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e Providing the first literature review of risk management models specifically for agribusiness

supply chains.
e Focusing on specific sources of uncertainty in agribusiness industries.

e Providing new implications and further directions for developing the research in the context of

agribusiness supply chain risk management.

e Providing the first literature review of risk management models specifically ribusiness
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Abstract

Supply chain risk management is a large and growing field of research. Howevery, within this field,
mathematical models for agricultural products have received relatively little'attention. This is some-
what surprising as risk management is even more important for agricultural supply chains due to
challenges associated with seasonality, supply spikes, long supply lead-times, and perishability. This
paper carries out a thorough review of the relatively limited‘literature on quantitative risk manage-
ment models for agricultural supply chains. Specifically;.we identify robustness and resilience as two
key techniques for managing risk. Since these terms,are not used consistently in the literature, we
propose clear definitions and metrics for these (terms; we then use these definitions to classify the
agricultural supply chain risk management literature. Implications are given for both practice and

future research on agricultural supply chain risk management.

Keywords: Agribusiness supply chain,¥isk' management, robust, resilient

1. Introduction

In the past two decades, supply chain risk management (SCRM) has emerged as an important re-
search topic [1]. Severalyreasons are behind this development: 1) globalization has made supply chains
longer and more complex; consequently, supply chains are now exposed to more risks and have be-
come more wulnerable; 2) the lean management philosophy has become widely implemented in many
industries; this philosophy advocates waste elimination/minimization and embraces just-in-time pro-
duction/logistic; although it improves supply chain efficiency, the removal /reduction of redundancies
has resulted in greater supply chain vulnerability under adverse events; and 3) the world has paid
increasing attention to the many supply chain disruptions that have been caused by catastrophic

events (e.g., [2, 3, 4, 5]).

Preprint submitted to Elsevier 27th July 2017



Agribusiness plays an indispensable role in the world’s economy as a key source of food supplies.
Agribusiness products have three specific characteristics that make risk management for agribusiness
supply chains (ASCs) more complicated when compared to risk management for typical manufac-
turing supply chains. These characteristics are seasonality, supply spikes (sometimes referred to as
“bulkiness”), and perishability. Dealing with seasonality requires planning as growth is seasonal
whereas consumption is throughout the year. Further, most agricultural products have long supply
lead times that cannot be easily altered against nature. Harvesting and post-harvest activities, in-
cluding packing, processing, storage, and transportation, can be very demanding because of supply
spikes. Furthermore, there is often significant time pressure on post-harvest activities as meost agricul-
tural products are perishable. Also, because of the perishability, there is a need for specific handling,
storage, and inventory management. If not properly managed, a delay in transportation may cause

substantial loss of product value.

In addition to product specific characteristics, risk management is important for ASCs because they
often involve more sources of uncertainties than manufacturing supply chains [6]. In an ASC, the
supply process is related to biological production (food creps, meat, etc.), which is affected by weather
variability (e.g., droughts), disease (e.g., Psa kiwifruit disease), and pests (e.g., locusts). Such factors
imply that both harvest levels and harvest timeshare subject to uncertainties. In addition, these
factors can impact on the quality of the produce. In particular, in the processing stage, there are
special risks associated with food quality and food safety (e.g., botulism risks). These uncertainties
make ASCs more vulnerable than(typical manufacturing supply chains. Furthermore, recent practices
in agribusiness have added t6the complexity of ASCs, thus making the application of risk manage-
ment strategies more crifical [7]. Such practices include the use of new marketing strategies (e.g., in

product differentiation /proliferation) and the interlinked design of global supply chains [7].

This paper/fills a gap in the literature by providing a review of quantitative models for ASC risk
management.»OQur focus is on risks at the supply chain level, and related risk management method-
ologies for ASCs that foster resilience and robustness, terms that we will carefully define. We review
different quantitative risk management (RM) approaches that provide resilience and robustness for
a variety of agricultural products. As pointed out by [3] and [1], there are a lot of inconsistencies in
the meanings of SCRM terms. One contribution of this review is to suggest metrics for resilience and

robustness.



The remainder of this paper is organized as follows. Section 2 outlines the scope of our review
in Agribusiness Supply Chain Risk Management (ASCRM) and reviews related survey papers. The
key concepts and terms in this review are defined in Section 3. Section 4 classifies the available
modeling studies in ASCRM according to different aspects of product type, risk types, risk measures,
and RM strategies (i.e., robustness and resilience). In this section, modeling approaches are further
analyzed for different types of agricultural products. At the end of Section 4, a specific overall sum-
mary of the section is provided that identifies gaps in the research literature. The paper is concluded

in Section 5 by proposing directions for future research.

2. Literature

Applications of quantitative models in agricultural problems date back todthe 1950s and have been
addressed widely in the literature [8, 7]. Modeling approaches in agribusiness have been predomin-
antly used for problems related to transportation, distribution, harvesting;*facility location, and farm
planning (e.g., [9, 10, 11, 12]), with a specific focus on farm planningeproblems. Key considerations
in agricultural problems (i.e., yield, harvest time, demand, etc.)ware influenced by different sources
of uncertainty such as weather conditions, animal or crop.diseases, and price variability. Although,
as described in the following, there are separate and, extensive review studies on both quantitative
risk management and agribusiness models, we are net aware of any review paper thus far on SCRM

models in agribusiness, which is the topic of ourreview.

Articles [13], [14], [15], [16], [5];8[}], and [17] reviewed the bulk of the quantitative SCRM liter-
ature, mostly in the context ofymanufacturing industries. Agribusiness decision models have been
reviewed in the areas of production, harvesting, and distribution [8, 7, 18, 19], facility locations [11],
supply-side resource utilization [20], ASC planning challenges [21], and operational issues that res-
ult in post-harvest waste [22]. Further, [23] reviewed quantitative ASC models in the contexts of:
planting, harvesting, production, distribution, and inventory; [24] extended the review of agribusiness
problems,(in the context of supply chains) in considering factors of uncertainty. However, neither of
the review papers discuss risk management strategies, so cannot be considered as reviews of SCRM.
Thus, as depicted in Figure 1, to the best of our knowledge, there is no review specific to quantitative
models in the joint area of SCRM and agribusiness. As mentioned above, this overlap will be covered

by our review paper.



Figure 1: Venn diagram on the research gap in literature reviews/survey papers
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Agribusiness
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Note that risk management is not new to agribusiness planningy For instance, [26, 27| introduced the
basic concepts of risk management in agriculture. Further, [25]'reviewed farm decision-making under
risk from several aspects such as utility functions, farmesr, risk preferences, and response approaches
to both short-term and long-term uncertainty. However, the main concern of these aforementioned
studies was farm level risks and uncertainties,»whereas we have focused on risks at the supply chain

level.

We reviewed papers from different journals in Operations Management (OM), Operations Research
(OR), Supply Chain Management (SCM), and agriculture. We searched the Scopus database using

0w

combinations of keywords including “risk management,” “quantitative risk management,” “supply
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chain,” “operations research,” and “agribusiness”. In addition, we went through all the papers sur-
veyed in the'review'papers from Figure 1 for SCRM papers with an agribusiness application (left hand
side survey papers) and agribusiness papers that focused on SCRM (right-hand-side survey papers).

We definéd supply chain broadly as any paper that modeled multiple locations or firms.

We believe [28], published in 1993, is the first quantitative study in the field of agribusiness that

considered risks in supply chains, although without directly referring to the term “supply chain.”

! Article [24] reviews agribusiness problems in supply chain structures and includes uncertainty attributes; however,
as risk management strategies have not been clearly discussed in this review, the review has not been categorized under
the SCRM section.



Before that, risks in agribusiness had only been discussed at the farm level (see [26]). Article [28]
studied a vegetable processing supply chain problem with two echelons that consider production,
trimming, and processing decisions under uncertain climatic factors. In contrast with [28], most of

the reviewed papers after 2000 have explicitly referred to the term supply chain in their studies.

As 1993 appeared to us to be a late date for a first study, we carried out further research on the timing
of the field. The term “supply chain management” appears to have first been used in an interview
in the Financial Times in 1982 [29]. However, the concept of multi-echelon inventorycontrol was
addressed well before the introduction of “supply chain management (SCM)” [29]. Ourysearch on
“multi-echelon” and “agribusiness” yielded no RM papers earlier than [28]. It appedrs that when a
flurry of articles and books came out on the subject of SCM in the mid-1990s;the coneept began to be
used in other fields of study, such as agribusiness. However, a recent review omySCRM indicates that
the concept of risk management has still received noticeably less atténtion in/the field of agribusiness
and biological sciences compared to fields such as engineering, ‘decision sciences, and business [1].
The latter statement has been supported by the findings .of our review that particularly focused on
agribusiness supply chain risk management studies. Table 1 lists the main issues addressed in the
literature of quantitative SCRM modeling in agribusiness from 1993 until the present, ordered by

decreasing publication date.



Table 1: Summary review of the literature in quantitative ASC risk management

Reference

Issue addressed

[30]

Single-period, multi-product food production planning model (with applications in
cocoa/wheat/palm oil/corn/soybean supply chains) that maximizes the expected
profit of the processing firm by determining the procurement policy under fixed pro-
portional production.

Handling model for an export-oriented Canadian wheat supply chain that provides
safety and quality assurance under minimum farmers’ total cost including cost of: loss
at test point, contamination penalty, and risk control effort.

Supermarket-farmer coordination model in an agricultural commodity supply chain
that distributes the profit and improves its effectiveness.

Supply planning model for linseed oil processor in a polymers production supply chain
that maximizes the expected profit under raw material quantity/quality and market
demand uncertainty.

Buyer-backup supplier coordination model that maximizes the expected profit by
determining the buyer firm’s reserve quantity and the backup supplier’s installed
capacity in a single-period (short-life) food supply chain.

Multi-period capacity management model that maximizes the expected revenue of
an agri-food processor (the palm oil mill) by determining proeessing/storage capacity
investments for the first period and periodic inventory decisions for the following
periods.

Production, transportation, and marketing model that'minimizes the expected total
cost of production by determining the delivery waiting time for the final product and
the processing time of production in a perishable fresh-crop supply chain.

