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Abstract: Accurately detecting early developmental stages of insect pests (larvae) from off-the-shelf
stereo camera sensor data using deep learning holds several benefits for farmers, from simple robot
configuration to early neutralization of this less agile but more disastrous stage. Machine vision tech-
nology has advanced from bulk spraying to precise dosage to directly rubbing on the infected crops.
However, these solutions primarily focus on adult pests and post-infestation stages. This study sug-
gested using a front-pointing red-green-blue (RGB) stereo camera mounted on a robot to identify pest
larvae using deep learning. The camera feeds data into our deep-learning algorithms experimented
on eight ImageNet pre-trained models. The combination of the insect classifier and the detector
replicates the peripheral and foveal line-of-sight vision on our custom pest larvae dataset, respectively.
This enables a trade-off between the robot’s smooth operation and localization precision in the pest
captured, as it first appeared in the farsighted section. Consequently, the nearsighted part utilizes our
faster region-based convolutional neural network-based pest detector to localize precisely. Simulating
the employed robot dynamics using CoppeliaSim and MATLAB/SIMULINK with the deep-learning
toolbox demonstrated the excellent feasibility of the proposed system. Our deep-learning classifier
and detector exhibited 99% and 0.84 accuracy and a mean average precision, respectively.

Keywords: agricultural robotics; classification; deep-learning; detection; fall armyworm

1. Introduction

Farmers suffer annual damage of over 35–40% from insects, plant pathogens, and
weed pests [1,2]. Studies show that 94% of all known insect species are harboured outside
water [3], and 70% of some insect families live in the soil before taking to the air as adults [4].
Thus, many pests and insects that infest plants already exist on farms, either as insects in a
diapause state or as residue transmitted from the immediately previous planting. While
monocropping is at a higher risk of infestation, multi-cropping systems are not entirely
immune, especially to pests that infest various crops. For instance, the fall armyworm
(FAW) does not require diapause; however, as FAW has over 40 crops in its diet, farmers
must have diverse knowledge to prevent their growth in previous harvests. Preventing this
problem can help save sufficient food to feed more than 3–4 billion people worldwide [1,2].
One of the methods to mitigate these potential infestations is using natural enemies, such
as birds, which feed on insect pests effectively during land preparation for subsequent
planting. Unfortunately, the chemical usage history of farms has endangered their lives
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and hampered the eco-friendly effectiveness of these natural enemies. Because of their
bulk efficacy, methods based on chemical application are the most popular in practice.
However, a direct consequence of their extensive and imprecise use is an imbalance in
the ecosystem [5,6].

Over the years, smart off-the-shelf robotic sensor selection with improvements in
machine vision techniques has been strongly associated with incremental progress towards
reducing the use of chemicals in farming [7], from spraying through precise dosing to
directly rubbing pesticides and herbicides onto the infected crops [8–13]. Functional
agrobots [14–16] pioneering these advancements exhibit low versatility. Consequently, they
cannot be utilized for chasing fast-moving (flying, crawling, or hopping) insects, spotting
all types of insect pests in any background or lighting, and precisely neutralizing insect
pests to perfection by spraying a chemical.

Due to the poor adaptability of agrobots and the less agile insect pest stage, this work
suggests employing an off-the-shelf RGB stereo camera with deep learning to identify
insect pest’s larva stage to avoid chasing after adult insects. This shift in the hunting
timeline is also because the damage caused by some of these insect pests during their
early developmental stages exceeds that caused during their adult stages. As a result, as
a step toward robust all-pest recognition at the larva stage, a dataset containing images
of FAW at the larva stage was gathered, and a deep-learning insect classifier and detector
model were trained. These two deep-learning algorithms model human peripheral and
foveal line-of-sight vision mechanisms as a trade-off between computational speed and
accuracy because current deep-learning classifier models are typically less computationally
intensive than deep-learning detector models. This means that after several streams of
inferences on the classifier model have signalled the presence of an insect roughly, the
insect detector model is only employed for the accurate localization of the appropriate
robot’s insect pest neutralization mechanism. The RGB stereo camera sensor adopted is
suggested to be mounted at the front of a robot to provide the data for the deep-learning
models and insect pest localization estimation.

Therefore, this study presents a robot-centred early developmental stage of insect
pests recognition by combining deep-learning object classification with detection for a
proper neutralization of harmful agricultural insect pests and, consequently, with a reduced
chemical footprint. Hence, the significant contributions of this study are as follows: First,
an opensource dataset for the early developmental stage of insect pest, FAW, in this case.
Second, accurate larvae stage insect pest recognition (classification and detection) models
based on deep-learning, in contrast to hand-engineered classical object detection. Finally,
the bioinspired vision system for robots eliminates the need for them to halt frequently
before detection.

