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Abstract

Root-associated microbes play a key role in plant performance and productivity, making them important players in

agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it

is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We

investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT

sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal

network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone

taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong

negative association (R2
= 0.366; P < 0.0001) between agricultural intensification and root fungal network connectivity. The

occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH, and mycorrhizal colonization.

The majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants and belong to the orders

Glomerales, Paraglomerales, and Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils

was also significantly higher under organic farming. To our knowledge, this is the first study to report mycorrhizal keystone

taxa for agroecosystems, and we demonstrate that agricultural intensification reduces network complexity and the abundance

of keystone taxa in the root microbiome.

Introduction

Agricultural intensification is one of the most pervasive

problems of the twenty-first century [1]. To keep pace with

the ever-increasing human population, the total area of

cultivated land worldwide has increased over 500% in the

last five decades [2] with a 700% increase in the fertilizer

use and a several-fold increase in pesticide use [3, 4].

Agricultural intensification has raised a wide range of
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environmental concerns, including poor nutrient-use effi-

ciency, enhanced greenhouse gas emissions, groundwater

eutrophication, degradation of soil quality, and soil erosion

[4, 5]. Alternate farming systems such as conservation

agriculture (e.g., no-till) and organic farming have been

widely adopted to reduce such adverse environmental

effects [6–8]. Organic arable lands represent 2.5% of the

total arable lands in Europe, and over 3.5% in Switzerland

[9]. The adoption of no-till globally has increased by

~233% in the last decade and it is over 3% of the total

arable lands in Switzerland [10]. These farming systems are

adopted to maintain environmental sustainability and eco-

systems services, and at the heart of ecosystem services lies

the contribution of microbial communities [11–13].

Microbial communities play an indispensable role in

ecosystems and render a wide range of services [12, 14–16].

In agroecosystems, microbes modulate a number of pro-

cesses, including nutrient cycling, organic matter decom-

position, soil aggregate stabilization, symbiotic and

pathogenic interactions with plants, and thereby play an

essential role in the productivity and sustainability of

agroecosystems [5, 12, 17]. The agricultural intensification

with high resource use and low crop diversity can affect

soil- and plant-associated microbiota, with subsequent

impact on ecosystem services [18, 19]. Increasing adoption

of no-till and organic farming also warrants an investigation

of their effects on microbial communities. Previous studies

comparing the effects of conventional, no-till, and organic

farming have mostly focused on the soil microbiome [6, 8,

20–22], and our understanding of the impact of these

farming systems on root-associated microbiota is minimal.

Root-associated microbiota plays a key role in deter-

mining the above-ground productivity [23–26]. No-till

farming may affect root architecture and root distribution

in soil, with a subsequent effect on microbial recruitment

into the roots [27]. However, very few studies have assessed

the effect of no-tillage on root microbial communities, and

the ones that investigated root microbiota have only focused

on root bacteria [28] or specific fungal groups, including

arbuscular mycorrhizal fungi (AMF) using traditional

techniques [29, 30]. Furthermore, the impact of agricultural

intensification on the overall root fungal communities is still

poorly understood [31, 32]. Plant root harbors a diverse

assemblage of endophytic fungi that form symbiotic, para-

sitic, or pathogenic associations, and through such asso-

ciations, play a key role in plant diversity, community

composition, and performance [26, 33, 34]. The widespread

symbiosis of AMF and the array of benefits rendered by

these fungi are now well established [35, 36]. Moreover,

mycorrhiza like endophytes, Piriformospra indica, also

promote plant growth, stress tolerance and induce local and

systemic resistance to pathogens [37]. Trichoderma spp.

have also been shown to grow endophytically and enhance

plant growth and systemic resistance to plant pathogens

[38]. Thus, the structure and composition of root fungal

communities play an important role in agroecosystems, and

yet the effect of agricultural intensification on root fungal

communities remains poorly understood.

The structure of a microbiome has substantial effects on

its functioning [39]. However, studying the structure of a

microbiome is not simple mainly due to complex inter-

relationships among the myriad of members. Microbial co-

occurrence networks can unravel such relationships and

offer insight into community structure [40–43]. Network

analysis has been found particularly useful in recent years to

understand how microbe–microbe associations change in

response to environmental parameters [42, 44–47]. Network

scores can also be used to statistically identify the keystone

taxa, i.e., taxa that have a large influence in the community

[34, 48, 49]. A recent study has shown that despite being

numerically inconspicuous, keystone taxa confer greater

biotic connectivity to the community and thus can be

indicators of community shifts and compositional turnover

[50]. It has also been observed that the impact of abiotic

factors and host genotypes on the plant microbiome is

facilitated via keystone taxa [51], and the root microbial

network complexity is linked to plant survival [52]. Agri-

cultural intensification may alter the structure of root

microbial network and the abundance of keystone taxa,

which in turn may have implications for crop performance

[53, 54]. However, so far, it has not been investigated

whether root microbial networks differ between organic,

conservation, and conventional agriculture. A pertinent

question is whether mycorrhizal fungi that are widely

regarded for their role in plant productivity can also act as

keystone taxa in the microbial community.