Post-harvest logistics management model for respiring, deteriorating fresh crops that
maximizes the total expected inventory and shertage costs, by determining proper lot-
sizes for finished products in RTIs (return transport items) and selling price during
the deterioration process, under a stochasti¢ lead-time of receiving RTT from buyer,
in a closed-loop supply chain.

Aggregate production planning for ayfrozen orange juice supply chain that minimizes
the total cost of supply, inventory, ‘and shortage under uncertainty in citrus juice
acidity specification.

[40]

Production planning/model for a biofuel supply chain that maximizes expected profit
by determining purchasing, processing, and production decisions.

[41]

Robust supplyhain-design model applied in an agricultural (rice) supply chain that
maximizes expected profit and minimizes the ratio of performance deviation to a
variation of uncertain parameters by determining supply chain flow and location de-
cisions,

[42]

Single-period farming, procurement, and process planning model that maximizes ex-
pected. profit in the processing firm by determining proper ordering quantities of all
sources and their corresponding processing rates in a cocoa production supply chain.

[43], [44]

Multi-period operational production and distribution planning model in a crop (i.e.,
tomato and bell pepper) supply chain that maximizes the growers’ expected profits
during harvest under uncertainty by making a trade-off between freshness and cost.[43]
extends [44] by considering various sources of uncertainty, particularly on a crop’s
price and yield.

[45]

Multi-objective stochastic model for a hydrocarbon bio-refinery supply chain that
minimizes the annual cost and financial risk by determining network design, techno-
logy selection, production investment, and planning decisions.

[46]

Closed-loop supply chain design model with applications in both food and high-tech
manufacturing industries that minimizes the total supply chain cost under uncertainty
associated with purchase costs and demand.

[47]

Fuzzy network design in a consumable vegetable oil supply chain that minimizes the
total transportation cost and labor sources under probabilistic warehousing or refinery
capacities and market demand.

Tactical planning model for an olive oil supply chain that maximizes expected profit
by determining farm areas and best seeding times.




Summary review of the literature in quantitative ASC risk management continued

Reference

Issue addressed

[49]

Single-period multi-product meat supply chain design model that maximizes the
packer’s expected profit, plant utilization, and animal non-uniformity given procure-
ment, processing, and production decisions.

[50]

Production planning model for multi-period, multi-product (perishable/powder) dairy
supply chain that maximizes the expected profit by determining the optimal sales
policy.

[51]

Single-period production planning model that maximizes the expected return by de-
termining the optimal amount of space to be leased for production and the quantity
of olives to be provided from external sources under yield and yield-dependent cost
uncertainties in a Turkish olive oil supply chain.

Investment and production planning model in a single-period biofuel supply chain that
maximizes the expected profit by determining investment decisions in a) processing
plant and flow decisions along the supply chain.

Robust aggregate production planning model that minimizes the totalcost'of produc-
tion, staffing, inventory, transportation, and shortage and maximizes the customers’
satisfaction in a wood and paper production supply chain under uneertainty associ-
ated with cost parameters and demand.

Inventory model under supplier-retailer collaboration en demand forecasting in a per-
ishable agri-food supply chain that maximizes the expected profit by determining an
optimal replenishment policy.

[55]

Robust optimization model for harvest planning in a,grape (wine) supply chain un-
der yield (harvest productivity) uncertainti thatymaximizes the expected profit by
determining the optimal labor assignments.at different harvest-blocks and times.

[56]

Enterprise decision model (i.e., to join to“or form a co-op) in a dairy supply chain
that maximizes the expected income offarmers by determining co-op decisions (about
size, conditions, and product quantity); production, and shipment planning.

[57]

Winery allocation model in a wineisupply chain that maximizes the expected profit
composed of sales and salvagemvalue minus total production, packaging, and storage
costs under demand uncertainty.

Contract model between allarge seed supplier and multiple retailers in a seeds supply
chain that maximizes,the expected total channel of profit by determining contract
parameters that/result in,supply chain coordination.

Inventory model for perishables in a fresh vegetable supply chain that maximizes
expected profit by determining the optimal planting batch in each harvest period.

Robustmulti-site; medium-term production planning model that minimizes the ex-
pecteditotal cost for the producer including costs of production, labor, workforce
change, shipment, and inventory by determining shipment, inventory, sale, and labor
decisions)in a cotton/silk (lingerie) supply chain.

Produetion planning model for a premium-brand tomato supply chain that maximizes
the jexpected profit and meets the minimum service level by balancing overage cost,
especially related to perishability, and underage cost of lost customers.

Capacity management and logistic network design model for an export fruit supply
chain that maximizes throughput by determining the optimal flow between nodes and
investigating the possibility of a capacity extension.

Production planning and scheduling model in a multi-commodity fruits/juices (apples
and pears) supply chain that maximizes the expected sales’ income by determining
storage, process, and sales policies.

Investment management in a concord grape and juice production supply chain that
minimizes the expected total cost of underage and overage through a trade-off between
overinvestment and lack of capacity by determining the optimal pressing rates.

Single long-period (two-year) production planning model that maximizes expected
sales in an olive oil supply chain by determining optimal leased farms and the pro-
duction policy.




Summary review of the literature in quantitative ASC risk management-further continued

Issue addressed

‘ Reference

[66, 67] Sequential two-period newsvendor harvest/inventory planning model in a hybrid seed-
corn supply chain that maximizes the margin by determining the number of acres
in each period (in the 2003 version the model has been extended to multi-product
production planning).

[68] Production planning model in an Ilium flower supply chain that maximizes the expec-
ted total revenue by determining quantities of varieties of bulbs and flowers in each
stage of the supply chain.

[69] Facility location/allocation model that minimizes the expected production and trans-
portation costs under a green production scheme, uncertain daily demand, and scen-
arios of supply failures in a dairy (raw milk) supply chain.

[70] Medium-range horizon multi-period production planning model in a tonfate supply
chain that minimizes the total packing cost for the packing plant and thewpenalty,cost
for the delayed harvest.

[28] Multi-period production model in a vegetable processing supply chain that,minimizes
the total harvest and production cost and meets capacity and-market limitations by
determining harvesting, flow, processing, and logistics decisions.

As demonstrated in Table 1, quantitative agricultural risk models haye been discussed in various
contexts of farm management, production management, scheduling,“and pest/disease management
for supply chains in different crops/livestock. The following characterizes this work further and

highlights gaps for future research.

3. Agribusiness SCRM Classification Terms

In this section, we identify the key coneepts of our review in agribusiness supply chain risk manage-
ment (ASCRM). In particular, we describe different aspects that have been discussed in the reviewed
papers, which include: product types, risk types, and approaches to the modeling and management

of risk. In Section 4, we use these aspects to classify the papers in Table 1.

3.1. Agribusiness Supply- Ghain Product Types

An agribusiness supply chain encompasses all components of a “farm-to-fork” process for a given food
product; these include various stages related to supply, production, post-harvest, storage, processing,
distribution, and linkages between components. Thus, the basic concepts are similar to manufacturing
supply chains. However, the additional characteristics of ASCs (as described in Section 1, especially

perishability) can make ASCs relatively more complex.

ASCs can be classified into different classes by the types of products produced. Some agricultural food
products are referred to as crops (and sometimes agri-food crops) and include products obtained dir-

ectly from plants. Other agricultural products such as cattle, meat, or seafood are known as livestock.



The livestock category also includes dairy products (e.g., milk, cheese) and non-food products (e.g.,
wool, hair, silk). Importantly, both livestock products and crops are either perishable or long-life.
For example, fruits, fresh vegetables, and meat products are perishable. However, wheat and wool
are considered to be long-life. Perishable crops can be further classified into respiring or non-respiring
products and perishable livestock is divided into three classes of fresh, chilled, and frozen products.
Within agri-foods, respiring crops and fresh livestock products are extremely prone to risk because
of their particular biological characteristics. In Figure 2, we illustrate the classification of different

products within ASCs.

Agribusiness Products

N

Crops Livestock
Perishable Long-life Perishable Long-life
Respiring Non-respiring Fresh Chilled Frozen

Figure 2: Product classification of ASCs

Although crops and livestock are common product classifications for ASCs (e.g., in [6]), from a
modeling standpoint, agricultural products can be classified as perishable or long-life because models
that include_perishability are often quite different from those that do not. Within the perishable
category, there are second-order characteristics, such as respiring versus non-respiring (for crops) and
fresh versmsyehilled /frozen (for livestock, e.g. meat), that can also be considered when modeling
perishability. In Section 4, we will divide the literature into long-life and perishable products. First,

in the following subsections, we highlight the modeling differences between these two categories.

3.1.1. Long-life Agricultural Products
The basic modeling difference between long-life and perishable agricultural products is that models

in the category of long-life agriculture products are usually considered in multiple periods over a
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long time horizon. Studies in the context of risk management for long-life agricultural products are
aimed at a variety of decisions such as crop planning, harvest and cultivation scheduling, capacity
investment, production planning of processed foods, food handling, and facility location. Two recent

representative examples of such work include [32] and [30].

Article [32] studied a handling problem for an export-oriented Canadian wheat supply chain that
considers safety and quality issues. They developed a supply chain model to determine appropriate
testing strategies by minimizing the farmer’s total costs including the cost of loss at a test point, a
contamination penalty, and a risk control effort under risks of a farmers’ misrepresentation of data
and technological failure. They proposed a simulation approach in the context of ASC with detailed

assumptions including assumptions on an individual farmer’s behavior.

A second example of an ASC risk model in the context of long-lifé~agriculture is provided by [30].
They investigate a capacity management problem in a palm oil supply chain. The model is developed
as a multi-period supply chain that maximizes the expectéd revenue of an agri-food processor (the
palm oil mill) through a dynamic stochastic programming.approach with a series of two-stage models.
The optimal solution is found by determining processing/storage capacity investment decisions in the
first period, and making inventory decisions under yield and price uncertainties in the remaining
periods. Their model compares three capacity“portfolios that address processing dominated, storage

dominated, and mixed processing policies.