This paper is divided into five sections. Following the introduction in Section 1, a
brief insight into related studies is presented in Section 2. The methodology of the re-
search is introduced in Section 3, which briefly describes the data source, adopted sensor,
deep-learning classification, detection architecture, and details of the proposed early devel-
opmental stage recognition mechanism for robot. Section 4 discusses the results obtained
from the vision architecture, and cosimulation with the robot model in CoppeliaSim and
MATLAB/SIMULINK with deep-learning architectures. Finally, Section 5 presents the
conclusions and recommends possible directions for future studies.

2. Related Works

Since immemorial, pests, insects, and plant pathogens have been causing havoc on
farms. Despite much research directed toward developing different traditional control
methods, early-age farmers still get over 35% of all annual sustenance devastated by these
agents [2], directly or indirectly. These methods include agricultural, physical, organic,
chemical, and biological [17]. Modern pest management methods have become more
pertinent as some traditional methods affect the ecosystem and, most importantly, the
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health of its inhabitants. This section presents trends adopted for sensor data processing
toward minimizing chemicals in farming for robot-based agricultural insect pest control.

Prior primitive robotic insect pest control results utilize mobile robots for the bulk
spraying of pesticides without prior detection [18]. This technique saves farmers from
direct chemical contact; however, the robot’s capability was limited to only keeping farmers
on the farms safe (either in greenhouses or open fields). The need to protect the entire
planet from the effects of agricultural chemicals increases as the crop are destruction caused
by insect pests is kept under control. Recent study findings intelligently link smart off-
the-shelf sensor choices with efficient algorithms to handle the data. In [19], classical
computer vision algorithms such as multi-template matching and the contour extraction of
RGB camera images are employed on an agrobot to detect Pyralidae insects. In particular,
a hyperspectral image sensor with partial least squares-discriminant analysis produced
results for pest and disease detection in the laboratory and field as 66.4% and 59.8%,
respectively. This sensor was created for an agricultural robot platform with a wide array of
sensors [20]. Linear and quadratic discriminant analysis and support vector machines were
also experimented on, but they are required to attain precision. Lucet et al. [21] proposed
a mobile robot for pesticide-free aphid crop pest control with a ZED mini RGB-D sensor;
this sensor provides stereo camera images for the YOLOv4 trained on a unique aphid
dataset. Upon detection on the 2D RGB image (XY), the ZED mini SDK is used to localize
the aphid pest approximately in 3D space (XYZ), allowing visual serving control to guide
the proposed laser-based neutralization precisely. Meshram et al. [22] present a thorough
analysis of sensing, target detection, and pesticide spraying for agrobots.

Detecting insects is quite challenging, considering their tiny sizes for detection algo-
rithms and their agility at the adult stage for precise neutralization. Lucet et al. [21] also
experimented with stereo sensor mount distances from ground and output image size
sub-sampling to arrive at <30 cm and 800 × 800 pixels in 4 or 16 sub-parts for 0.73 sensi-
tivity, respectively. Consequently, some researchers have employed an indirect method
for controlling insects by limiting the growth of weeds on farms. Weeds are known to
breed both beneficial and nonbeneficial [23] insects. To minimize chemical usage, ref. [8]
applied image and spectral analyses to differentiate weeds from crop plants to precisely
dose herbicides on different weeds. Similarly, ref. [9] directly applied further reduced
chemical usage to the vascular tissue of weeds by using the robot’s end-effector to cut
the weed stems and wipe the chemicals on its cut surface. Moreover, ref. [10] developed
a classical computer vision algorithm for spraying the pest-affected regions of plants
in a greenhouse.

Obviously, the effectiveness and efficacy of the recently proposed approaches were
strongly coupled with the advancements in vision algorithms. Recent advances in deep-
learning-based object detection have proposed frameworks in two broad categories: one-
stage detectors, such as you only look once (YOLO) [24] and its derivatives [25–27], and
two-stage detectors, such as region-based convolutional neural networks (R-CNNs) [28],
and their variants [29–31]. These categories have introduced new techniques and strategies
to achieve good tradeoffs between speed and accuracy.

Alvaro et al. [32] presents a robust deep-learning-based detector for the real-time
recognition of tomato plant diseases and insect pests on the farm using three main detectors:
faster R-CNN, the region-based fully convolutional network (R-FCN), the and single-shot
multibox detector (SSD) with varieties of base networks as feature extractors. These
proposed techniques can effectively recognize nine diseases and insect pests under complex
farm scenarios. Ard et al. [33] also used the faster R-CNN for detecting and counting insects
on yellow sticky traps in tomato crops. Similarly, ref. [34] applied the Yolo-V3 model using
image spatial pyramid pooling as the multiscale feature detection on a custom-built tomato
disease and insect pest dataset. Their detection results show accurate and quick localization
and categorization of diseases and insect pests of tomatoes in the real natural environment.
The recognition of rice plant diseases and insect pests has also been performed using a deep
CNN and evaluated on both still images [35] and video streams [36] with decent accuracy
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and speed. Deep CNN is a data-oriented technique in which many researchers augment
their local source insect dataset by sourcing online images for robustness and better model
generalization. Wang et al. [37] investigated ten insect pests mainly affecting tea plants
with images sourced online, one of which was the Spodoptera exigua larva. Likewise, ref. [38]
achieved 87% accuracy on the Caffe framework with an augmented dataset of paddy
(rice) pests and diseases sourced online. The DockWeeder project aimed at removing
a troublesome weed, called broad-leaved dock (Rumex obtusifolius L.), and deployed a
DockWeeder prototype robotic platform as a data collection platform for training deep
learning models [39,40]. Additionally, the deep-learning model results performed better
than their initial classical computer vision approach [41].