Here we explored the impact of farming systems on the

fungal community structure using the latest PacBio SMRT

sequencing and network analysis of wheat root samples

collected from 60 farmlands in Switzerland. We aimed to

address the following questions: (a) Does agricultural

intensity affect the structure and composition of wheat root

fungal communities? (b) Do network complexity and the

abundance of keystone taxa vary between conventional, no-

till, and organic farming? (c) Which taxa act as keystone

and what are the drivers of such taxa in the root microbiota?

Material and methods

Site selection and sampling

Soil samples were collected in early May 2016 from wheat

fields in 60 agricultural farmlands in the northeast and

southwest regions of Switzerland (Figure S1). Wheat fields

were either managed conventionally with tillage,
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conventionally under no-tillage, or organically under a

mouldboard plough tillage for at least the last 5years.

Farming systems were distributed equally in both regions,

and each system was represented by 20 farmlands, resulting

in a total of 60 farms. Conventionally managed fields

applied pesticides and synthetic fertilizers and were mana-

ged following the ‘Proof of Ecological Performance’

guidelines of the Federal Office for Agriculture, Switzerland

(https://www.blw.admin.ch). No-till fields were without any

soil tillage except for occasional use of strip till, and

potential application of synthetic substances (www.no-till.

ch). Organically managed fields received no pesticides and

synthetic fertilizers and were managed according to the

guidelines of BioSuisse, the Federation of Swiss Organic

Farmers (www.bio-suisse.ch). In addition to inherent dif-

ferences among the farming systems in the use of plough or

synthetic fertilizer and plant protection products, farmers

also planted 25 different wheat varieties, all belonging to

the list of recommended winter wheat varieties published

annually by the Agrarforschung Schweiz (www.agra

rforschungschweiz.ch) or BioSuisse, for conventionally or

organically managed fields, respectively. While field sites

showed a degree of variability in soil texture, elevation, and

the mean annual temperature, none of these parameters

differed significantly between the farming systems [55]. We

calculated agricultural intensity index according to previous

studies [54] based on the information collected from 59

farmers; information could not be obtained from one farm

[55]. Agricultural intensity index was calculated using the

information on three anthropogenic input factors: fertilizer

use, pesticide use, and the consumption of fuel for agri-

cultural machinery. These factors were also included in

assessing agricultural intensity in a previous study.

At each farmland, 18 soil cores (4 cm diameter) were

collected at 0–20 cm depth with a hand auger (Figure S2).

These 18 samples were mixed and pooled to obtain a

representative sample for a farm. The auger was cleaned

between sites. Five undisturbed cylindrical soil cores of 100

ml volume and 5.1cm diameter were collected for bulk

density measurement and the median of the five measures

was considered as the estimate of bulk density for each field.

Root samples were collected in June 2016 at wheat flow-

ering (BBCH growth stage 69–75). At each site, ten wheat

plants, five per transect, were excavated using a fork spade.

Shoots were cut off at the height of ~5 cm and all roots of a

specific site were pooled in a plastic bag for subsequent

processing. Samples were placed on ice in a cooler box for

transfer to the laboratory. Soil samples were processed

on the same day as the collection by removing plant mate-

rials, homogenizing and passing through a 2-mm sieve. Sub-

samples were taken for various soil physicochemical

and biological analyses and stored at 4 °C or −20 °C as

required.

Plant and soil analyses

Root microbiome comprises microbial communities asso-

ciated with plant roots, including microorganisms in the

endosphere, rhizoplane, and rhizosphere [56–58]. This

study specifically focused on the root endophytic fungal

communities. In the lab, roots were thoroughly cleaned

under cold tap water. Subsequently, fine roots (<1 mm)

were cut into small pieces of about 1 cm length and thor-

oughly mixed. A subsample of 2 g of fine roots was stored

in 1.5 Eppendorf tubes, lyophilized and stored at −20 °C for

DNA extraction. The rest of the samples were used to

determine AMF colonization by estimating the abundance

of arbuscules, hyphae, or vesicles according to a modified

line intersection method [59]. A minimum of 100 inter-

sections per slide was examined with two technical repli-

cates applying a blind procedure throughout the

quantification process to avoid subjectivity related to the

origin of the sample. For soil samples, total phosphorus (P),

plant available P, pH, and bulk density were measured using

the Swiss standard protocols [60]. Plant available P was

measured according to Olsen et al. [61]. The abundance of

AMF in soil was assessed by phospholipid fatty acid

(PLFA) extraction followed by analysis on gas chromato-

graphy mass spectrometry [62]. We quantified the abun-

dance of AMF in soil by using the PLFA 16:1ω5, which is

well regarded as a biomarker for AMF because it constitutes

a large proportion of total PLFAs in AMF, and strong

correlations between AMF abundance in the soil and con-

centrations of the PLFA 16:1ω5 have been observed pre-

viously [63]. Neutral lipid fatty assay or NLFA 16:1ω5 is

also used as an indicator of AMF biomass; however, NLFA

16:1ω5 is mainly present in storage organs [64]. Thus, it is

considered a weak indicator of active AMF in soil and a

previous study also found low amounts of NLFA 16:1ω5 in

soil [65].