3.1.2. Perishable Agricultural Products

Risk management approaches forperishable agriculture products require particular consideration be-
cause of the additional level,of vulnerability associated with perishability. A simple approach to deal
with perishability“and short lifecycles is newsvendor modeling (i.e., through a single-period invent-
ory managemientymodel). One recent representative example of such modeling is [49], who discuss
procurement, strategies in a beef supply chain in order to minimize the packer’s expected cost under
yield and demand uncertainty. They studied mixed spot and contract strategies under single period
planning.” The newsvendor model is used to reflect the perishability of beef products. Under the op-
timal solution, the expected total cost of the beef packer is minimized by determining procurement,

processing, and production decisions.

Perishability can also be modeled over multiple periods by considering estimation approaches on

11



the remaining shelf-life/freshness of the agricultural products at risk. Such models are capable of
tracing the impact of a disruptive event or risk from one planning period to another. However,
shelf-life /perishability modeling considerations increase the complexity of the proposed mathemat-

ical models.

A recent example of a multi-period model is [37]’s study of a fresh fruit producer that sells to
local and international markets under known (Make-To-Order: MTO) or uncertain (Make-To-Stock:
MTS) demands and transportation disruptions. In this problem, the international market is more
profitable but has the risk of transportation failures. Such failures affect both unfinished, (ordered,
not yet processed), and finished (processed, not yet delivered) products. Indeed, the waiting time
until delivery is an important threat for perishable products. Thus, the key decision is whether to
wait or to sell the finished product in the local market at a discounted ptrice. However, for unfinished
products, the decision is made on whether to slow down or change the process to adjust to a suitable
delivery time. These decisions are made to prevent perishabilitysand loss, and ultimately, minimize

the expected total cost of the production system.

3.2. Supply Chain Vulnerability and Risk

Supply chain vulnerability is “the propensity of rigsk sources and risk drivers to outweigh risk mitiga-
tion strategies, thus causing losses and adverse supply chain consequences” [71]. Hence, vulnerability
is a “function of certain supply chain/Characteristics such as supply chain density, complexity, and
node criticality” that affects both’the probability and the severity of supply chain risks [72]. The
latter definition highlights varying erigins of vulnerability and risk. Vulnerability is a concept that
depends on the characteristies of the underlying supply chain, and risk is an external threat [5]. Thus,
vulnerability management could result in both reducing the probabilities of being affected by various

risks and the levels of their impact.

In ASC problems, risks and vulnerabilities have been discussed in various contexts such as yield,
cost (supplysside), and price (demand-side) variability for different agricultural products. Perishab-
ility, as a key ASC characteristic, can impact on all these uncertainties; for instance, price can be
affected by changes in perishability. Generally speaking, there are two categories of risk events: high
probability low consequence (HPLC) events versus low probability high consequence (LPHC) events
[73]. HPLC events are often referred to as business-as-usual risks. LPHC events are risks that stem

from severe disruptions to normal practices. Many types of agribusiness risks (e.g., pests) can be

12



seen in both varieties of HPLC (e.g., mild infestations) and LPHC (e.g., locust swarms). HPLC
and LPHC events are both important as they can both occur in various supply chains. Hence, both
types of risk need to be considered in ASCRM approaches. However, most studies focus on only
one of these risks. One exception is [74] who define supply delay uncertainty (i.e., delayed supply
that is still available within the time horizon — HPLC) and supply shortage disruption (i.e., supply

that is not available within the time horizon — LPHC) in a dynamic supply portfolio selection problem.

In addition to these two categories, different types of risks may be further defined. sArticle [75]
defines five regular types of risks: 1) supply; 2) process; 3) demand; 4) intellectual propetty; and 5)
behavioral, political, and social. In a similar vein, [76] characterizes risks as: risks which are internal
to the firm, namely process and control risks; risks which are external to thefitm, but internal to the
supply chain: demand or supply risks; and, finally, external risks related to the environment. While
all of these risks are relevant to agribusiness, operational and disruption.risks of supply/demand
are particularly pertinent. This criticality stems from the additional yulnerability in agribusiness

supply /demand-related elements such as supply quantity, €ost,'quality, market demand, price, etc.

According to [77], supply-side risks can be further \categerized into five forms: 1) disruptions; 2)
yield uncertainty; 3) capacity uncertainty; 4) lead-time uncertainty; and 5) input cost parameter
uncertainty. In ASCs, yield and lead-time uncertainty are particularly important (often as business
as usual risks). However, severe variations in either yield or lead time (or both) represent disruptions
and need to be planned for as su¢h. For example, uncertain factors such as weather conditions regu-
larly affect crop yields, but unusual weather conditions (e.g., a hurricane) can produce an extremely

low yield, which represents a disruption rather than a normal yield uncertainty.

Article [78] des¢ribes food supply risks in the following contexts: product contamination and re-
call, loss of access™due to terrorism, loss of access due to protests, loss of site, reduced capacity
(e.g., production’ capacity shortfalls when sites are compromised), loss of people, loss of supplier, and
reduced ‘Contractual cover in the event of a service failure or general shortage. According to [79],
terrorist threats to food supply are very real and current threats have significant global consequences.
Pests and diseases could also be considered as another source of risk. As an example, in the case of
kiwifruit, supply has been disrupted by Pseudomonas syringae pv. actinidiae (Psa) a bacterial disease
of kiwifruit vines that caused disruptions to worldwide kiwifruit production (e.g., Italy in 1992/2008
and New Zealand in the early 2010s) [80].

13



Further supply risks can stem from the failure or unavailability of some inexpensive items. For
instance, shortage of a cheap tool in a manufacturing industry may damage production and results
in a significant loss in supply chains. These kinds of risks are referred to as hidden risks [81]. In
agribusiness, the massive use of industrial agriculture (i.e., large, highly specialized farms with large
inputs of fossil fuels, pesticides, and other chemicals derived from oil) can be considered a hidden risk.
In fact, most of the costs from industrial agriculture have been ignored in short-term calculations
of performance, but serious long-term consequences for the agribusiness system as a whole include

damage to natural systems and increasing health risks [82].

In contrast to supply risks, agricultural demand risks can be viewed in terms of market and price
uncertainty, e.g., in processed agricultural foods [49, 42]. Demand risks/Stem fundamentally from the
variable and unpredictable expectations in markets as highlighted in-theyreview by [83]. In addition,
demand uncertainty may relate to major disruptions (e.g., by LRHC events). For instance, demand
risks such as market/brand failure may result in demand.disruptions. Moreover, demand-side risks
could stem from supply-side risks, especially when supply risks are related to safety issues that may
significantly impact the perceptions of the public and their associated demand (e.g., recently, con-
cerns for the safety of milk powder produced by Eonterra in the botulism scare of 2014 led to massive

product recalls and cast a shadow on the reputation of the entire NZ dairy industry) [84].

In summary, both supply-side and demand-side risks are crucial in agribusiness. Given the natural
uncertainty in ASCs and the’severe impacts of disruptions on ASCs, demand and supply disruptions
need a particular focus. Section 4 classifies the risks considered in the reviewed papers as supply and

demand side risks.

3.8. Supply Chain Risk Management

Broadly speaking, a risk management process includes the following steps: 1) risk identification; 2)
risk assessment; 3) decision analysis (i.e., how decisions are affected by risks under different scen-
arios); 4) mitigation; and 5) contingency planning [75]. In the initial steps, the risk identification and
assessment process should be comprehensive enough to evaluate all types of risks, including hidden
risks, because of their possible disruptive impacts on the supply chain (as described in Subsection
3.2). A comprehensive risk assessment may be achieved through a vulnerability map that maps the

probable catastrophic events with their associated likelihoods and consequences [81].
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In [75]’s definition of a structured evaluation process for implementing a risk-related strategy, the
final two steps of the risk management process (i.e., Steps 4 and 5) recognize two main groups of
SCRM strategies; these are mitigation (i.e., proactive/ pre-disruption strategies) and contingency
strategies (i.e., reactive/ post-disruption strategies). Article [4] suggests that both preparation (i.e.,
mitigation) and first response (i.e., contingency strategies) are critical in minimizing the total impacts

of risk in supply chains.

Article [85] divides risk mitigation strategies into three categories: inventory control (e.g., order-
ing and stocking decisions); sourcing (e.g., dual sourcing, product substitution); andacceptance. The
acceptance strategy, i.e., not protecting against disruption, is considered when the cost of dealing
with a disruption outweighs losses from the disruption (assuming cost is"the main objective). Article
[86] investigates optimal mitigation strategies for perishable produets, i.e., when inventory control is
not a possible option for mitigation because of the perishabilitysconcerns. In this case, one of the
possible mitigation strategies is supplier diversification (i., reutinely sourcing from multiple sup-
pliers). Article [49] proposes a mitigation strategy for diversifying procurement from both contract
and spot markets in a beef supply chain under optimal pertfolio management decisions (i.e., procure-
ment, processing, and production decisions). Altheugh diversifying the supply sources is a common
mitigation strategy under supply risks, it may not be effective when other objectives rather than cost
or profit are considered. In particular, [87] considers an integrated supply and scheduling problem
with a mixed integer bi-objective model and shows that, given a service-oriented model (i.e., when
service level maximization ig"prioritized), a diversified supply strategy is less attractive than in the

cost-oriented model given local and regional supply disruptions.

In contrast with what has been explained so far about mitigation strategies, the default strategy
after risk miaterializes is reactive (i.e., contingency planning). This is particularly necessary when a
supply.chain eperates without any concern about risks on a daily basis, but utilizes contingency plans
(e.g., “fall back” suppliers or routes) when a disruption occurs. Reactive and contingency planning
have been claimed to be critical in minimizing the crossover from risk management to crisis and event
management [88, 89]. Article [86] discusses two approaches in contingency risk management: contin-
gency sourcing (i.e., switching to backup suppliers) and demand switching (i.e., rerouting between
demand markets or encouraging customers to buy an alternative product—product substitution) after

a disruption takes place. Article [89] provides a qualitative framework for contingency risk man-
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agement in the case of food supply chains. In doing so, they focus on six measures: the speed of
response, communication, escalation, resource and fund availability, multi-partner collaboration, and
leadership. In their study, speed of response (i.e., a measure of flexibility) varies according to the

degree of risk impact on food safety.