One common thing among the approaches mentioned above is that they either work
directly on the insects while aiming at reducing chemical usage or adopt an indirect
approach by working on weeds. As a result, we suggest employing a deep-learning-based
method to strategically hunt the insect pests’ larvae stage to serve as a means for simple
robot configuration. Similar to [21], we also suggested using an off-the-shelf stereo sensor
for deep-learning insect pest recognition and localization. The strategy takes the merit of the
robustness of two deep-learning algorithms, a deep-learning classifier and a deep-learning
detection model, to classify and detect insect pests at the early stage (i.e., larvae) during
preplanting, as well as to precisely provide localization for the agrobot to localize above
the insect pest to neutralize with any means that minimizes the quantity of chemicals to be
used. For instance, with precisions such as this, refs. [42,43] proposed using physical or
mechanical control methods, such as handpicking; vacuuming; modifying environmental
conditions, particularly heat and humidity in the case of greenhouses, solarization or steam
sterilization; and visual or physical deterrents for open fields.

3. Proposed Methodology
3.1. Site Location

This study sourced the insect pests from West Africa, specifically Southwest Nigeria
(8.1574° N, 3.6147° E). The chosen insect pest for the case study was the fall armyworm
(Spodoptera frugiperda). Fall armyworm insects pose a significant threat to agriculture and
are independent of any crop. This insect affects over 40 plant species [44] (Figure 1a shows
their lifecycle), ravaging Central and West Africa since early 2016. It almost invaded sub-
Saharan Africa within two years and was confirmed in the Asian region in July 2018. By
October 2019, the Asian region had included China, the Republic of Korea, and Japan.
Recently, Australia and the United Arab Emirates were included between January and May
2020. Figure 1b shows a detailed overview of the geographic distribution.

3.2. Data Collection and Image Sensors

In sourcing for this insect pest, strict adherence to the description established in [45]
was ensured, with close verification by professional entomologists and agriculturists.
Owing to seasonal limitations, we only collected 862 images and some videos of this insect
in different lighting, orientations, and backgrounds for the insect dataset. Many were taken
from farms, markets, and infested products using mobile phone cameras. These image data
are further preprocessed for the training of each deep learning technique.
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(a) (b)
Figure 1. Lifecycle and geographic distribution of proposed insect pest case study (fall armyworm).
(a) Lifecycle of fall armyworm [46]; (b) Geographic distribution as of May 2020 [47].

As previously noted, we proposed an off-the-shelf stereo camera as the data source for
the deep learning models of the insect pest larvae scouting robot. A stereo camera is one
of the sensors that provides means to localize objects in images in a 3D world frame. It is
an abridged model of human binocular vision using two or more cameras separated at a
certain baseline distance to create binocular disparity necessary to estimate the depth of ob-
jects in the captured image. For instance, given that some insect pests are present in the left
and right cameras of a stereo camera, a deep learning detector can produce corresponding
n bounding boxes for each detected insect pest (xL

n , yL
n , hL

n , wL
n) and (xR

n , yR
n , hR

n , wR
n ), respec-

tively. The potential 3D location of each insect pest in the world frame is Xn, Yn, and Zn.
Accurate camera calibration and vision correspondence are important to develop reliable
estimation. Many off-the-shelf stereo sensors, such as ZED series (StereoLABS Inc., San
Francisco), RealSense™ Depth camera series (Intel®, Santa Clara, CA, USA), and Bumblebee
2 FireWire (Flir, Santa Barbara, CA, USA) provide SDK/API for out-of-the-box 3D world
localization. Of course, custom pipeline implementation is also possible by choosing from
scholarly techniques [48,49]. For example, in this work, scale-invariant feature transform
(SIFT) and speed-up robust feature (SURF) algorithms [50,51] are experimented with for
the correspondence of vision, while the camera calibration adopted the use of ChArUco
marker approach [52].

A front-pointing RGB stereo camera with calibration is the suggested sensor for the
prospective agrobot; it produces a stream of frames of images from each angle. This stream
from the stereo camera was divided into two unequal sections: farsighted and nearsighted
(Figure 2). The farsighted section, fed into a deep-learning classifier, is referred to as the
peripheral vision; further, the nearsighted section, fed into the deep-learning detector, is
referred to as the foveal line of sight. This is a method adopted to allow a robot to classify
whether an object of interest (i.e., a harmful insect) exists in the view from afar while still in
motion by leveraging on the fact that objects captured by a front-pointing camera in the
direction of motion (of a forward moving robot) will first appear in the farsighted section.
Therefore, streaming the less computationally expensive deep learning classifier on the
farsighted section to determine when to initiate the execution of the deep learning detector
on the nearsighted section would be a fair trade-off between the robot’s smooth operation
and localization precision.

