieve higher accuracy at the

end of the learning session (where accuracy is pretty high)

even if they perform relatively poorly at early stages (where

accuracy is pretty low). Therefore, we propose an alterna-

tive evaluation measure which quantifies the performance

of a given active learning strategy relatively to the optimal

strategy (that we referred to in Section 5) and the random

sampling strategy which selects instances independently of

their informativeness. This measure aims to be independent

of the dataset by quantifying the area between the maximum

achievable accuracy and the accuracy which is achievable by

a random sampling, and can be computed as

E(AL) =

∑|L|
t=1 Acct(AL)−Acct(RANDOM)

∑|L|
t=1 Acct(OPTIMAL)−Acct(RANDOM)

,

where Acct(AL) is the test accuracy achieved at time t for

a given strategy AL.

For the results presented in this paper, we noticed that

using the average accuracy measure will lead to the same

conclusions as the proposed evaluation metric E, although

this is not necessarily true in general. Nevertheless, the met-

ric E have some readability benefits. It shows how much a

Table 1 Summary of the datasets characteristics

Dataset class dim size test SVM

LandsatSat. 6 36 6435 31%
C = 10

γ = .0001

CNAE-9 9 856 1080 20%
C = 100

γ = .01

Letter-recog. 26 16 26101 23%
C = 100

γ = .01

Optdigits 10 64 5620 32%
C = 10

γ = .001

Pendigits 10 16 10992 32%
C = 100
γ = .0001

Segmentation 7 19 2310 9%
C = 100

γ = .0001

Documents 24 277 1951 33%
C = 1000

γ = .1

given active learning strategy is close to the optimal one in-

dependently of the dataset. Moreover, it clearly gives a neg-

ative value if there is no benefit in using the active learning

strategy over the usual passive learning where data is ran-

domly selected by the oracle.

7.3 Benchmarking methods

In order to evaluate the proposed active learning strategies

(without considering noisy labels for now), we compare them

to five active learning strategies described below.

1. Entropy uncertainty [24]. It determines the most un-

certain instance with respect to all possible classes based

on the entropy measure. This strategy selects at each iter-

ation the instance x̄ with the highest conditional entropy.

x̄ = argmaxx∈U H(y|x, h),

where H(y|x, h) = −
∑

y∈Y P (y|x, h) logP (y|x, h).

2. Least certain strategy [14]. It selects at each iteration

the instance x̄ which is closest to the decision boundary.

For classifiers that output an estimate of the prediction

probability, this strategy is equivalent to selecting x̄ =

argminx∈U P (y1|x, h), where y1 = argmaxy∈Y P (y|x, h)

is the most probable class for x.

3. Sufficient weight strategy [5]. It computes for each in-

stance x a sufficient weight which is defined as the small-

est weight that should be associated with x so that the

prediction of the classifier h(x) changes from one label

to another. Then, it selects (for labeling) the instance x̄

with the smallest sufficient weight.

4. Expected Entropy Reduction (EER) [33, 23]. This strat-

egy selects the instance x̄ which minimizes the expected

entropy of the model regarding all the other unlabeled

instances. The expected entropy is computed by averag-

ing over all possible labels yi ∈ Y for each instance

x ∈ U .

x̄ = argmin
x∈U

∑

yi∈Y

p(yi|x, h)
∑

u∈U−x

H(y|u, h(x,yi)),

where h(x,yi) is the model after being trained on L ∪

{(x, yi)} and H(y|u, h(x,yi)) is the conditional entropy

for the instance u as described in the first strategy.

5. Change in probabilities [6]. This strategy measures the

variation between two models in terms of the difference

in their probabilistic output. Let vh denote a vector con-

taining the prediction probabilities of the model h on all

the available instances (labeled and unlabeled). Given

the current model h and the model after being trained on

L with an additional instance hx, the informativeness of
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Table 2 Average accuracy for each dataset for the SVM (RBF) classifier

Method Average accuracy (%)

CNAE9 LandsatSat. Letter-recog. Documents Optdigits Pendigits Segmentation

Entropy 84.0± 1.40 86.0± 1.60 42.8± 1.41 91.7± 0.26 94.9± 0.46 95.0± 0.55 79.6± 2.43

Least certain 85.6± 0.97 86.1± 1.84 49.9± 0.53 91.6± 0.71 95.1± 0.36 95.9± 0.63 83.2± 1.46

Sufficient weight 85.9± 0.53 85.6± 1.79 53.4± 0.90 92.8± 0.34 94.9± 0.28 96.2± 0.52 86.7± 1.46