In total, from a practical standpoint, sometimes reactive strategies are preferred. Although many
researchers support proactive approaches in SCRM (see [90, 91, 92, 93, 78, 94]), there are notable
gaps in the preparedness of organizations in practice as there is little investment inte.mitigation
strategies [89]. Ome underlying reason for this lack of investment is related to justifying the cost
of fixing problems that may never happen. In addition, proactive (mitigation).approaches focus on
identifying and minimizing the impacts of the expected risks. Hence, these approaches require the
use of predictive tools to identify risks, calculate probabilities of risks¢/ and implement mechanisms
for risk mitigation. In ASCs, due to their nature-based uncertainty;-such_predictions could be even

harder to achieve [89).

Although studies in the context of SCRM often either address mitigation- or recovery-based strategies,
in some studies both types of RM strategies have been eensidered; hence the optimal strategy could
be varied given different problem settings [95]. Foriinstance, a backup supplier strategy as a reactive
strategy is addressed in [95] under supply capacity risks in an automotive supply chain problem. In
[95], an alternative transportation capacity is also introduced as a recovery-based strategy. Article
[95] studies mitigation strategies(such as/inventory holding (i.e., an increase in order-quantity) and
additional warehouse or tramSportation capacity. As another example, [96] selects the primary sup-
plier portfolio to mitigate possible suppliers’ failures in advance; it also determines the selection of
recovery suppliers (after’disruption) to improve the service level, which is measured by both time and

cost of recovery;

Mitigation and=contingency risk management strategies are applied in supply chain problems through
two mode¢ling approaches, referred to as robust and resilient strategies. To define robust and resilient
approaches in supply chains, we start by comparing these concepts to the well-known concept of
leanness in a supply chain. As discussed in Section 1, lean supply chains provide great cost efficiency
with minimum redundancy, except in cases of disruption. By definition, lean supply chains are also
vulnerable. This is exactly in contrast to robust and resilient risk management strategies, which focus

on decreasing the vulnerability of the network.
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While not always used consistently in the literature, here we define robustness as an ability to with-
stand disruption with an acceptable loss of performance, whereas resilience is the potential to recover
quickly from disruption. The key advantage of these definitions, as used here, is that robustness and
resilience fit within the common overarching theme of risk management as described in [78]. In par-
ticular, robustness is a suitable capacity for managing business-as-usual risks (i.e., high probability,
low impact risks), while resilience is suitable for disruption risks (i.e., low probability, high impact

risks).

Robust strategies in the supply chain are considered as proactive and upfront RM options that
mitigate risks and provide minimum variation in performance under disruption (e.gw [97, 98, 99, 14,
100, 101, 102]) that could be provided through approaches such as stochastic programming (e.g.,
[103, 104]) and robust optimization (e.g., [105, 106, 60]). In comparison, resilience is referred to as
a post-disruption recovering capacity [107, 21, 108, 109], and“stems from characteristics including
flexibility, availability, velocity, and visibility [110]. Flexibility,is a key measure in providing resi-
lience that provides quick reactions to unforeseen circumstances [77]. Thus, time is an important
component in the resilience concept. However, time-based resilience has received limited attention
in the existing supply chain management literature, (see [111] and [112] for examples). More details

about robustness and resilience metrics will bewdiscussed in Subsection 4.2.3.

3.4. Modeling Approaches for ASG“Risk, Management

In this section, we classify differentymathematical modeling approaches for ASCRM. These model-
ing approaches have been“selected”according to their application in different agricultural problems.
Our classification starts inWSubsection 3.4.1 with the classical risk programming approach, called
minimization of fotal absolute deviation, that has been used the most in farm planning problems.
Other approaches, to risk include game theory in Subsection 3.4.2, linear programming-based (LP)
approaches' (mixed-integer linear programming, multi-objective optimization, goal programming) in
Subsection 3.3, stochastic programming, stochastic dynamic programming, and fuzzy optimization
in Subsection 3.4.4, simulation in Subsection 3.4.5, robust optimization in Subsection 3.4.6, and other

less common approaches in Subsection 3.4.7.

These modeling approaches are applied in ASC problems to adapt RM strategies including robustness

and resilience under different types of operational and disruption risks as described in Subsection 3.3.
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Most of the reviewed models in this section focus on business-as-usual uncertainty that is mitigated
through robust strategies. The types of risks and the related RM strategies referred to through these

models will be discussed further in Section 4.

3.4.1. MOTAD

Minimization of the total absolute deviation (MOTAD) provides an efficient frontier between expec-
ted profit and variance of the profit, under a quadratic programming (QP) model [113]. MOTAD is
the most common approach in classical agriculture risk modeling, especially in problems such as crop
planning. MOTAD minimizes the sum of negative deviations from a prefixed income target and was
first introduced by [114] for the farm investment portfolio problem under returndvarjability. Later,

[115] suggested an extension to the [114] model in the form of either LP or QP instead of just QP.

Article [116] has developed a short-run crop planning model with MOTAD under cost, price, and yield
uncertainty. The problem is formulated as a linear approximationsto the original formulation. The
risk programming portfolio model in the context of farm management has also been developed under
some alternative distributional assumptions in the portfolio ‘programming. This approach suggests
a direct solution to the expected utility function ofyeropping activities under an average estimation
of the farm-level situation [117]. Surprisingly, this old\and common approach does not seem to have

been applied to ASCs.

3.4.2. Game Theory

Game theory (GT) approaches“address risk in two ways: 1) explicitly defining risk metrics and
including these metrics in the game; and 2) creating coordination between players in a game, hence
sharing and reducing risk for each player. According to [118]’s survey, game theory models were
initially considered imagricultural problems as games that incorporate uncertainty in nature through a
parametric game approach: one goal is optimized while the other is treated as a parametric constraint
(e.g., minimizing the variance of the cropping pattern when the expected return is addressed as a
parameteic constraint). However, this classical GT approach to risk in agriculture was later criticized,
for the reason that the applied decision criteria were incompatible with the principle of rational
choice in their concerned case-studies [20]. Recently, game theory was applied in advanced food and
agriculture studies, such as [33], which considers different coordination approaches between farmers

and supermarkets under yield and demand uncertainties.

18



3.4.8. LP-based Approaches

There are different LP-based optimization methods used in modeling risk in agribusiness: goal
programming (GP), multi-objective optimization (MOO), and mixed-integer linear programming
(MILP). Before describing these methods, we give a brief, general description of LP models that

are used in agribusiness studies.

LP is a method for the optimization of a linear objective function, subject to linear constraints
[119]. LP is widely utilized in agribusiness models, mainly for the purpose of profit maximization
under certainty in problems such as: land allocation, selecting cultivation techniques, labor or ma-
chinery allocation, production planning, cropping pattern selection, crop schedilingy and integrated

production-distribution for seeding (e.g., [70, 69, 44]).

MILP is a generalization of an LP model where some of the variables are-restricted to be integers
[119]. In ASC problems in order to consider integer variables and eaptuce failure scenarios (e.g., plant

closure status via a binary variable), LP models have been‘extended to MILP models [69].

MOO is another optimization method that is used whenwmore than one linear function needs to be
optimized simultaneously [120]. GP is a branch of MOO that handles multiple, normally conflicting
objectives (goals); then, each of these goals is given a pre-described target value and deviations from
this set of target values are minimized [120], While in LP and MILP methods the objective function
is measured in one dimension, indGP/goals with different priorities and weights that can be combined
with each other in the objective function. There are a number of studies in the context of agriculture
where LP models were extended to GP/MOO models to encompass risk attributes. In these models,
performance (e.g., ptofit)maximization is not the only concern and risk minimization is considered as
another objective, which'is especially important in agricultural models. For instance, [121] develops
crop planning as a“GP model, with multiple objectives including risk avoidance, maintaining the

minimum levelof required food, and maximizing the farmer’s profit.

3.4.4. Stochastic Programming/Stochastic Dynamic Programming

Uncertainty and risk can be captured by a stochastic programming (SP) approach, where right-hand-
sides or coefficients related to the objective function/constraints, are uncertain. SP is a common
approach in ASC models that seeks to model risks mainly in the category of business-as-usual uncer-

tainty in parameters such as price, resource availability, and rainfall.
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SP has various applications in agricultural problems that are described by the following representative
examples. Article [122] develops an SP model for a cropping problem that considers a set of fresh
vegetables with alternative harvesting schedules. In this model, variable weather (hence, indirectly
yields), and prices are used to construct the random scenarios. Article [123] analyzes the capital
structure and investment decisions in a farm problem by measuring liquidity risk, collateral risk, and
credit-reserve risks via an SP formulation. Article [64] provides an SP model for a strategic harvest
decision under uncertain crop size and harvest rates when both crop size and harvest rates are af-
fected by weather volatility. Further, to support sequential decisions under realizations of supply and
demand uncertainties, two-stage SP models have been applied in some recent studies in the context

of agribusiness (e.g., [36] and [49] in the context of multi-product food prodiction planning).

Considering uncertainty and risk parameters with decisions across~different time periods has res-
ulted in stochastic dynamic programming (SDP) approaches being used. Initially, SDP has been
considered in agribusiness problems with possible periodic or,repeated failures, e.g., a farm ma-
chinery replacement problem when machine failure is stoehastic'[124]. The earliest model of dynamic
programming (DP) in the context of agriculture (crop plamiing) appears to be [125], which discussed
periodic decisions on growing versus fallowing to determine sufficient levels of moisture in the soil

during each growing period.

Some of the SDP applications inagrieultural problems include: irrigation planning (under scarce wa-
ter situations), cropping, and production planning. For example, [126] and [127] discuss the optimal
water and capacity allocation model over time periods under uncertainty of different soil moisture
level scenarios. In another example, SDP is applied in a periodic pest control problem when infected
fractions of the/plant ar€ used to construct stochastic scenarios [128]. Recently, [36] discusses SDP
models in a‘multi-period palm oil supply chain to provide optimal capacity management and suggest

a periodic preduction plan.

In some other examples, the uncertainty incorporated in the optimization model relates to fuzzy
parameters, e.g., frequently imprecise environmental uncertainties. Information about fuzzy para-
meters is often incomplete and/or unavailable over the problem horizon. In these circumstances,
fuzzy set theory can be useful and has been used to incorporate uncertainty into RM models. The

triangular function is one of the most common membership functions for describing fuzzy parameters
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and defines three possibilities for each fuzzy parameter. Article [47] defines a triangular membership
function to capture fuzzy parameters for both supply-side and demand-side capacities in a vegetable

oil supply chain problem.