3.3. Proposed Robot-Centered Deep-Learning-Based Insect Pest Scouting Method

The proposed robot-centred insect pest recognition is modelled to scout for insects on
the farm by following farm implements to look out for exposed insect pests by taking ad-
vantage of the robustness of two trained deep-learning algorithms (deep-learning classifier
and detection models) while actively running the classifier and, subsequently, the detector.
This relative insect pest scouting method of the robot is inspired by the flocking of Bubulcus
ibis (cattle egret) around cattle and farm machinery to feed on insects during preplanting
operations (e.g., ploughing and harrowing). Although chemical activities on farms divert
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them away, this feeding technique has been shown to be 3.6 times more effective [53]
because many insects diapause underneath the soil to await favourable periods. Farm
equipment used in preplanting operations helps uncover insect larvae buried beneath the
earth. Thus, it allows farmers to get rid of potentially harmful insects at their early develop-
mental stages before actual plant infestation. Thus, the proposed system is recommended
to follow farm machinery during preplantation to optimally detect insect pests with the
data from the stereo camera mounted in front of a robot.

(a) (b)
Figure 2. Modelling of human vision mechanism as the proposed insect pest larvae recognition vision
mechanism. (a) Human vision mechanism. (b) Proposed robot vision mechanism.

Similar to the bioinspiration behind the proposed scouting technique of the robot, the
vision mechanism adopted for the proposed insect pest recognition was also bioinspired
by how humans use their eyes when looking for something specific. Humans do not stop
looking at everything; they only stop for explicit confirmation after some senses have voted
positively for a specific object. The human eye’s peripheral vision is blurry but hints at
what is in view. Foveal vision is a clear and precise view of the eyes (Figure 2). If any
specific object of interest is sighted in the peripheral view, the foveal view turns toward it.
Here, peripheral vision serves as the object’s classifier in view of actual recognition and
detection by foveal vision [54]. On a regular embedded device CPU, the deep-learning
detector can only achieve < 2 frames per second (fps), whereas the deep-learning classifier
can achieve up to 8 fps. Because the classifier can execute faster fps by drawing inspiration
from the human vision mechanism, the proposed technique is to scout harmful insects by
running a deep-learning insect classification while traversing the farm at a steady speed
(usually robot). Thus, any positive sensing from the classifier determines what catches the
robot’s attention for proper and precise detection with the deep-learning harmful insect
detector model. Our specific interest lies in the insects’ larvae stage.

This action leverages the fact that current classifiers are generally faster than current
detectors. If the object of interest is found, the robot stops to feed the nearsighted section
into the deep-learning detector to obtain bounding boxes, and the corresponding three-
dimensional (3D) position is estimated. A SIFT algorithm [50,51] was applied to ensure
the correspondence of each insect’s 3D position in both frames from the stereo camera.
The detector obtains the output positions with object correspondence, and the necessary
transformation factor can be applied to localize optimally above the insect pest to utilize the
appropriate neutralization method. After the neutralization of detected insects, the robot
platform continues to scour the farm for more insect pests. A detailed overview of this
process is shown in Figures 3 and 4, which show the flowchart of the whole workflow. The
stereo cameras are the left and right cameras, and (xL

n , yL
n , hL

n , wL
n) and (xR

n , yR
n , hR

n , wR
n ) are

their corresponding n bounding boxes detected by the insect detector, respectively. Xn, Yn,
and Zn are the locations of n number of insects detected with respect to the robot.
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Figure 3. Proposed deep learning-based robot-centered insect pest larvae recognition overview.

Figure 4. Proposed deep learning-based robot-centered insect pest larvae recognition flowchart.

3.4. Deep-Learning Architecture for Insect Pest Classification and Detection

Deep-learning classification is the trending state-of-the-art machine-vision technique
that gives the tendency of an image belonging to a particular class or category using
CNN. Given an input image, the artificial neural network associates the image with a
class label with a certain probability [55] (Figure 5). Deep CNNs typically comprise a
sequence of CNN layers, pooling layers, nonlinear activation layers, and fully connected
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layers (FC layers) (Figure 5). With a nonlinear activation function connecting each layer,
the convolutional layer convolves the learned kernels over the input image to generate a
feature map. During training, these kernels are jointly optimized using different optimizers,
ranging from simple stochastic gradient descent (SGD) [56] and RMSProp to ADAM [57].
These complexly convolved layers, with the final FC layer having a softmax layer, define the
deep CNN classification architecture. For example, AlexNet [55] contains five convolutional
layers, three max-pooling, and three FC layers. Each convolutional layer is followed by a
rectified linear unit (ReLU) [58], a nonlinear activation function.