DNA extraction and SMRT sequencing

For each sample, 200 mg of roots (dry weight) was used for

DNA extraction using 600 mL of NucleoSpin lysis buffer

PL1 for 15 min at 65 °C followed by the NucleoSpin Plant

II kit (Macherey & Nagel, Düren, Germany). The DNA

samples were amplified with the primer pair ITS1F-ITS4

[66, 67] targeting the entire ITS region (~630 bp) [68]. The

forward and reverse primers were synthesized with a

5-nucleotide-long padding sequence followed by barcode

tags at the 5′ end to allow multiplexing of samples within a

single sequencing run [69]. Library preparation and SMRT

sequencing were conducted at the Functional Genomics

Centre Zurich (http://www. fgcz.ch) on the PacBio® RS II

Instrument (PacBio, San Diego, CA, USA). Details of PCR

conditions and sequence data processing are described in
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the Supplementary Information. In brief, the SMRT Portal

was used to extract the circular consensus sequences (CCS)

from the raw data (available from the European Nucleotide

Archive, study accession number: PRJEB27781). The CCS

of at least five passes yield similar error rates as 454 or

MiSeq sequencing platforms [68, 69]. The CCS reads were

quality filtered in Mothur (v.1.35.0) [70]. Quality reads

were demultiplexed based on the barcode-primer sequences

using flexbar [71]. De novo chimera detection was per-

formed on quality reads using UCHIME [72]. To avoid

unwanted multi-primer artifacts, we deleted reads where

full-length sequencing primer was detected within the read

[73]. We clustered the quality sequences into operational

taxonomic units (OTUs) at ≥98% sequence similarity with

the UPARSE series of scripts [74]. Reads were de-repli-

cated, and single-count and chimeric sequences were

excluded for OTU delineation. The OTUs of low abundance

(<0.1% global abundance and less than 0.5% abundance

within a specific sample) were removed from the dataset

(Figure S3). We normalized the OTU table by rarefying to

1000 reads per sample. On average 357 OTUs were found

per site and a total of 837 OTUs for all 60 sites. The OTUs

were classified taxonomically against the UNITE database

[75]. The OTU and taxonomy tables were filtered to

exclude OTUs classified as nonfungal.

Statistical analyses

Alpha diversity indices such as OTU richness, Sheldon

evenness and Shannon–Weaver index were calculated from

the rarefied fungal OTU table using the phyloseq package

[76] in R v3.4 [77]. The effect of farming systems and

wheat varieties on fungal community structure was assessed

by performing PERMANOVA and canonical analysis of

principal coordinates with 999 permutations in PRIMER-E

(PRIMER-E, Plymouth, UK). Fungal beta-diversity patterns

were only assessed on OTUs that were present in at least

two samples. Homogeneity of multivariate dispersions was

checked with the PERMDISP test using the Bray–Curtis

similarity matrix in PRIMER. We also identified the indi-

cator taxa for each farming system using the ‘multipatt’

function in the indicspecies package in R [78]. Funda-

mentally, this analysis is based on two species traits:

exclusivity (exclusively present in a habitat) and fidelity

(present in all samples of that habitat) [79]. An indicator

value is calculated based on these traits to assess the extent

to which a species is indicator of a habitat.

Co-occurrence patterns in fungal communities were

assessed by performing network analysis using the maximal

information coefficient (MIC) scores in MINE statistics

[80]. MIC is an insightful score that reveals positive,

negative, and nonlinear associations among OTUs. Network

analysis was performed on the same set of OTUs as testing

for the beta-diversity i.e., only OTUs that were present in at

least two samples were included, resulting in 822 OTUs.

The overall meta-network was constructed with 60 samples,

whereas the three farming-specific networks were con-

structed with 20 samples each. The MIC associations were

corrected for false discovery rate (FDR) [81] and the final

networks were constructed with relationships that were

statistically significant (P < 0.05) after FDR correction. The

networks were then visualized in Cytoscape version 3.4.0

[82]. The NetworkAnalyzer tool was used to calculate net-

work topology parameters. Nodes (e.g., the fungal OTUs in

this study) are the fundamental units of a network, while

edges represent the connections or links between the nodes.