3.4.5. Simulation
Simulation (SIM) has been mainly applied to scheduling/estimation problems in agriculture, e.g.,
harvest-time planning and transplant scheduling under uncertain ecological factors. Simulation ap-

proaches can be categorized as either multi-agent or system dynamics models.

In multi-agent models, the behavior of individuals (i.e., agents) is dictated by their schemata. Ac-
cording to [129], a schema is “a cognitive structure that determines what action‘the agent takes at
time ¢, given its perception of the environment.” System dynamics is another simulation-based ap-
proach to address the nonlinear behavior of complex systems over time using stocks, flows, internal
feedback loops, and time delays. The key difference of system dynamiées) when compared with agent-
based approaches, relates to the inclusion of structure in system dyhamics versus the agents’ rules in
agent-based simulation [130]. In a recent study by [95),.a system dynamics model is adopted for a
multi-stage supply chain problem under network disruptions- Here, disruption scenarios are modeled
through a continuous time function in the system, dynamics model. Within the disruption scenarios,
elements in the multi-stage supply chain are.diszupted at different times and to varying extents. In
fact, the network structure is dynamie*where nodes and arcs may become unavailable for different
durations. The model provides reeoveryapolicies by redirecting the material low during the disrup-
tion. The optimal reconfiguration policies are determined by taking into account the performance

impact of the disruption and the'zecovery costs.

Nevertheless, multi~agent simulation models are increasingly being used in agricultural resource prob-
lems, e.g., in“socio-economic, environmental, and land-use problems as reviewed by [131]. Similarly,
[132] and [133] studied planting problems by using a multi-agent simulation approach to provide

biophysical“estimation models under uncertainty.

Another application of simulation in the context of agriculture relates to food safety analysis. Articles
[31, 32] discuss a multi-agent simulation model for a handling problem in a Canadian wheat supply
chain under risk of farmer or technology failures to provide safety and quality assurance. Article [32]

extended the static agent-based simulation model in [31] by proposing a corresponding dynamic ap-
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proach that characterizes the wheat supply as a dynamic complex system. In such a dynamic wheat
supply chain model, both farmers and handlers interact and respond to the unpredictable system
changes over time. SIM is particularly useful in such a problem because the complex behavioral
assumptions could not be inserted in a corresponding analytic model. Hence, the complexity of ag-
ribusiness problems encourages the use of simulation models to address the complex characteristics of
ASCs more precisely. Article [32] compared solutions and policies generated using the SIM approach
versus those generated by the alternative analytic model under restrictive assumptions about indi-
vidual behavior. This study recognizes that although analytic and SIM approaches resultsin different
solutions, in many respects, they reach similar conclusions on the proposed policy for test and quality

control in the described case-study.

3.4.6. Robust Optimization

Article [105] used GP to perform robust optimization (RO), which invelves two types of robustness:
solution robustness and model robustness. In this approach, robustnesstis addressed proactively, i.e.,
“close” to optimal and “almost” feasible for all input scenatios. The RO model provided by [105]
has been mainly applied to LP models. However, there.is another type of RO introduced later by
[134] that includes non-linear applications. Furthery|[135] provides a flexible adjustment in RO that
reduces the level of conservatism related to subeptimal solutions for the nominal value in previous
RO models (i.e., to ensure that the solution remains feasible and near optimal under all scenarios).
The flexible adjustment in [135] is previded by considering ellipsoidal uncertainties, which involve
solving the robust counterparts of the neminal problem in the form of conic quadratic problems (i.e.,
as a reasonable approximation to the complicated uncertainty set). This modified RO approach is
called distributionally robust optimization. The distributional RO model sets up the first and second
moments of the distribution,as an uncertain parameter. One of the key factors in distributional RO
is called the budget ofyuncertainty, which is the maximum number of parameters that can deviate
from their neminal values and is especially used to mitigate demand uncertainty (e.g., in different

customer zones).

RO has been applied to ASC problems recently in a limited context such as production planning,
harvest planning, and facility location problems, mainly for long-life agricultural products [60, 55, 41].
In general, the key benefit of RO is to deal with uncertainty even if the actual information about
uncertain parameters is limited, i.e., when SP could not be applied effectively (see [55]). Hence, it is

expected to receive more attention in ASC modeling problems under examples of rare disruptions in
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this context.

8.4.7. Other Modeling Approaches

Safety-first models and chance constraints are among the other modeling approaches that have been
applied in agricultural risk models, particularly in farm planning models under uncertainty, as de-
scribed by [26, 27]. In safety-first models, the preference for safety as a measure of risk is satisfied
first, and then decisions are made to maximize the profit. In the chance constraint formulation, the
probability of the available resources is given by known distributions and the risk measure is forced

to be above a satisfactory lower bound via the corresponding (chance) constraint.

3.5. Summary

In this section, we described the key concepts of the review related to both. ASC and’RM. We focused
on ASCs by differentiating between the types of products and their différent requirements in applying
RM strategies. Under RM, attributes such as types of risks, strategies, and"modeling approaches with
particular applications in agribusiness have been discussed. The key-aspects studied in this section

form the basis for our classification approach to categorize the reviewed papers in Section 4.

4. ASCRM Paper Classification and Findings

In this section, we categorize the papers presented in Table 1 (in Section 2) using the concepts
from Section 3. First, Subsection 4.1.describes the classification approach used in reviewing and
categorizing these papers. Then, Subsection 4.2 presents the findings of the review by summarizing

the results and providing specific implications/suggestions for future studies in the field of ASCRM.

4.1. Classification

In this section, we classify the papers that were initially identified in Table 1 according to the criteria
depicted in Figure 3. These criteria were formally defined in Section 3. Figure 3 summarizes these

criteria with the associated subsections from Section 3.
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Figure 3: Classification of theweviewed papers

Figure 3 depicts a combination of aspects that we/will use to classify the literature. According
to the first criterion (i.e., 3.1 product type;slong:life-vs. perishable products), each paper is placed
either in Table 2a or Table 2b. If the paper has been placed in Table 2b, the modeling/considerations
towards perishability have also been brieflys discussed in one column. Within Tables 2a and 2b the
papers are categorized, through the associated columns, by other aspects (beyond perishability) of
risk types (i.e., 3.2), modeling approach towards risk (i.e., 3.4), and an interpretation of whether the
paper represents robust or.resilient RM strategies (i.e., 3.3). Note that the concepts of robustness
and resilience are interpreted for the reviewed papers based on the attributes and potential of their
models and our given definitions for these terms, whether or not the terms are exactly used in the

papers.
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ACCEPTED MANUSCRIPT

4.2. Findings

In the past couple of decades, the scope of agribusiness research has been expanded from farm planning
to include more stages and connections, i.e., a supply chain (see [137, 49]). However, Table 1 shows
the number of quantitative studies is still limited in the subject of Agriculture Supply Chain (ASC)
under uncertainty, i.e., we only found 42 quantitative studies on ASCRM that have been published
to date. These papers have been described with further details in Table 2a (for long-life agricultural
products) and Table 2b (for perishable agricultural products). Interestingly, the number of papers

are about the same in Tables 2a and 2b (i.e., 22 papers in Table 2a and 20 papers im~Table 2b).

Initially, we expected fewer perishable models in the literature due to the additiona
because perishability is only a small proportion of the general SCRM literature imilar number
of studies in long-life and perishable agricultural products highlights the i %of perishability
to the ASCRM literature. r

1

Food &
Agriculture
15%

ASCRM research for long-life agricultural products ASCRM research for perishable agricultural products
14

Figure 4: Contributing journal areas to
products

pment of ASCRM research for long-life and perishable agricultural

When we classified the revi apers with respect to the scope of the journal they were published
in, we found different \'%for contributions of the journals in the development of ASCRM that
ar

related to long-lif with perishable agricultural products. This comparison is provided in

the three journal scopes of: Food and Agriculture, OR, and OM. As depic-

ted in Figure 4, journals have the main contribution in research development in the context of

quantitative risk management for perishable agricultural products. However, OR journals have the
highest tribution in the literature with respect to the long-life agricultural products. In contrast

to our expectation, agricultural and food-based journals do not provide a large contribution in terms
of volume of papers, especially for perishable agricultural products. This is perhaps because of the

technical expertise involved in mathematically modeling risk.

Further, from a detailed content-wise classification standpoint, we reviewed the papers by focus-
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ing on different aspects of agricultural scope, risk type, RM strategies, and their modeling approach
toward risks, as provided in Tables 2a and 2b. Figure 5 counts the number of papers published under

each of these topics.

Perishable
agricultural Long-life
products, 20 agricultural

products, 22 RO, 6
SP, 26

SIM, 2

Resilient
- strategy, 4

Supply side
risks only, 14

Robust
starategy, 38

Demand side
risks only, 7

Figure 5: Content-wise counting of thespapersiin ASCRM research

From Figure 5 and as noted above, perishable and longlife product problems attract similar levels of
attention; supply-side risks are slightly more attractive for researchers compared with demand-side
risks or both supply- and demand-side risks; SPuis the most common approach toward risk modeling;
and resilient strategies have been discussed far less than robust strategies. Note that there is no study

published thus far in this contextithat ¢onsiders both resilient and robust strategies simultaneously.

As discussed in the previous section, there are specific supply chain characteristics that affect supply
chains in agricultureythesé are perishability, supply spikes, long supply lead-time of products, and
biological-based supply ‘processes affected by environmental factors. Although these characteristics
are specifig'to ASCs as described in the current study, they are also treated in other fields with levels
of similarity. Discovering such common points could extend the research domain into other areas and
vice versa. For instance, perishability is also a considerable concern in electronics or gasoline supply
chains [46]; moreover, supply spikes also affect energy (e.g., solar energy) or water-related supply
chains to some degree [138]. However, in gasoline supply chains, perishability is usually described
using a decaying process as gasoline has no fixed shelf-life, but in ASCs, we commonly assign a max-

imum shelf-life for agricultural products [139].
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A long lead-time is considered another key characteristic of ASCs but is still an area of concern
in supply chains of other sectors, such as semi-conductors and petroleum [140]. However, the long
supply lead-time in ASCs (e.g., related to the cultivation process) is basically biologically-based and
can be affected by further uncertain challenges, e.g., related to soil or weather situations. The specific
ASC characteristics described in this section influence the focus of the ASCRM studies as described
in the following subsections. More findings with respect to the aspects of agricultural scope, risk

type, RM strategy, and risk modeling are described in Subsections 4.2.1 to 4.2.4, respectively.