Figure 5. Network architecture of deep-learning insect pest classifier, with emphasis on VGG19 as the
most accurate base network adopted for the farsighted section of the proposed recognition mechanism.

Herein, the approach adopted was transfer learning with a preloaded ImageNet
weight. Transfer learning deals with repurposing existing successful deep-learning models
by fine-tuning the model on a small dataset of the new class(es). Table 1 lists the experimen-
tal deep-learning classifier architectures with their respective pretrained weights initialized
for fine-tuning. While these architectures commonly use CNN layers with varying depths,
many implement unique interconnections, dimensionality reductions, and residual con-
nections. Note that GoogleNet proposed a 22-layer deep network with nine inception
modules. The architecture features a small network (inception module) within a larger
network [59]. In addition, one-by-one convolutional layers were used for dimensionality
reduction and feature aggregation. Inception V3 [60] is a CNN architecture that is 48 layers
deep by heavily using the deep interconnections of inception modules.

The ResNet architecture [61,62] introduces residual layers and skip connections to
solve the problem of a vanishing gradient, which may stop the weights in the network
from further updating or changing. ResNet50 and ResNet101 indicate 50 and 101 deep
layers, respectively. The SqueezeNet architecture utilizes the concept of a fire module,
which contains three filters of one-by-one-sized feed into an expanded layer (four filters
of one-by-one and three-by-three sizes) [63]. However, AlexNet [55] and visual geometry
groups (VGGs) [64] are not unique in their architecture. The only significant difference lies
in their depth. Figure 5 shows the two possible instances of our insect classifier taking in
only the farsighted section, both in the presence and absence of the insect. The in-between
is the most accurate base network used from the other tested pretrained architectures in
Table 1. To support our two classes of outputs, the current output layer is changed.
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Table 1. List of the ImageNet pretrained models optimized for feature extraction and insect classifiers.

Method Description

AlexNet [55] This architecture has a convolutional neural network that is eight layers
deep. It takes an input image size of 227 × 227 × 3.

GoogleNet [59] This model architecture is tiny compared to AlexNet and VGGNet. It
uses micro-architectures such as inception modules. The expected input
image size is 224 × 224 × 3.

Inception V3 [60] This model is a 48-layers-deep convolutional neural network. It has an
input image size of 299 × 299 × 3.

ResNet50 [61] This architecture leverage on a residual module to train convolutional
neural networks upto depths previously impossible. It has 50 layers of
convolutional neural network layers. It was trained with an input image
size of 224 × 224 × 3.

ResNet101 [62] This is a 101-layers-deep convolutional neural network deep variant of
ResNet50. It takes input image size of 224 × 224 × 3.

SqueezeNet [63] This network has an image input size of 227 × 227 × 3; it is 18 convolu-
tional layers deep.

VGG16 [64] This architecture is a 16-layers-deep convolutional neural network. It
expects an input image size of 224 × 224 × 3.

VGG19 [64] This is a 19-layers-deep variant of VGG16. It expect an input image size
of 224 × 224 × 3.

Deep-learning object detection classifies the content of an image as a classifier and
draws a bounding box over the object’s location in the image (Figure 6). As previously men-
tioned, deep-learning object detectors exist in two major paradigms: one-stage detectors,
such as YOLO [24,26,27] and SSD [25], and two-stage detectors, such as R-CNN [28–30],
and its variants [31].

Herein, a two-stage detector is employed, specifically the faster R-CNN algorithm,
because it is generally more accurate than its one-stage counterpart (Figure 6). The faster
R-CNN components include the base network (pretrained feature extraction), anchors,
region proposal network (RPN), region of interest (ROI) pooling, and R-CNN. The base
network is a typical pretrained CNN classifier; specifically, the classifier is pretrained on
the ImageNet dataset. This typically serves the purpose of feature extraction (Figure 6) and
gets fine-tuned by transfer learning for the specific objects to detect during the end-to-end
training. The base network is often modified to be fully convolutional, that is, with no FC
layers. Many deep learning-based object detection architectures have been proposed with
a particular feature extractor, such as VGG and residual networks (ResNet). However, in
this study, we focus on tuning the feature extractors of the faster-RCNN by experimenting
with different pretrained classifier architectures, in contrast to those initially proposed with
the architecture as in [32]. This approach was implemented to investigate the possibility of
obtaining maximum performance.

Figure 6. Network architecture of deep-learning insect pest detector with the best experimented
pretrained model.