Thus, degree represents the number of edges connected to a

node. Clustering coefficient reflects the higher connected-

ness among nodes in a particular region of a network,

whereas the shortest path indicates how quickly information

can travel between two nodes [83]. Network diameter is the

largest distance between two nodes of a network. We also

evaluated networks against their randomized versions using

the Barabasi–Albert model [84] available in Randomnet-

works plugin in Cytoscape v2.6.1. Nodes in a random

network may have the same number of degrees, resulting in

a Poisson distribution. On the other hand, nonrandom net-

works are scale-free i.e., degree distribution shows a power-

law tail with some nodes showing higher degrees than the

rest [83]. Indeed, the structural attributes of root fungal

networks such as degree distribution, mean shortest path,

clustering coefficient were different from random networks

with an equal number of nodes and edges. The OTUs with

the highest degree and highest closeness centrality, and the

lowest betweenness centrality scores were considered as the

keystone taxa [48]. Closeness centrality is based on the

average shortest paths and thus reflects the central impor-

tance of a node in disseminating information [85]. On the

other hand, betweenness centrality reveals the role of a node

as a bridge between components of a network. For the

overall network, OTUs with degree greater than 50, close-

ness centrality higher than 0.44, and betweenness centrality

lower than 0.12 were selected as the keystone taxa. For

farming-specific networks, OTUs with degree higher than

10, closeness centrality higher than 0.28, and betweenness

centrality lower than 0.18 were selected as the keystone

taxa. We chose a single set of cut-off values for consistent

comparison across farming-specific networks. We also

calculated the proportional influence of various fungal

orders in network structure by dividing the number of nodes

belonging to a particular order by the number of connec-

tions (edges) it shared. This was based on the assumption

that topological parameters have a direct influence on net-

work structure [39]. We assessed the difference between

farming-specific networks by bootstrapping node attributes

(degree, between centrality, and closeness centrality) with
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10,000 iterations. We then performed the two-sample Kol-

mogorov–Smirnov test to compare node attributes between

farming systems using the ks.test function inbuilt in the stats

package in R. Kolmogorov–Smirnov test compares the

overall shape of the cumulative distribution of two variables

where the null hypothesis is that the variables have same

distribution patterns. For each network, node attributes were

computed by bootstrapping approach with 10,000 iterations.

Moreover, to compute node attributes for each farm, we

used the subgraph function in the igraph package [86].

Finally, we performed random forest analysis to explore

the determinants of the identified keystone taxa. Random

Forest is a powerful machine learning tool that offers high

prediction accuracy by using an ensemble of decision trees

based on bootstrapped samples from a dataset [87]. It is a

nonparametric and nonlinear statistical method that does not

have prior distributional assumptions. The portion of dataset

drawn into a sample is called in-bag data, whereas the data

not drawn is termed as out-of-bag data [88]. Trees are fully

grown to predict the out-of-bag data and the importance of a

specific predictor variable is obtained by randomly per-

muting the values of that variable for the out-of-bag data

and calculating increase in the mean squared error. Each

node of a decision tree is associated with a subset of random

data points from the original dataset and thus, increase in

node purity (which is basically decrease in node impurity or

misclassification rate) indicates the importance of a pre-

dictor variable. Random forest analysis was performed with

999 permutations using the randomforest and rfPermute

packages [89]. The best predictors were identified based on

their importance using the importance and varImpPlot

functions. Increase in node purity and mean square error

values were used to determine the significance of the pre-

dictors using the randomForestExplainer package [90]. The

factors significant at P < 0.01 were selected as the predictors

of keystone taxa.

Results

Overall structure and co-occurrence

Alpha diversity indices of root fungal communities did not

vary significantly between the conventional, no-till, and

organic systems (Fig. 1a-c). This was also true for the

overall taxonomic composition (Fig. 1d). However, farming

systems significantly influenced the root fungal community

structure with three distinct clusters for organic,

Fig. 1 Alpha diversity indices

and community composition of

root fungal communities across

conventional (Conv), no-till

(NT), and organic (Org) farming

systems. OTU richness (a),

Sheldon evenness (b), and

Shannon–Weaver index (c) were

calculated from the rarefied

fungal OTU table. Same

lowercase letter indicates no

statistically significant (P < 0.05)

difference between farming

systems. d Stacked bar chart

showing the relative abundance

of various orders of wheat root

fungal communities

1726 S. Banerjee et al.



conventional, and no-tillage fields (Fig. 2a). A PERMA-

NOVA test also confirmed the significant effect of farming

systems (pseudo F= 1.42; P < 0.05; explained variation=

4.17%). A nonsignificant PERMDISP test (F= 2.072; P=

0.202) indicated homogenous dispersions of samples across

systems. Further, a pairwise comparison in PERMDISP

revealed that there was no significant difference in disper-

sions between organic and conventional (F= 1.068; P=

0.372), and organic and no-till (F= 0.870; P= 0.435). We

found no impact of wheat varieties on community structure

and this was reinforced by a nonsignificant PERMANOVA

test (Pseudo F= 0.972; P= 0.595) (Figure S4). However,

geographical locations i.e., northeast and southwest regions

had an impact on root fungal community structure (Fig-

ure S5). Indicator species analysis was performed to test

which taxa are characteristic for each of the three farming

systems. Root inhabiting Trichoderma, a member of

Hypocreales, was the only indicator taxon for conventional

farming system, whereas seven fungal taxa (e.g., Cyphel-

lophora, Myrmecridium, Phaeosphaeria, Cadophora, Pyr-

enochaeta, Solicoccozyma, and Conocybe) were the

indicator taxa for no-till farming (Table S1). Six taxa of

Sordariales, Cantharellales, and Agaricales were indicator

taxa for organic farming with Chaetomium and Psathyrella

as the only known genera.