EER 85.3± 1.40 86.3± 2.06 51.6± 0.90 91.9± 0.48 95.0± 0.36 95.8± 0.66 84.8± 0.98

Change in prob. 86.2± 0.91 85.9± 2.12 55.1± 0.69 93.7± 0.52 96.1± 0.17 96.7± 0.54 87.3± 1.85

Disagreement 1 86.4± 1.02 85.4± 2.11 56.0± 0.80 94.1± 0.47 96.1± 0.25 97.1± 0.45 84.4± 3.08

Weighted disag. 1 87.1± 0.66 86.0± 1.99 58.3± 0.88 94.1± 0.39 96.4± 0.26 97.2± 0.61 86.6± 1.48

Disagreement 2 86.0± 1.17 85.3± 2.53 55.9± 1.08 93.7± 0.34 95.6± 0.35 96.6± 0.46 87.4± 1.29

Weighted disag. 2 85.4± 1.01 85.5± 1.94 57.5± 0.64 93.2± 0.44 95.7± 0.51 96.8± 0.40 87.9± 0.96

p-value (t-Test) 0.23 0.85 9.7× 10−4 0.33 0.10 0.40 0.59

p-value (ANOVA) 0.06 0.98 4.2× 10−21 1.8× 10−9 3.2× 10−6 2.7× 10−4 2.5× 10−5

the instance x is measured proportionally to the distance

between vh and vhx
.

In order to evaluate the active learning in the presence of

noisy labels, we use the proposed mislabeling measure to fil-

ter mislabeled instances as described in Section 6. We com-

pare the results based on two other mislabeling measures

(described below) that are independent of the classifier, and

has been used to mitigate the effect of noisy labels on active

learning in [33, 12, 4].

1. Entropy reduction based mislabeling measure [33].

This measure suggests that a suspiciously mislabeled in-

stance is the one that minimizes the expected entropy

over the set U , if it is labeled with a new label other than

the one given by the oracle.

2. Margin based mislabeling measure [12, 4]. This mea-

sure simply suggest that a mislabeled instance is the one

having a high prediction probability and a low proba-

bility for the label given by the oracle. The mislabeling

measure for a labeled instance (xq, yq) ∈ L is then sim-

ply defined as p(y1|x, hL−xq
) − p(yq|x, hL−xq

), where

y1 is the most probable label for xq , yq is the label given

by the oracle, and hL−xq
is the model trained after ex-

cluding xq from L.

SVM is used as a base classifier for all the considered

active learning strategies. We consider two variants of the

SVM classifier, a simple one (with a linear kernel) and a

complex one (with an RBF kernel). We use the Python im-

plementation of SVM which is available in the scikit-learn

library [18]. As the traditional SVM is a binary classification

model, we applied the one-against-one multiclass strategy,

which constructs one classifier per pair of classes. At pre-

diction time, the class which receives the most votes is se-

lected.3 Prediction probabilities are estimated and calibrated

3 For more information about the used one-against-one mul-

ticlass strategy and the hyper-parameter selection, please visit

based on the SVM scores using the method described in

[31]. For all the scenarios that we consider in this paper,

the initial SVM model is trained on a fixed set of 50 initially

labeled instances chosen randomly from U while ensuring

that at least two instances from each class are included. The

only exception is for the Letter-recognition dataset where

52 instances were selected (exactly two instances from each

class).

The main SVM parameters taken into consideration are

a penalty parameter C and a kernel coefficient parameter γ

(only for the RBF kernel). The parameter C is a trade off

between the training error and the simplicity of the deci-

sion surface. The parameter γ is the inverse of the radius of

influence of samples selected by the model as support vec-

tors. Those parameter values are simply selected based on

an exhaustive grid search over pre-specified parameter val-

ues where the score is obtained using cross-validation on a

separate dataset ( 15% of the whole dataset)3. The values re-

tained for those parameters for each dataset are indicated on

Table 1 (column SVM).

7.4 Results and analysis

We firstly evaluate the active learning without considering

noisy labels. Table 2 shows the average accuracy for each

active learning strategy based on the SVM (RBF) classifier.

Each method was run on each dataset five times, by consid-

ering each time a random split of the training/testing sets.

This allows to have five accuracy values for each method

and dataset. The average accuracy (of the five values) is re-

ported on Table 2, together with the corresponding confi-

dence intervals (by considering a confidence level of 95%).