Sensors 2023, 23, 3147 10 of 19

Table 1 presents the feature extractors selected for the experiments. Concerning
the anchors, with regard to the original faster R-CNN publication, the input image was
discretized into a stride of 16 pixels surrounded at the centre by 64 ∗ 64, 128 ∗ 128, and
256 ∗ 256 bounding boxes, each with a scaled aspect ratio of 1–1, 1–2, and 2–1 generated to
yield a total of nine anchors. The RPN is then used to determine the location of a potential
object, that is, if the ROI is either a background or foreground. The dimension of one
of its outputs is 2 ∗ K, where K is the total number of anchors, and the other two hold
the probabilities of the foreground and background. The second output has a dimension
of 4 ∗ K (δx, δy, δwidth, δheight), which contains a bounding box regressor that can be used
to adjust the anchors to fit the object better than its surroundings. Before ROI pooling,
the K anchors are first passed through non-maxima suppression to eliminate multiple
overlapping bounding boxes, resulting in N proposal locations. Thus, the main goal of ROI
is to accept all the proposals from the RPN module and crop the output feature vectors
from the convolutional feature map. Finally, the R-CNN is simply a FC layer that predicts
the final class label through the softmax classifier and refines the bounding box for better
accuracy through the bounding box offset regressor.

As mentioned earlier, the chosen insect pest was the fall armyworm (Spodoptera
frugiperda). For classification, we preprocessed the dataset by closely cropping the im-
ages and annotating them as a binary class (FAW or no-FAW). The dataset for the nega-
tive class was a sample of wormlike insects ( not FAW) from the iNaturalist dataset [65].
Figure 7 shows samples of images in the FAW dataset. The raw images were annotated by
drawing ground-truth bounding boxes around the insect location for the deep-learning
detector. The videos were reserved for further testing.

Figure 7. Samples of insects from our dataset. https://github.com/obasekore/Spodopera_DL_
dataset, accessed on 5 March 2023.

In summary, the insect faster-RCNN detector was fine-tuned on an insect dataset. With
the feature extractor being part of the tuneable parameters, different base networks are tried,
unlike the network initially proposed with faster-RCNN, to select the best performance
in terms of their mean average precision (mAP) [66]. Similarly, to choose our insect
classification architecture, we fine-tuned the different classifiers in Table 1 to optimize the
detection speed and accuracy of the insect dataset jointly.

4. Experimental Results

The dataset was divided into 70% training and 30% validation to train the faster-
RCNN insect detector, whereas testing was performed using the video dataset. The training
has four stages: training the RPN, training the fast-RCNN using the RPN, retraining the
RPN using weight sharing with the fast-RCNN, and retraining the fast-RCNN using the
updated RPN. The same epochs and learning rates were employed for each stage. All of the
implementations were conducted by using MATLAB 2018b for training and robot control

https://github.com/obasekore/Spodopera_DL_dataset
https://github.com/obasekore/Spodopera_DL_dataset
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on an Intel(R) Xeon(R) Gold 2.30 GHz processor coupled with an NVIDIA Quadro P4000
GPU. Moreover, all experiments on the embedded device were performed on a 4GB RAM
NVIDIA Jetson Nano.

4.1. Insect Classifier and Detector Performance

First, in choosing the classification architecture, we considered the classification cate-
gories in the ImageNet [67] dataset and observed that two of the 1000 classes were similar to
those from our dataset. Our chosen insect biologically belongs to the phylum Arthropoda.
Its larval stage has substantial visual similarity to the Nematodes and Platyhelminthes.
Based on this information, we fed our datasets into classification architectures pretrained
on ImageNet that are available in the MATLAB deep-learning toolbox, and they were
largely activated only by the Nematode class. Therefore, our model strengthened the
Nematode class by fine-tuning the class in our dataset with extensive data augmentation
through cropping, random rotation, and random scaling. After fine-tuning for six epochs
and a 3 × 10−4 learning rate, Table 2 presents the accuracy and inference speed for all
architectures, both on the GPU of the personal computer (PC) and the embedded device.
Testing accuracies of 99% and 87 and 24 fps on the GPU for PC and embedded devices,
respectively, were achieved, with an emphasis on the most accurate and fastest classifier,
VGG19. Hence, VGG19 was adopted for the farsighted sections of the robot.

Table 2. Validation accuracy after fine-tuning the proposed insect classifier.

Models Accuracy (%) Time on PC (fps) Time on Embedded Device (fps)

AlexNet (%) 95.95 16 13
GoogleNet 94.99 14 14
SqueezeNet 96.92 34 23
Inception V3 93.26 2 7

VGG16 94.03 82 19
VGG19 99.04 87 24

ResNet101 93.83 3 6
ResNet50 94.03 4 10

Second, for the faster-RCNN insect detector, Figure 8 presents the results of the mAP
of the detector after 250 epochs on the two classes from our dataset (SPODOPERA and
background) for each base network. After dropping the poor-performing feature extractors,
Figure 9 presents the same measure after 350 epochs. This approach hoped to achieve
better performance; however, the insect detector based on GoogleNet suffered stagnation,
whereas ResNet101, VGG16, and VGG19 were reduced. In each case, however, VGG16
outperformed all of the other base networks experimented with, perhaps because it was
initially its native proposed base network. Thus, we adopted the faster-RCNN with VGG16
as a base network trained at 250 epochs as the insect detector for the nearsighted robot
section. Figure 10a–c show some successfully detected instances, whereas Figure 10d shows
a wrongly-detected instance.