4.2.1. Product Type

Product type is a key criterion in the classification of the papers by differentiating between perish-
able and long-life products. In fact, perishability provides a life-time limitation which is considerably
important in modeling. Therefore, perishability is considered as a first-erder/classification criterion

in our review and has been used to section the papers into Tables 2a and 2b,

Table 2a summarizes different models on SCRM for long-life agricultural products. The models
mainly consider multiple-period settings because there is.no limitation on freshness of products over
time. The ASC models that are applied to long-lifepagricultural product problems are mainly stud-
ied in the context of supply chain handling, invéstment, or capacity extension under uncertainty for

agricultural products such as seeds or palm bunehes’ (see [31, 32] and [36]).

In Table 2b, we can divide the studies‘inte newsvendor and non-newsvendor models for perishable
agricultural products. Non-newsvendor'models are models under multi-period settings with different
approaches towards perishability.yFable 2b shows that the number of papers is similar in both groups
(i.e., 10 in each group”among the years). Given the additional modeling complexity in multi-period
models, this shows the particular importance of these models to researchers. Furthermore, the second
group of studies'is quite recent (all published after 2010, except one in 2005), which perhaps implies
an increasing trend. Such a trend may also occur in the general SCRM literature, where newsvendor

models ‘are still very widely used.

The newsvendor studies in Table 2a consider a basic approach in dealing with perishable and short
life-cycle products (through a single-period inventory management model, see [49], [65], [51], and
[35]). In fact, most of these papers studied the ASC problems under a long single-period (equivalent

with the time the products can stay fresh) for perishable agricultural products. For instance, in [51]’s
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case of olive oil production, to prevent the acidic taste in olive oil or perishing after long-term storage,

a long, fixed shelf-life of two years has been incorporated into the model.

Although newsvendor models have been used commonly to handle perishability as described, there
are some aspects that might be neglected after viewing a single-period model when looking at disrup-
tion. In fact, as [141] states, single-period models underestimate the time-correlation of disruption
risks. In saying that, single-period models in agriculture could be justified in some cases (e.g., highly
perishable products that can be used for just one period or a period that is very longgssuch as an
entire selling season). However, as most agricultural products under current sophisticated agribusi-
ness systems are stored for multiple periods, there is a need to plan accordingly for modeling in a
multi-horizon setting, e.g., by analyzing the best trade-off between cost and quality under disrup-
tions. Taking this into consideration, the correlating impact of disruptions could be captured among

different time periods.

In the non-newsvendor group of the reviewed papers in Aable,2b/ perishability is considered with
some basic measures that evaluate the freshness (e.g:, remaining fixed shelf-life) while discussing
multiple period settings. Such considerations make modeling of RM strategies more challenging, and
perhaps, for this reason, both the number of studies and the scope of the studies are limited. For
instance, consideration of a variable shelf-life ‘has just been found in one study ([37]). In addition,
as shown in Table 2b and noted above, most of the studies that are classified in this category have
recently been published (see [37]¢[44}; and [38]). In these papers, various considerations toward per-
ishability have been made. Eérinstanée, in [44]’s study, the estimated fruit color has been treated as a
measure of firmness/freshness when considering a fixed shelf-life. In [38]’s study, the delay in receiving
returning transportationtitems (RTIs) has been considered as a critical factor in the ripening process.
In fact, under consideration of delay in receiving RTTs, bigger lot-sizes should be considered, which in
turn affect ghe ripening process by generating heat in non-central areas and ultimately accelerating

deterioration.
Figure 6 depicts the comparative number of papers in the context of ASCRM for each category

of long-life products, perishable products under newsvendor settings, and perishable products under

non-newsvendor settings over the years.
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Number of Published Papers
[EN IN

anhilahin |

1993 1997 2001 2002 2003 2004 2005 2006 2007 2008 2009 20102011 2012 2013 2014 2015
Year

M Long-life # Perishable Newsvendor Perishable Non-newsvendor

Figure 6: Publishing trends in the area of ASCRM for long-life products arld. perishable products under newsvendor
or non-newsvendor models

We end this subsection by noting that, although perishability is a key attribute in ASCs, it is also
a concern in some other supply chains. For instance, as described in [46], perishability and life-time
issues are considerable in both agricultural andthigh<tech supply chains; perishability is related to
a biological process in agriculture, while it4gseompetition-based within high-tech industries. Thus,
the time-based perishability function sheuld be defined differently. In addition, possible approaches
against perishability may also differ, e.g., disassembly is used as a common approach under quality
defects in the high-tech industry, but s not applicable in ASCs, as defective products cannot be
reused. Saying this, there«are some similar considerations in the two industries, e.g., the value of

depreciation of produets over time, or FIFO (first in first out) warehousing.

4.2.2. Risk Types

As discussed in Section 3, and from the aspect of risk-type, the reviewed papers are divided into
two main groups of studies, namely supply-side and demand-side risks. Under supply-side risks, the
seasonality of supply and weather-related biological process of supply makes the decision making
challenging in ASCs. It is worthwhile to note that the weather-related and seasonal supply also im-
pacts other supply chains such as water or solar-energy supply chains. However, as briefly mentioned
in the beginning of the section, in those supply chains there are no additional concerns about the
biological process of supply. Under demand-side risks, although commonly presented in most supply

chain problems (as variability in market price or capacity), it is noticeable that most markets for ag-
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ricultural products are less standardized (e.g., compared with electricity markets). This may require
approaches with non-standardized instruments [34], thus RM is more challenging in ASC problems

with these demand uncertainties.

The second column in Tables 2a and 2b summarizes different risks under the two categories of supply
and demand risks for the papers reviewed. From this part of the table, we can see that the main focus
of the studies is on supply-side risks (or in some cases demand-side risks) that stem from weather
conditions, although in different ways. For instance, an uncertain length of a harvest seasen and crop
size is considered in [64]; uncertainty in yield and crop quality is considered in [63]; yieldy cost, and
price uncertainties are considered in [44]; yield and yield dependent trading cost.and'sélling prices are
considered in [51]; and yield, crop quality (under different production rate),and open market supply
cost variabilities are considered in [42]. In a few other cases, supply-side risks have been studied in
other contexts such as: unreliable sourcing [35], supply-side transportation/[37], or risk of delay in
receiving a returning transportation item (RTT) [38]. Quality-related supply risk is discussed from a
different angle in [31, 32] when addressed as random or oppértunisti¢ misrepresentation by the farmer

during the testing stage of a grain production supply c¢hain.

In comparison to supply-side risks in general, demand-side risks have received less attention among
studies related to both long-life and perishable products. In particular, there are 8 versus 5 studies
in long-life products (where 9 papers€onsidered both) and 6 versus 2 in perishables (where 12 papers
considered both). The main demand'side tisks considered in these studies first relate to the demand
size and then to market pricé uncertainty. These uncertainties are mostly studied separately, except
in some cases such as [40, 44, 43, 65] that consider both of these uncertainties simultaneously. By
differentiating between types of risks from the standpoint of probability and intensity (i.e., high prob-
ability and low intensity in business-as-usual uncertainty versus low probability and high intensity in
disruption risks), we notice that the focus of most of the studies in the field of ASCRM is on oper-
ational (= business as usual) uncertainty rather than rare disruption scenarios. Particularly, among
the reviewed papers in Tables 2a and 2b in just three papers ([61, 35, 37]), has supply disruption
been discussed in a preliminary way. In addition, demand-side disruption (e.g., a market brand fail-
ure) has thus far been completely ignored in ASC problems under uncertainty. Under connectivity
of supply-side and demand-side risks in many supply chains, this simplified assumption may not be

realistic.
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Overall, in ASCRM problems studied thus far, the uncertainty has been addressed as either dis-
ruptions, i.e., LPHC events, or business-as-usual uncertainty, i.e., HPLC events (mainly as business-
as-usual uncertainties). A non-agricultural SC paper that considers both types is [74], which considers
both a complete shortage that results in no supply (i.e., a disruption) and a possible delay in supply

(i.e., an operational uncertainty).

In regards with the type of risk, supply-side risks are the main focus of ASC models, especially when
they relate to environmental/meteorological impacts. However, compared with the vast diterature of
supply disruption in manufacturing supply chains (see [1]), applications of supply disruption are fairly
limited in ASCs. Demand disruption has not been studied at all for ASCs (although business-as-usual
uncertainty has); even for manufacturing supply chains it has been studied”in)a very limited scope,
where [142] and [143] are among the few studies that consider demand disruptien in non-agricultural
supply chains in a preliminary way (i.e., through some coordinatiprn-strategies under harsh demand

uncertainties in the operations stage of production).

4.2.8. Risk Management Strategies

As mentioned earlier, in this review, we categorize s RM strategies as providing robustness or resili-
ence. In Tables 2a and 2b the papers are categotized by focusing on the type of RM strategy utilized
(whether they are robust and/or resilient). Mostwof the papers reviewed in the context of ASC did not
specifically refer to the terms robustness and resilience and only considered a subset of the associated
elements (diversification-related strategies have been mainly used under this category). Diversifica-
tion is traditionally considered/as the main response to risk in agriculture and is normally achieved by
adding new resources or diversifying the resource locations [25]. Diversification can also be obtained
through using multiplé suppliers, which increases robustness and mitigates risk. The latter definition
has been utilized-in mest of the reviewed papers in Tables 2a and 2b. For instance, in [49], a beef
supply chain.model was studied under business-as-usual risks which aimed at sustaining performance
under both'supply-side and demand-side uncertainties through supply diversification (using both con-

tract and open-market sources); hence, implying robustness.