The overall network of root fungal communities in

60 samples revealed distinct co-occurrence patterns

(Fig. 2b). The meta-network consisted of 378 nodes and

1602 significant (P < 0.05) edges. This network with strong

power-law distribution of degrees had a diameter of 8,

average number of neighbors of 8.476, and a clustering

coefficient of 0.258. For the overall network, eight of

keystone taxa belonged to arbuscular mycorrhizal orders

Glomerales, Paraglomerales, and Diversisporales, and the

remaining five belonged to Tremellales, Malasseziales, and

Cantharellales (Table S2). Indeed, the majority of the

associations were from these four orders with Glomerales

forming the largest guild with the maximum number of

nodes and associations in the network. Overall, farming

systems significantly affected fungal community structure

with mycorrhizal orders playing a major role in the network

complexity as measured by the number of edges, the

average number of neighbors, and the clustering coefficient.

Farming-specific co-occurrence networks

Owing to the significant difference in fungal community

structure across three farming systems, we further evaluated

root fungal networks for each farming system separately. The

networks displayed remarkable differences in their structure

and topology (Fig. 3). The network of conventional farming

consisted of 261 nodes (e.g., taxa) and 315 edges (associations

between taxa), while the no-till network consisted of 267 nodes

and 341 edges. In stark contrast, the organic farming network

consisted of 301 nodes and 643 edges. The average number of

neighbors and the clustering coefficient of the organic farming

network were also considerably higher than for the other two

networks (Fig. 3). The higher complexity and connectivity in

Fig. 2 a Canonical analysis of principal coordinates (CAP) revealing a

significant impact of farming systems on fungal community structure.

b The overall network of root fungal communities across three farming

systems. The overall network is arranged according to orders. White,

red, and wavy lines represent positive, negative, and nonlinear rela-

tionships, respectively. Large diamond nodes indicate the keystone

taxa in the network. Top ten nodes with the highest degree, highest

closeness centrality, and lowest betweenness centrality were selected

as the keystone taxa. Out of the ten keystone taxa in the overall net-

work, seven belonged to mycorrhizal orders, Glomerales, Para-

glomerales, and Diversisporales
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the organic farming network were supported by the abundance

of keystone taxa. The organic farming network harbored 27 of

such keystone taxa compared to two in the no-till network and

none in the conventional one (Fig. 3; Table S3). The majority

of these keystone taxa belonged to the orders Glomerales,

Tremellales, and Diversisporales with a noticeable presence of

taxa from the orders Paraglomerales, Sebacinales, and Hypo-

creales. To explore the importance of keystone taxa for the

higher network complexity in organic farming, we constructed

the organic network without including keystone OTUs. The

organic network devoid of any keystone taxa was much sim-

pler and was similar to the conventional and no-till networks

(Figure S6).

Higher connectivity in the organic farming network was

visible in the distribution of degrees, which indicates the

number of associations shared by each node in a network

(Fig. 4). The organic farming network had a much stronger

power-law distribution than the conventional and no-till

ones, despite the similar node distribution across root fungal

orders (Figure S7). We calculated the proportional influence

of various orders in the microbiota by dividing the number

of nodes belonging to a particular order by the number of

connections (edges) it shared. It revealed the orders that

exhibited maximum connections across three farming sys-

tems and thereby influence the network structure. Various

orders exhibited considerable differences in their propor-

tional influence in the complexity of root microbiota. Orders

such as Sordariales and Agaricales showed a major

influence in the conventional network structure, and Sor-

dariales, Cantharellales, and Mortierellales in the no-till

network. In addition to Tremellales and Hypocreales, three

mycorrhizal orders Glomerales, Paraglomerales, and

Diversisporales showed a major influence on network

complexity under organic farming. Overall, the organic

farming network formed a much more complex network and

harbored more keystone taxa than the other two farming

networks.

Drivers of keystone taxa

Agricultural intensity was significantly (P < 0.05) different

across three farming practices with conventional being the

most intensive and organic the least intensive system

(Fig. 5a). This trend was opposite for network connectivity

as represented by the node degree across three farming

practices (Fig. 5b). Network bootstrapping revealed that the

network connectivity in organic fields was significantly (P

< 0.05) higher than the conventional and no-till ones. Kol-

mogorov–Smirnov test showed that node degree, between-

ness centrality, and closeness centrality were significantly

(P < 0.01) different between the three framing systems

(Table S4). Moreover, network connectivity was inversely

proportional to agricultural intensity index (R2
= 0.366; P <

0.0001; Figure S9). The number of keystone taxa was also

higher (27) in the organic farming network than the no-till

(2) conventional (0) networks. Random forest analysis

Fig. 3 Farming system-specific root fungal networks. Each network

was generated with root samples collected from 20 farmlands

belonging to that farming system. The number of nodes, number of

edges, average number of neighbors, and clustering coefficient is given

below the specific networks. Large diamond nodes indicate the key-

stone taxa, whereas circular nodes indicate other taxa in the network.