Table 2 reports the p-value obtained based on Student’s t-

the APIs sklearn.multiclass.OneVsOneClassifier

and sklearn.model selection.GridSearchCV and

sklearn.svm.SVC on http://scikit-learn.org.

http://scikit-learn.org
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Table 3 Average E metric over all classifiers for each dataset

Method Average E metric (%)

CNAE9 LandsatSat. Letter-recog. Documents Optdigits Pendigits Segmentation

Entropy 45.28 17.96 -44.78 26.13 08.36 11.95 -24.00

Least certain 45.73 06.52 -43.21 47.57 24.18 11.07 3.92

Sufficient weight 49.38 24.33 7.01 46.54 29.85 47.21 40.10

EER 51.75 29.62 -21.72 50.80 26.40 32.45 22.13

Change in prob. 50.14 34.37 17.94 63.57 52.25 29.95 37.56

Disagreement 1 53.82 25.69 -3.93 76.26 44.44 44.19 40.53

Weighted disag. 1 57.69 30.79 28.59 71.15 51.65 50.03 43.74

Disagreement 2 53.56 20.27 13.64 66.95 42.19 46.07 45.61

Weighted disag. 2 54.31 33.79 21.60 72.61 46.15 37.33 34.90

test which shows how much significantly is the best per-

forming strategy (among the proposed ones) different from

the second best strategy (among the other reference strate-

gies). Table 2 also reports the p-value obtained based on

the statistical analysis of variance method (ANOVA), which

is used to analyze the differences among all strategies. The

smaller the p-values, the more significant is the difference.

We can see that the most outstanding result is achieved on

the Letter-recognition dataset where the weighted version of

disagreement 1 achieves a much significantly different ac-

curacy than the other strategies. Table 3 shows the average

E metric (defined in section 7.2) over all classifiers for each

individual dataset. Table 4 shows the average E metric as

well as the average accuracy over all datasets for each indi-

vidual classifier (columns RBF SVM and Linear SVM), and

for all datasets and classifiers (column All SVMs). Figs. 3

and 4 show the test accuracy of the model h with respect

to the number of labeled samples (chosen according to dif-

ferent strategies) used to train h, for 7 different datasets and

two variants of h (SVM with RBF kernel in the top of each

figure, and SVM with a linear kernel in the bottom of each

figure). Fig. 3 (respectively Fig. 4) compares the proposed

simple and weighted versions of disagreement 1 (respec-

tively disagreement 2) to the other reference strategies. For

clarity purposes, the curve of only one baseline strategy is

presented in the figures, however, results of all the consid-

ered strategies are summarized in tables 3 and 4.

First, we can observe that all the considered active learn-

ing strategies perform generally better than the passive ran-

dom sampling. This can be seen from Figs. 3 and 4 where the

active learning curves are predominantly higher, and from

tables 3 and 4, where the E metric values are rarely nega-

tive. This confirms that any active learning method can, in

general, improve the results over the usual passive learning

(random sampling).

Second, we can see that the simple and weighted ver-

sions of the proposed disagreement 1 and disagreement 2

strategies, all achieve a better overall performance than the

Entropy and the Least certain strategies. This can be directly

observed from the column All SVMs of Table 4. Moreover,

the Entropy and the Least certain strategies are occasion-

ally less reliable than the random one. This is especially

true for the Letter-recognition dataset where the two strate-

gies are significantly worse than the random sampling (see

the Letter-recognition column in Table 3, and the Letter-

recognition curves in Figs. 3 and 4). Indeed, for this dataset,

the initial classifier achieves a low test accuracy (around

30%) and the learning progresses slowly. Therefore, select-

ing the most uncertain instances will allow to fine-tune a

poorly defined decision boundary, which slows down the

learning progress further. The same observation can be made

for the EER strategy which achieved a lower performance

than the random strategy on the Letter-recognition dataset

(see Table 3). This is seemingly due to the fact that the

EER strategy computes an expected entropy by averaging

over all possible labels, which makes it less reliable when

the number of classes is high (i.e., 26 classes for the Letter-

recognition dataset as shown on Table 1).

Third, from Table 4 we can see that the strategy based

on the change in probabilities achieved the closest perfor-

mance to our proposed strategies and a slightly better perfor-

mance than the simple disagreement 1 strategy. However, the

weighted version of disagreement 1 achieves the best over-

all result. This is confirmed by the column All SVMs which

shows the average E metric over all datasets and classifiers.