Finally, we experimented with SURF and SIFT image-matching algorithms to ensure
correspondence of the location in each camera view based on the bounding box output of
the detector. Table 3 shows the number of features and matches obtained by applying the
two algorithms to the stereo camera’s left (L) and right (R) views. Figure 11 presents the
visualization of the instances in Table 3. The results show that SURF has a fast computation
time but poor output matches. In contrast, SIFT delivered better matches at the expense of
computation time.
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Figure 8. Mean average precision of our insect detector after training for 250 epochs with each feature
extractor in Table 1.

Figure 9. Mean average precision of our insect detector after training for 350 epochs with the most
successful feature extractor.

(a) (b)

(c) (d)

Figure 10. Images of successfully (a–c) and wrongly (d) detected insects using our proposed faster-
RCNN insect detector.
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Table 3. Comparison between SIFT and SURF to match the left (L) and right (R) of the stereo camera
with the insect detector output.

SIFT SURF
Figure L R Match Figure L R Match

Figure 11a 34 23 9 Figure 11b 9 7 3
Figure 11c 25 25 6 Figure 11d 7 3 0
Figure 11e 62 41 10 Figure 11f 12 10 0

(a) (b) (c) (d) (e) (f)
Figure 11. Outcomes of corresponding visual matches of SIFT (a,c,e) and SURF (b,d,f) are shown in
Table 3. Each consists of two stereo camera views of the detected pest with matched features overlayed.

4.2. Cosimulation Results

The proposed technique is formulated to be used on agricultural robots. Therefore, the
robot kinematics, dynamic model, and controller proposed in [68] are adopted to validate
its usability. The robot is a mobile manipulator having a four-DOF RRRR manipulator
with a skid-steering mobile base. For cosimulation with our proposed method, the robot
model is ported to CoppeliaSim. CoppeliaSim (formerly V-REP) is a flexible simulation
software that is useful for robot modelling and simulations, fast algorithm development,
factory automation simulations, fast prototyping, and verification and as a digital twin [69].
It is available for free for academic usage and includes features modules and add-ons
to integrate with many platforms, such as the robot operating system. Figure 12 depicts
the imported model representing the visual elements on the agricultural terrain in the
CoppeliaSim scene. Two front-mounted perspective vision sensor models provided in
CoppeliaSim were also employed to model the chosen ELP 1.3 megapixels ELP-960P2CAM-
LC1100 OV9715 [70] off-the-shelf stereo sensors. When the classifier foresees the appearance
of potential insects in the farsighted phase of the simulation, the mobile platform only stops
for exact detection. Figure 13 reveals the insects detected by the insect detector during
each stoppage in the cosimulation. Each shot contains the stereo camera’s stitched left
and right views. The cosimulation agrobot travels a maximum distance of 10 m in 65 s.
Its coverage is dependent on the population density of the insect pests spawned in the
simulation, in addition to the computing cost. Nevertheless, during the simulation, the
robot stopped four times. One insect was detected at the first stoppage, whereas two were
detected in the second instance. Furthermore, one insect was detected in the third and
fourth instances. During these stops, the method also provides the information necessary
to localize above each detected insect to apply an appropriate neutralization method, after
which the subsequent moving and classifying periods can be triggered.

Although the SIFT algorithm result is not so apparent from the shots in Figure 13, by
observing the stream in the supporting video, it is clear that not all detections trigger a
corresponding match on both stereo views. Therefore, the SIFT algorithm further assists
the insect detector in filtering out, thus creating more stable localization information.



Sensors 2023, 23, 3147 14 of 19

Figure 12. The adopted mobile manipulator in the CoppeliaSim scene for validating the proposed
insect pest recognition mechanism.

Figure 13. Results of the Faster-RCNN insect detector showing the detected insect pest during
the cosimulation of the proposed recognition mechanism with robot in CoppeliaSim and MAT-
LAB/SIMULINK.

4.3. Discussion

In this paper, we have described a robot-centred deep learning-based insect pests
larvae recognition with an RGB stereo camera as the sensor. A farsighted event acts as a
trigger to feed the nearsighted section of the cameras’ two simultaneous pictures, which are
divided into farsighted and nearsighted sections. Because the farsighted section is fed into
our deep learning insect classifier, the lower boundary for the vertical limit is constrained
by the minimum acceptable image input size of the chosen pretrained model in Table 1,
VGG19 (224 × 224 × 3). However, the upper bound limit could be constrained through
trial and error, which synchronizes robot deceleration with the maximum robot speed in
image space. We frequently avoid abrupt robot stopping; therefore, this synchronization is
crucial for stability. As a result, during uniform deceleration, the presence of insect pests
that triggered the positive class of the insect classifier (in the farsighted section) would
have translated to the nearsighted section.