White, red, and wavy lines represent positive, negative, and nonlinear

relationships, respectively. Despite having similar number of nodes,

the organic network displayed twice more edges and many highly

connected nodes than no-till and conventional networks that were

dominated by less connected peripheral nodes
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revealed that soil phosphorus content, bulk density, pH, and

mycorrhizal colonization best explained (P < 0.01) the

occurrence of keystone taxa (Fig. 5c). Most of these para-

meters were also significantly (P < 0.05) correlated with the

alpha-diversity indices, indicating their importance for the

overall root fungal communities (Table S5). The majority of

keystone taxa belonged to mycorrhizal orders, and mycor-

rhizal colonization of wheat roots was significantly (P <

0.01) higher in the organic fields than in the conventional

and no-till fields (Figure S8). Consistent with this, the

abundance of mycorrhizal PLFA in soil was also sig-

nificantly (P < 0.01) higher in the organic compared to the

conventional fields. Agricultural intensity had a sig-

nificantly negative impact on mycorrhizal colonization in

roots and the abundance in soils (Fig. 5d). Taken together,

the root fungal network complexity, abundance of keystone

taxa and mycorrhizal abundance showed an opposite trend

to that of agricultural intensification across farming systems.

Discussion

It is now well established that root-associated microbiota

plays an important role in plant diversity, community

composition, and performance [24, 35, 58, 91]. Conse-

quently, it is important to understand how microbial com-

munities harbored inside crop roots are affected by

agricultural practices and how key microbial players can be

targeted for ecological intensification of agroecosystems

[5]. However, with much of the previous work only

focusing on the soil microbiota, our understanding of the

effects of farming systems on root-associated microbiota is

still rudimentary. Moreover, previous studies mostly

focused on microbial alpha- and beta-diversity patterns, and

the impact of different farming systems on microbial net-

work structure is poorly understood. Here we show that

wheat roots under different farming systems harbor distinct

fungal communities and with varying network complexity.

Fungal network complexity of organically managed fields

was almost twice as high under conventional and no-till

farming practices. Moreover, network connectivity was

negatively associated with agricultural intensification.

Our finding that the overall structure of root microbiota

influenced by farming systems is in agreement with studies

on the soil microbiome where a large number of reports

showed a significant impact of farming systems [6, 20–22,

92, 93]. It should be noted that most of these studies

investigated microbial communities in agronomical context

and were performed in field-trials [20–22, 32]. While a

major strength of field-trials is that farming treatments are

imposed under homogenous management and at one loca-

tion with a specific soil type, management effects on

microbial patterns may be different in actual farmlands and

thus the results obtained at one location may not be

Fig. 4 Proportional influence of

various fungal orders in

affecting the complexity of root

microbiota (left panel). The

influence was calculated by

diving the number of nodes

belonging to a particular fungal

order by the number of

connections (edges) it shared. It

illustrates the orders that exhibit

maximum connections across

farming systems and thus

influences network structure

most. Distribution of degrees in

three farming systems (right

panel with three plots). Degree

indicates the number of

associations shared by each node

in a network. In conventional,

farming, the number of degrees

was limited to a maximum of 12

compared to the no-till network

that had a maximum of 22

degrees. On the other hand,

organic farming had many nodes

with over 20 degrees
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generalized. We report the impact of farming practices on

root microbial community characteristics in on-farm

research and across many fields at a regional scale.

Microorganisms do not thrive in isolation and rather

form complex association networks. Such networks hold

special importance for gaining insight into microbiome

structure and its response to environmental factors [25, 42,

43, 47, 51]. Our study highlights how farming practices

impact the network structure of root microbiota and

uncovers that organic farming harbors a significantly more

complex network with many highly connected taxa (nodes)

than the conventional and no-till farming. It has been shown

that complex networks with greater connectivity are more

robust to environmental perturbations than simple networks

with lower connectivity [94]. In this sense, the higher

complexity of organic networks may indicate that the root

microbiota under organic management is more resilient to

environmental stresses as different taxa can complement

each other. However, further studies are necessary to cor-

roborate this observation.

Keystone taxa are the highly connected taxa that play

important roles in the microbiome and their removal can

cause significant changes in microbiome composition and

functioning [48, 50]. Although previous studies have reported

keystone taxa in various environments [34, 45, 95], reports on

keystone taxa in the root endophytic microbiota are very

limited. The organic farming network exhibited by far the

highest connectivity and comprised most of the keystone taxa.