This proves that the instances chosen using the proposed

weighted disagreement 1 strategy are usually more informa-

tive.

Finally, the active learning results in the presence of noisy

labels are summarized in Table 5. The weighted disagree-

ment 1 has been used as a query strategy, as it achieved

the best performance in the previous experiments. Table 5

shows the average E metric over all datasets when different

mislabeling measures (including the one proposed in Sec-

tion 6) are used to filter (i.e., relabel or remove) the poten-

tially mislabeled instances. Different intensities of noise α

are considered. We can observe from Table 5 that for all the

considered mislabeling measures, and for a fixed value of α,
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Fig. 3 Disagreement 1 strategy in comparison to uncertainty sampling (least certain strategy)

Table 4 Average E metric and average accuracy, over all datasets for each classifier

Method Average E metric (%) — Average accuracy (%)

RBF SVM Linear SVM All SVMs

Entropy uncertainty 14.83 — 82.51 -3.15 — 80.15 5.84 — 81.33

Least certain 31.77 — 83.93 -4.40 — 79.84 13.68 — 81.89

Sufficient weight 38.82 — 85.09 31.01 — 83.90 34.92 — 84.49

EER 41.64 — 85.15 13.05 — 81.69 27.35 — 83.42

Change in prob. 48.09 — 86.08 33.57 — 83.87 40.83 — 84.97

Disagreement 1 47.62 — 85.81 32.66 — 83.51 40.14 — 84.66

Weighted disag. 1 56.51 — 86.99 38.81 — 84.58 47.66 — 85.79

Disagreement 2 51.09 — 86.46 31.28 — 83.56 41.18 — 85.01

Weighted disag. 2 48.70 — 86.06 37.22 — 84.47 42.96 — 85.27
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relabeling the potentially mislabeled instances improves the

accuracy better than removing them. However, as discussed

in Section 6, relabeling may require an additional cost, while

removing doesn’t. Further, Table 5 shows that the mislabel-

ing measure that we proposed in Section 6 (which is based

on the weighted disagreement 2 measure) allows to better

mitigate the effect of noisy labels than the margin or the

entropy reduction based mislabeling measures. This proves

that relaying on a committee of models that highly agree on

a common label and disagree with the label given by the or-

acle, allows to better characterize mislabeled instances, even

when the noise intensity is significantly high.

8 Conclusion and future work

In this paper, we proposed a new active learning method

which is able to query for the label of instances based on

how much they impact the output of the classification model.

The method is also able to measure how much the queried

instance’s label is likely to be wrong, based on models that

agree to disagree with the current classification model, with-

out relaying on crowdsourcing techniques. This method is

generic and can be used with any base classifier. The ex-

perimental evaluation demonstrate that the proposed query

strategy achieves a higher accuracy compared to several ac-

tive learning strategies, and that the proposed mislabeling

measure efficiently characterize mislabeled instances.

As a future work, we will focus on how to automatically

estimate the noise intensity from the data and from previous

interactions with the oracle, so that the number of relabeled

or removed instances could be adapted according to this

noise intensity. We will also focus on improving computa-

tional efficiency of the proposed method. A first direction for

this, is to explore heuristics that can significantly improve

the computational efficiency by reducing the size of U . For

example, as times go, unlabeled instances whose predicted

labels never change during subsequent iterations of the ac-

tive learning, could be safely removed from U . Another pos-

sibility is to use a fast-to-compute informativeness measure

(e.g., uncertainty) in order to pre-select at each iteration a

sufficiently large subset U ′ ⊂ U of a fixed size |U ′| = m

such that m≪ |U |. Then, we can compute the disagreement

measures for the instances in U ′ instead of all instances in U ,

which will allow us to reduce the complexity fromO(n2) to

O(n) (which is similar toO(n×m), because m is constant).

Another possible direction is to explore whether the compu-

tational efficiency could be improved if the proposed method

is specialized for on a limited class of machine learning al-

gorithms. Furthermore, we would like to investigate ways

of combining the disagreement 1 and disagreement 2 strate-

gies to benefit from their synergy. As a simple idea, Eq. 7

contains two factors that allow to improve the classifier’s

accuracy. The right-hand side factor has been used in dis-

agreement 1, but the left-hand side factor is not possible to

estimate because it requires knowing if the label of x has

been correctly or incorrectly predicted. However, since dis-

agreement 2 allows to characterize instances whose label is

probably wrongly predicted, then it can be possibly used as

a weight in place of the left-hand side factor of Eq. 7.
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