In general, supplier diversification or the dual sourcing strategy has a long history in supply chain
problems under uncertainty. Many analytical studies support the advantages of using this strategy
compared with single-sourcing, given particular uncertainties that relate to supply price, delivery

lead-times, yield, as well as a risk-averse buyer (see [144, 145, 146]). Supplier diversification is also

37



effective for ASCRM, e.g., see [49]. However, because of the plausible correlation between the supply
sources in one agricultural region, supplier diversification may need to extend across different regions,
especially under supply-side uncertainties. The concept of diversification across different regions is

also applicable in oil supply chains, as long as the regions have a comparable quality of crude oil [147].

Except for supplier diversification, other robust strategies discussed in Section 3.3 have relatively
fewer applications in the ASC problems reviewed here. We believe there are some reasons for this
tendency. For instance, use of inventory-based strategies may not be very effective due.to concern

about product perishability and freshness.

In total, resilient strategies have been studied far less than robust strategi€s)(1 compared with 21
in Table 2a, and 3 compared with 17 in Table 2b). In addition, the resilient strategy that was con-
sidered in those studies was provided in a fairly preliminary way (key resilience attributes of agility
and recovery capacity have not been addressed). For instance; in [37], rescheduling plans for sales

under a transportation disruption could be interpreted as.sesilience’in a limited scope.

Product substitution is one of the commonly used resilient’ RM strategies in the context of SCRM.
In a supply chain model with N different productsyand N corresponding demand classes (i.e., when
products are graded into N classes according to some quality), by considering product substitution,
we can use a product class to satisfyddemand for the same product class as well as for certain other
product classes. Product substitution provides flexibility for decision making under risk when the
decision maker can allocate the prodiict to different demand classes only after realization of demand
or supply uncertainty. Thus, product substitution is mainly referred to as a reactive RM strategy
[148]. Occasionallyproduct substitution is also referred to as a mitigation strategy that supports
diversification in some ways, e.g., in sourcing decisions when diversifying by products rather than
suppliers (see [85])* Generally speaking, product substitution is a reactive strategy and has a wide

application Im»SCRM problems.

Product substitution can be offered under different structures. One of the popular structures in
product substitution is known as downward substitution, when unmet demand of a low quality
product is replaced by an alternative high-quality product (downbinning) or a conversion of that
high-quality product (downconversion [148]). In manufacturing supply chains under co-production

systems when multiple products are produced simultaneously, there are often random quantities of
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vertically differentiated products that provide the potential for product substitution [149]. As a spe-
cific example, in semiconductor manufacturing, demand for a low-speed device is often filled with a
reconfigured high-speed device when the low-speed device is unavailable [140]. For ASC problems, in
comparison with manufacturing (especially semiconductor) supply chains, it is plausible that higher
quality agricultural products are substituted for a conversion of lower quality products, e.g., use high-

quality fruit for fruit juice (a strategy referred to as “downconversion” in [149]).

Product substitution can also play an important role in planning under demand uncertainty. Such
product substitution is often offered through a demand-switching RM strategy as discussed in [86].
In this situation, the firm motivates the customers to buy an alternative productvhen their preferred
product is not available. According to [150, 151], when demand correlation increases, the expected
value of substitution is increased. We believe this is also a sensible ¢énclusion under the scope of

ASC problems, although we are not aware of any research that studies this.

Thus far in this subsection, we discussed different examples of robust and resilient RM strategies
used in supply chain problems with a particular focus on"ASCs."However, a key question still remains
as to how these strategies or concepts are quantified. Measuring the resilience concept is a crucial
question as studies considering resilient strategiestare limited so far (particularly in the context of
ASCRM). First, we summarize a number of methods for measuring robustness found in the literature

that are consistent with the conceptual definition of robustness provided in the current review.

1. Comparing the expected valuetof the performance under uncertain scenarios with the expected

value in the base case. There are several means of doing this.

(a) One can consider the difference between these two quantities (base performance and performance
under disruption).“Although this approach has been initially used in some supply chain models

to evaluate robustness (in [152]), there was no specific study in the context of ASC that used it.

(b) Rather than a difference, we could also consider the ratio of change in the performance, i.e., the
ratio of the difference between the two performances to the base performance, e.g., see [28] in

the category of studies for long-life agricultural products.

(c) Alternatively, we can identify the ratio of change in the performance to the base performance
over the ratio of change in the associated uncertain parameter to the corresponding base case
parameter, e.g., see [32, 52] in the category of studies for long-life agricultural products and

[42, 49, 44] in the category of studies for perishable agricultural products.
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2. Combining the expected performance and risk measures, such as with a weighted average or a
ratio between the risk measure and the expected performance, or including the risk measure through
a model constraint. In particular, see [41, 45, 56, 53, 60, 70] in the category of studies for long-life
agricultural products and [36, 39, 46, 51, 43, 55, 64, 61] in the category of studies for perishable
agricultural products. In [61], the risk measure has been addressed using a constraint that indicates
the desired degree of robustness by ensuring that the deviation of the solution from optimality under
each uncertain scenario does not exceed some positive value p (this approach is called p-robustness).
However, in the rest of the papers, the risk measure is combined into the objective function. For
instance, in [153], the robustness measure is combined into the objective function and presented as a
weighted combination of the expected performance and the worst-case performancei(i.e., conditional

value-at-risk of the performance).

3. Considering network structure related metrics, such as network connectivity or accessibility, e.g., in
[62] the robust network structure design aims at providing the shortestpath from each node to the rest
of the nodes in the supply chain network. Although this is the only, study in the context of ASCRM
that used a network-based approach to address robustness,\this“approach has been applied widely
in other supply chains, such as manufacturing supply chains, For instance, [97] defines a robustness
measure using network connectivity methods, i.€., as\& probability of the availability of a minimum
of one walk between source and sink. This igsconsidered similarly in other works, such as [154], but
under different performance measures. -Article JJ155] defines metrics in the way that measures the
total number of nodes and arcs sueh that their removal does not separate the source and sink (i.e.,
there is still a minimum of one.walk remaining between them). In [155], the described metric was
evaluated for different network structures (i.e., block-diagonal, scale-free/power-law, centralized, and

diagonal) through a simulation approach.

In the rest of the'papersistmmarized in Tables 2a and 2b, there were no specific discussions regarding
robustness measuresy’indeed, even the term “robust” has not been used in most of the studies and
was insteadimplied by the authors according to the realized concepts. In these studies, the uncer-
tainty has been considered in a risk-neutral manner (i.e., through consideration of expected value
of the performance measure), or in some cases, by discussing particular mitigation strategies (see

30, 57, 69]).

In contrast with robustness in the literature considered (see §2), there is no research in the con-

text of ASCRM, nor indeed SCRM, that thoroughly addresses resilience metrics. Therefore, in this

40



review, a number of suggestions can be provided for future studies.

In accordance with the conceptual definition of resilience from Section 3.3, the time to recovery
is appropriate as a quantitative resilience measure (see [3, 81]). In other words, resilience can be
quantified by the time that a supply chain network requires to return to normal operation after dis-
ruption. In addition to time to recovery, we suggest two other recovery-based metrics for resilience
that measure supply chain performance during the recovery period. We suggest the following metrics

for measuring resilience:

1. Time to recovery (i.e., time between the beginning of a disruption until the disrupted supply chain

has recovered);
2. Lost profit during the recovery period; and

3. Recovery level (i.e., the performance level that the supply chainrecoversto after disruption).

The resilience metrics suggested here are important for supply chaineproblems that contain uncer-
tainty, however they are particularly critical for ASC problems.%Agricultural products are generally
highly sensitive to both the time to recovery and the recovery process due to their perishability and
limited shelf-life. Thus, the choice of resilience metric(s), as suggested here, will influence the recovery
process and consequently affect both the probabilityiof survival and the quality of surviving products
in ASCs after facing disruption. From a modeling standpoint, it is crucial that the resilience metric
accounts for the time until a disrupted supply chain returns to normal operation, particularly as a
proportion of the fresh product’silifetime; i.e., if the time to recovery is longer than a product’s life-
time, then recovery will not{save those products. Hence, when deciding on a resilient strategy, there
is a trade-off between theicest of the strategy and lost profit, where the strategy is only appropriate

if recovery can occuriwithin the fresh product’s lifetime.

Nevertheless, even though the recovery measures suggested here are core resilience concepts, none
of the literature referenced in our review precisely addresses these measures of recovery. According
o [95], the time component of resilience has not been well studied by researchers in the context of
supply chain management so far. Without consideration of time, the suggested resilience metrics
cannot be fully addressed, so there is a dearth of previous work that addresses these quantitative resi-
lience metrics. However, some studies imply the resilience concept through time-related performance
measures or post-disruption risk management strategies. In the following studies, the improvement

in a time-related performance measure or the application of some reactive RM strategies can improve
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one of the suggested resilience metrics, even though the metric itself has not been clearly addressed.

First, [111] defines the resilience measure as a supply chain lead-time ratio, which is a ratio between
the promised (expected) and the actual lead-time of the delivery of a component to an automaker.
The lead-time ratio is defined over the supply chain nodes for the period under analysis. To overcome
the disruption caused by a delay in receiving the components and in determining a lead-time ratio
close to one, they suggest using an alternative transportation route as a flexible (resilient) approach.
In their study, by targeting the lead-time ratio close to one under transportation disruption, the
recovery lead-time under disruption will be reduced. Hence, their proposed measure for, resilience

may imply a short time to recovery to some extent.

Similarly, [112] discusses resilience in the context of a two-stage reconfigurable network design by
selecting a delivery lead-time as the performance measure under”disruption scenarios defined by
node/arc failures. The underlying concept is that a higher level'of arc/node availability results in a
shorter delivery time, therefore, less inventory is needed thrfoughout/the supply chain network, which
means less overall cost. Thus, their definition may imply\less recovery time because of the associated
shorter response time to a disruption, but this implication was not discussed. In a similar manner,
consideration of response time as the performance‘measure in [156] results in some level of resilience

as shorter response times can enable faster recovery.