It should be noted that fungal richness did not vary sig-

nificantly between the farming systems nor did the number of

Fig. 5 a Agricultural intensity index across conventional (Conv), no-

till (NT), and organic (Org) farming systems. Agricultural intensity

index was estimated using information on three anthropogenic input

factors: fertilizer use, pesticide use, and the consumption of fuel for

agricultural machineries. Different lowercase letters indicate statisti-

cally significant (P < 0.05) difference between farming systems. b

Network connectivity as represented by node degrees for individual

farms calculated by subsetting the networks of three farming systems.

Different lowercase letters indicate statistically significant (P < 0.05)

difference. c Results of random forest analysis showing the relative

contribution of various factors in determining the abundance of key-

stone taxa. The mean squared error (MSE) indicates the prediction

accuracy of each factor. The top (P < 0.01) five drivers were total

phosphorus, plant available phosphorus (Olsen P), AMF root coloni-

zation, pH, and bulk density. d Relationship between agricultural

intensification and mycorrhizal root colonization. Agricultural inten-

sification had a significantly (P < 0.01) negative impact on the root

colonization of AMF. Agricultural intensity was the highest under

conventional farming and the lowest under organic farming, which

was opposite for the AMF colonization
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nodes across farming-specific networks, and yet we observed

a clear difference in the network structure and number of

keystone OTUs. Moreover, the abundance of keystone OTUs

did not vary between the three farming systems but these

OTUs shared considerably more associations in organic

farming (Figure S10). The organic network without the key-

stone OTUs was similar to the conventional and no-till net-

works, highlighting the importance of these members for

network complexity. Our observations indicate that micro-

biome complexity is not necessarily determined by the

number of taxa in the community, but rather the number of

associations that those taxa share amongst them.

The majority of these keystone taxa were AMF belonging

to the orders Diversisporales, Glomerales, and Para-

glomerales. The symbiotic association of AMF that started

more than 400 million years ago is formed by ~80% of ter-

restrial plants [36, 96]. The observation that AMF can

enhance plant productivity [97] make them a crucial player in

agroecosystems. The importance of AMF for the root-

associated microbiota, particularly under organic farming, is

congruent with the higher abundance of AMF in roots and

soils observed in the organic farmlands in this study (Fig-

ure S8). While previous studies also found significantly

higher AMF abundance and diversity in organic farmlands

than in the conventional ones [98, 99], the important role of

AMF for the root fungal network structure is reported here.

One of the nonmycorrhizal keystone taxa in organic farming

belonged to the order Sebacinales. Members of this order are

highly diverse root endophytes and are thought to form

neutral and beneficial interactions with plants [100]. Our

observation of Sebacinales as keystone taxa is consistent with

a previous report that found a consistently higher abundance

of Sebacinales in organic farmlands [31]. Since keystone taxa

are linked to network complexity, beneficial endophytic

keystone taxa such as AMF and Sebacinales may enhance the

network connectivity and thereby the complexity of the root

microbiome. Several other keystone taxa in the overall and

organic networks belonged to the order Tremellales. This

widespread group of Basidiomycetes contains many yeast

species and have been reported in plant roots in temperate

regions [101]. Members of this fungal order were also

recently found as keystone taxa in the root microbiome across

eight forest ecosystems in Japanese Archipelago [53]. Inter-

estingly, we found that two of the keystone taxa (OTU_10,

OTU_11) were members of the Dioszegia genus, which was

also found as keystone by Agler et al. [51]. It was shown that

the effect of abiotic factors on microbiome was mediated via

Dioszegia in Arabidopsis thaliana. The consistent identifica-

tion of Dioszegia as a keystone taxon across studies suggests

its importance and highlights a potential that it can be har-

nessed for manipulation of the plant microbiome. Future

studies are now needed to specifically manipulate this group

to test how it influences microbiome composition and

functioning. There were no common fungal groups between

indicator taxa and keystone taxa. It should be noted that

indicator taxa are identified based on their exclusive abun-

dance (exclusivity) in all samples (fidelity) under a particular

habitat [79], whereas keystone taxa are identified using a

network algorithm that focuses on the number of associations

an OTU shares and its position in the microbiome [48]. Thus,

indicator taxa and keystone taxa reflect two different micro-

bial indices that target different members in the community.

An important question is how do farming practices and

land use intensity affect the structure and network complexity

of the root endophytic fungi? We speculate that there might

be two underlying mechanisms: the assembly of fungal

members in the soil, and their recruitment and colonization of

the plant root. It is well known that farming practices affect

the quality and quantity of important soil nutrients such as

carbon, nitrogen, and phosphorus [6, 8, 102, 103]. Reduced or

no-tillage can also alter the bulk density in the topsoil with

subsequent impact on the root architecture and elongation

[28]. These factors can modulate the assembly and evolution

of microbes in the soil [29, 104–106], thereby affecting

microbial recruitment into the root. Indeed, we found soil

phosphorus levels, bulk density and also pH to be the deter-

minants of keystone taxa, which are linked to network com-

plexity. The majority of keystone taxa were mycorrhizal in

nature, and phosphorus is well acknowledged for its impor-

tance for mycorrhizal associations [107]. Similarly, soil pH is

a known driver of fungal communities in soil, especially,

mycorrhizal fungi [108, 109]. Thus, the identification of soil

characteristic as the determinants of keystone taxa indicates

the importance of recruitment as a driver of network com-

plexity of the root endophytic microbiota.