We opensource our FAW dataset for a possible extension to other harmful agricultural
pests larvae. The usual labeling for classification and detection task convention is followed
throughout the entire dataset annotation. We closely cropped out a 1:1 image of only the
FAW in a single image for classification, and bounding boxes were drawn over each FAW
for detection purposes. All of the raw images contain larvae; however, some of these raw
images contain multiple larvae. As a result, multiple bounding boxes exist in the detection
annotation for some images. Hence, both classification and detection data have 862 larvae
each (862 images and 862 labelled bounding boxes, respectively). The dataset also contains
109 s duration videos reserved for testing.

This work’s main objective is to introduce an additional layer of precision to existing
deep-learning agricultural pest recognition. According to the trendline, researchers have
used deep CNN technologies to further improve robot precision, which has the effect
of lessening the chemical impact via precise localization and dosage. Based on one of
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these deep CNN techniques, the Australian Center for Field Robotics created a robot for
intelligent perception and precision applications (RIPPA) to detect weeds from an image
sensor and remove them mechanically [16]. A similar strategy was employed by BoniRob,
whose “ramming death rod” aids in mechanically eliminating weeds and plants when an
AI algorithm detects them [14,15]. A deep learning-based intelligent spraying system with
semantic segmentation of fruit trees in a pear orchard created a SegNet model with 83.79%
accuracy. It further refines the segmentation by incorporating the depth information to
separate the background. Consequently, actual farms are using fewer pesticides [71].

This work aims to show the feasibility of the proposed approach; however, we also
comprehend that there is a need for significant improvement to translate competitively
with the existing spraying or dosing technique on real robot hardware. For example, our
result in Figure 13 experimented on a low insect pest population density, where the insect
pests are widely spaced on the field. Nonetheless, we propose two worst-case scenarios that
would require major exceptions in the field. One case is when insects are in the farsighted
section but not in the nearsighted section, given that the robot has already stopped. In this
situation, our suggested course of action is reduced to intermittent start/stop operations
until the insects reach the nearsighted area. The other case is when there are insects in the
near section but not in the far section, given that the robot is still in motion. In this situation,
such insects are likely to be missed. Moreover, the capacity to recognize neutralized larvae
is crucial for preventing recurrent detections. In our simulation setup, we handled this by
assuming that the insect pests are always stationary. Therefore, every time a halt is made,
bug pests are locally identified.

Nevertheless, the proposed technique still has significant usefulness, either whole or
piecemeal. Overall, it can reduce or eliminate the need for pesticides, allowing farmers to
make greater use of the pest larvae that have been eliminated. However, when decomposed
into piecemeal, one strategy is to use the deep learning models (with or without robot) that
focus only on the early developmental stage because they hold significant threats than the
adult stage. Another strategy is to speed up the functioning of agrobots to use the two
models as a tradeoff. Others include the following of farm machinery during preplanting
procedures to assist agrobots in exposing hibernating larvae and early neutralization
before infestation.

5. Conclusions

This study proposed a deep learning-based extendable and robot-centred strategy for
recognizing harmful agricultural insect pests. This approach uses RGB data from a stereo
camera sensor, split into the peripheral and foveal line-of-sight vision to catch the insect
pest young. This is achieved by focusing on their early developmental stage (larvae) during
preplanting operations, inspired by a natural enemy called cattle egret. A simple mobile
manipulator robot was adopted to validate the proposed simulation technique’s usability
by mounting the sensor at its front. The peripheral vision and the foveal line of sight
adopted the VGG19 classifier with 99% accuracy and the faster-RCNN detector with VGG16
as the base network, respectively. This base network outperformed other investigated
base networks, with a mean average precision of 0.84. The SIFT algorithm delivered a
better performance at the expense of computation time for matching stereo camera views.
Notably, our cosimulation approach in CoppeliaSim and MATLAB (with relevant toolboxes)
confirms the system’s feasibility, which is a step toward actual implementation. However,
major advancements are needed to transfer competitively with the current spraying or
dosing technique on actual robot hardware. Operating on a swarm of robots is a potential
remedy, but it is very expensive.

An unavoidable design limitation of the suggested method is the relatively wide blind
spot, that is, the inability to capture all ground views of the robot’s camera at once, which
may limit the work volume of robots. This is the usual design limitation for obtaining
a realistic robot manipulator design. However, this originally uncaptured vision can be
compensated by having several overlapping robot passes in the field.
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Nevertheless, the potential application of the proposed method for farmers is its capacity
to minimize or prevent pesticide usage. Avoiding pesticides could translate to better use of
the neutralized pest larvae, such as animal feed. However, a more futuristic approach is to
implement an unmanned area vehicle [72] as challenged in the VyavaSahaaya, 2019 [73].

Supplementary Materials: A supporting video article is available at: https://youtu.be/H5HvT__7KUU.
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