Alternatively, some studies consider’reactive RM strategies that affect the resilience measures, es-
pecially those related to lost profit during the recovery and the recovery level after recovery. For
instance, [34] considers a backup ‘supply strategy with an optional contingent contract as a resilient
strategy for an ASCéwith: long-life agricultural products. The backup strategy has been discussed for
ASC problems with perishable agricultural products, e.g., see [35, 65]. In [37] a rerouting strategy
has been used as a'Teactive RM strategy by allowing the possibility of switching between demand
markets. As'described in these studies, use of RM can assist in improving the performance measures
(i.e., total cost or profit) during and after recovery. As another example, the recovery process could be
sped up by the use of emergency facilities that are protected and can hold emergency inventory (e.g.,
by constructing flood walls to prevent flooding for facilities that are capable of supplying parts in the
face of disruption events) [157, 158]. To select the best subsets of supply facilities to be protected,
[157] considers a trade-off between the cost of a suppliers’ protection and the losses caused by supply

disruptions (this concept is referred to as a “protection index”). Articles [157] and [158] highlight the
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importance of using more emergency sources but fewer suppliers in total. In other words, in these
studies, rather than diversification of suppliers (by selecting more suppliers), investment is mainly

focused on emergency sources.

To sum up, in this section, we summarized a number of metrics to describe the concepts of ro-
bustness and resilience in ASCRM problems. Although robustness metrics are discussed to some
extent, we have not found any literature that fully addresses resilience metrics. This is a crucial lack
of research under the context of ASCRM because of the higher level of inherent uncertainty in ASCs
(e.g., related to the climate, the economic environment, and the social environment) and the perishab-
ility of agricultural products. In fact, the inherent uncertainty in ASCs promotes the use of reactive
solutions (resilient strategies) rather than proactive solutions (robust strategies), which require less
prediction about risks [89]. In addition, perishability of products can be controlled by the use of a
resilience measure, such as minimizing the time to recovery. In saying this,resilience measures have
been partially discussed in some quantitative studies. e.g., whema time-based performance measure
is used or when a reactive RM strategy is applied. In such studies, the improvement of resilience

measures is a beneficial outcome rather than the focus of the research.

4.2.4. Risk Modeling Approaches

Thus far, different mathematical modeling ‘appreaches toward risk have been applied in the context
of ASCs. As described earlier in Sectionud.4, these are: minimization of the total, absolute devi-
ation (MOTAD), game theory (GT), linear/ programming (LP)-based approaches (mixed-integer lin-
ear programming — MILP, multi-objective optimization — MOO, goal programming — GP), stochastic
programming (SP)/stochastic dynamic programming (SDP), fuzzy optimization, simulation (SIM),
and robust optimization (RO). We should note that MOTAD has only been used in agricultural risk
modeling studies-in farmdevels and not in ASCs. In addition, as mentioned above, although the
properties of/RM,models are different in ASC problems compared with other types of supply chain

models, the .core mathematical approaches toward risk modeling are similar.

Among risk modeling approaches in the context of ASC, SP is by far the most popular approach,
especially for recently published papers. Although MOTAD was the most common approach in clas-
sical agricultural risk modeling, especially in crop and farm planning (see [116], [113], and [117]),
according to our review, it is no longer attractive in the context of ASCRM (see the risk modeling

columns in Tables 2a and 2b). Other than SP, LP-based approaches have also received considerable
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attention in the literature followed by RO approaches (see Figure 5) but we expect that RO will

attract more attention under higher levels of unexpected uncertainty, as discussed in Section 3.4.

In SP, particularly, two-stage models have been considered for many of the recent problems in ASCs
that partition the decisions before and after realization of uncertainty (i.e., stages 1 and 2). Perhaps
this is because, in reality, for most ASC problems, decisions are partitioned by uncertain parameters,
e.g., transportation decisions before and after realization of yield. For instance, [30] studied a palm
bunch supply chain under harvest uncertainty through a two-stage SP model that decides on input
processing and output production capacities in stage 1, and also input processing levels'within the
assigned capacity in stage 2. In another example, [65] developed a two-stage SP.model to determine
growing and sales policies in an olive oil supply chain under uncertainty; here thejstage 1 problem
concerns the amount of farm space leased, and the stage 2 problem decides on the optimal amount of
olive oil to be produced from internally grown olives and from olives-that have been purchased from

the spot market after realizing price uncertainty in the open market.

Although we did not find many studies that used SIM, models in the context of ASCRM, when
considering the higher levels of complexity in the realwstructure of ASCs, the implementation of
simulation-based approaches should be both sensible and effective. For instance, agent-based simula-
tion models can be applied when one side of the supply chain faces incomplete information [159]. In
[31, 32], for a Canadian grain supply«chain, such interaction is defined between a farmer and a grain
handler where the handler aims«o design’ proper testing strategies to minimize the risk of misrep-
resentation of variety (i.e., a’part of the quality assurance process) by an individual farmer. As the
grain handler has just limited information about the farmer’s misrepresentation risk, this problem is
classified as an agent-based model with incomplete information about the supplier. Although this is
a well-known problem in”“supply chain management (see [160] and [161]), it has rarely been used in

ASCs, perhaps becatise of the additional complexities in ASC models as discussed in Subsection 4.2.1.

Further,(use of other types of SIM-based models such as system dynamics could extend the ap-
proach toward uncertainty in ASC problems; e.g., [95] used a hybrid LP system dynamics model to
capture the time-related characteristic of resilience measures and provided a re-planning model under
disruption in an automotive supply chain problem. Finally, GT models could also be applied further
in ASC problems to improve the design of efficient coordination policies between the two sides of the

ASC network, e.g., under behavioral risk as discussed in [31, 32].
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In summary, among the applied methods for risk modeling in ASC problems, two-stage stochastic
models received considerable attention because they matched the decision-making process with many
real-life agricultural supply chain problems. Besides the LP-based approaches, RO has been used to
some extent, which can be applied when less information is available about uncertain scenarios. By
considering more rare high impact disruptive scenarios and complexities in the problems, RO and

SIM may well receive higher attention in the future.

4.2.5. Summary

In this section, we aimed to map and evaluate the literature in the context of agribusiness supply
chain risk management in order to suggest the potential research paths and boundariesof knowledge
for future research. In summary, and according to our findings, the following areas are suggested for

future research in Agribusiness Supply Chain Risk Management (ASCRM):

e To consider perishability under variable shelf-life time measures
e To consider other supply-side risks beyond weather changeability
e To incorporate demand-side disruptions

e To model supply chain resilience in ASCs through measures such as time to recovery (TTR) in the

objective function

e To compare the effectiveness of a robust versus a resilient supply chain design and establish when

the supply chain design should focus on robustness and when it should focus on resilience.

5. Conclusions

Although quantitative modeling approaches have been applied to agricultural problems for a long
time, adoption of these methods for improving planning decisions in agribusiness supply chains under
uncertainty is still limited. In the current study, quantitative models for risk management in ASCs

were réviewed, with a particular focus on categorizing SCRM strategies as robust or resilient.

According to our review, limitations in quantitative ASC studies are recognizable from both the
number of publications and the scope of existing studies. Thus, the literature on Agribusiness Supply
Chain Risk Management (ASCRM) is likely to extend over the next few years. In particular, we have
identified the following directions to be explored in future research in the field of ASCRM according

to both the academic research gap and the needs of industries:
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1. Perishability modeling. In this topic, the consideration of perishability in fresh products under
variable shelf-life is a significant omission that needs to be incorporated in models related to disruption
management in the context of ASCs. For instance, the price of technology to keep the products fresh
for a longer time can be traded off with the additional profit generated by selling the produce when

it is fresh. This consideration needs to be combined with the adoption of risk management strategies.

2. Multi-period planning. This is another area that lacks sufficient attention in the current ASCRM
literature, even though, it is particularly important in the context of agribusiness because of time-
dependent characteristics of agricultural products (relating to their freshness). Multi-period ASC
planning under disruption is needed to handle quality management for agricultural\products over

time and concurrently consider time-correlation of disruption risks.

3. Rare high-impact disruption and the combination of them with operationaliuncertainty. Currently,
most ASCRM models only considered robustness under business as,usual risks; hence, the impact of
low probability of high-impact disruption is rarely addressed. In addition, in many real-world ASC
problems, both types of uncertainties (operational and distuption) can be viewed together, which

requires incorporating them simultaneously in the correspending model.

4. Robust and resilient strategies (especially resilient), Omne of the key missing areas in quantitative
ASC studies relates to mitigation and contingency, planning approaches. These methods are especially
significant for ASCs given their additional inherent vulnerability. While robust models have recently
been studied to some extent for AS@s, resilient strategies (i.e., contingency plans that reduce time-

to-recovery) are highly neglected‘under\rare disruptions.

5. Demand-side disruptions. Noystudy can be found in ASC modeling that addressed demand-side
disruptions (harsh rare demand-side uncertainty). Demand-side disruption is not only significant
itself in ASCs (e.¢., massive changes in open market prices and demand due to a harsh seasonal
harvest), butucould also stem from supply-side disruptions (i.e., according to the correlation between

these uncertainties).

6. Highlyintegrated information-driven supply chains. Due to the complexity of agribusiness systems
and the high level of uncertainty in their information (e.g., because of using predictive analytics on
key parameters), highly integrated information-driven supply chain management systems should be
considered. Such systems are key to incorporating diversity of uncertainty information in a complex

adaptive ASC, which is especially important from industry stand-point.

7. Approaches that are endorsed by high-level management. Finally, to ensure practicability of the
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proposed research methods, a further research consideration is to ensure that solutions/output from
new risk management approaches can be applied in practice, hence, providing cost-efficient approaches

toward risk, which are especially important from an industrial standpoint.

In this review, we not only summarized key research findings in ASCRM problems, but also provided
a comparison with other supply chain problems, consequently, links the findings when there were
attributes in common. Furthermore, we proposed a number of research gaps in the context of ASCRM
to be explored that should increase the practicability of models for real-world agricultural supply
chain problems. Although adding the proposed elements could extend the research todetter model
real-world problems in the agribusiness industry, researchers need to investigate-ifithe additional
complexity affects the solvability of the problems. Further, the benefits from the modeling-based
solutions may also be limited by the quality of data, the willingness of the enterprise ownership to
use this method, the culture of risk management, and the understanding of JOR in the concerned
company. Hence, these limitations may also need to be considered when“exploring extension of the
research in the proposed areas. We hope that the above gaps represent” motivating opportunities for

future research and promise to provide benefits to the ASC'sector"with further exploration.
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