Once recruited inside the plant body, microbial adapta-

tion and survival will depend on the host physiological

patterns [26, 58, 110]. Farming practices may also influence

crop physiological responses via water and nutrient avail-

ability, and pesticide application [103, 111, 112], which can

affect the maintenance of endophytic microbes inside the

plant body. For example, it is known that crops are able to

reduce carbon allocation to mycorrhizal fungi when grown

under high nutrient availability due to agricultural intensi-

fication [29]. Host genotypes may also affect plant phy-

siological responses and endophytic microbiota, although in

this study, we did not find a clear link between wheat

varieties and root fungi. However, our field sites had dif-

ferent wheat varieties growing, and whether or not host

genotypes influence root fungal community structure would

require a site-specific experiment with multiple varieties

growing under one field condition, which was beyond the

scope of this study. Previous studies also found that soil

conditions had a stronger effect on root fungal communities

than host species, while the opposite was true for bacterial

communities [113, 114]. Such mixed results highlight the
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complex nature of plant–microbe interactions [115] and the

need for further research targeting the factors influencing

crop endophytic microbial communities under different

farming practices. Moreover, soil and plant sampling in this

study were only conducted for one year, and thus repeated

sampling would be the next step to assess the temporal

consistency and predictability of these findings.

While the exact drivers of network complexity of root

endophytes remain unknown, it is possible that nutritional

status, tillage, manure application, and the absence of pesti-

cides might have created unique environments in each of the

three farming practices, potentially influencing the assembly

of fungi in the soil and their recruitment into the plant root.

Large amounts of chemical fertilizers in the conventional

farming system may foster fast-growing (r-strategists)

microbes without strong selection pressure for any particular

taxa and thus, creating a more random assemblage. In contrast,

the application of organic amendments with lower immediate

resource availability may act as a selective force on the

assembly of fungal communities, promoting slow-growing (K-

strategists) microbes [116]. It is possible that microbial

communities under organic farming may be dominated by the

K-strategists that establish themselves slower and have a

higher chance to coevolve. For such microbial communities

occurring under resource-limited conditions, microbial coop-

eration may be more important for survival. Cooperation

requires a high degree of connectivity, leading to networks

with higher complexity. Microbial communities with higher

network complexity may thus be more common under

extensive management where inputs are low and resources are

limited, which accords with a recent study on grasslands [47].

The number of keystone taxa was indeed the highest under

organic farming where agricultural intensity was the lowest,

and we also found a significantly strong negative association

between agricultural intensification and network connectivity.

Nonetheless, it should be noted that microbial taxa associating

in a co-occurrence network may not be due to their actual

interaction [41, 117]. Furthermore, we only considered root

fungi in this study, and a microbiome comprises bacteria,

archaea, and other members, the inclusion of which is

necessary for gaining insight into root microbial network

structure. It is also important to mention that identification of

keystone taxa are based on the analysis of correlations

(associations) among taxa, and further research is necessary to

show the causality, in terms of the impact of keystone taxa on

microbiome structure and functioning.

Conclusions

The structure and composition of root microbiota play an

important role in agroecosystems and yet there is a

significant dearth of knowledge about the effect of agri-

cultural intensification on the root microbiota. van der

Heijden and Hartmann [106] highlighted the importance of

network structure for the functioning of plant microbiomes

while Banerjee et al. [49] recently summarized keystone

taxa from various environments to emphasize their impor-

tance for microbiome structure and functioning. The present

study builds on and extends this conceptual framework to

demonstrate that the agricultural intensification has a

negative influence on root fungal network structure and the

abundance of keystone taxa. Our study shows that the

network connectivity and the abundance of keystone taxa

were the highest under organic farming where agricultural

intensity was the lowest. The higher co-occurrence of

members of microbial communities under organic farming

may be indicative of greater ecological balance and com-

plexity of the microbiome, which might be more resilient to

environmental stresses. A key strength of this study is that

the samples were collected from 60 farmlands and the

reported effects can be generalized because samples

were taken from an extensive range of fields at

different locations with different management regimes. The

recent concept of smart farming (Wolfert et al. [118])

emphasizes thinking outside the box. The potential for

harnessing plant microbiome for sustainable agriculture was

also highlighted recently [119]. Mycorrhizal fungi are well

regarded for their effects on plant productivity, and thus

mycorrhizal keystone taxa may be targeted as a tool for

smart farming.
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