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Welcome to the UK-RAS White Paper 

Series on Robotics and Autonomous 

Systems (RAS). This is one of the core 

activities of UK-RAS Network, funded by 

the Engineering and Physical Sciences 

Research Council (EPSRC). 

By bringing together academic centres of 

excellence, industry, government, funding 

bodies and charities, the Network provides 

academic leadership, expands collaboration 

with industry while integrating and 

coordinating activities at EPSRC funded 

RAS capital facilities, Centres for Doctoral 

Training and partner universities. 

The recent commitment of a £90million 

investment by the government 

(Transforming Food Production Challenge 

through the Industrial Strategy) supports the 

idea that Agri-tech is a burgeoning market, 

and we are proud to be exploring the use of 

robotics in this important sector, employing 

almost 4 million people and larger than 

the automotive and aerospace sectors 

combined. Agri-tech companies are already 

working closely with UK farmers, using 

technology, particularly robotics and AI, to 

help create new technologies and herald 

new innovations. This is a truly exciting 

time for the industry as there is a growing 

recognition that the significant challenges 

facing global agriculture represent unique 

opportunities for innovation, investment and  

commercial growth.

This white paper aims to provide an 

overview of the current impact and 

challenges facing Agri-tech, as well as 

associated ethical considerations. We hope 

the paper will provide the reader with an 

overview of the current trends, technological 

advances, as well as barriers that may 

impede the sector’s full potential. We have 

included recommendations to some of the 

challenges identified and hope this paper 

provides a basis for discussing the future 

technological roadmaps, engaging the 

wider community and stakeholders, as well 

as policy makers, in assessing the potential 

social, economic and ethical/legal impact of 

RAS in agriculture. 

It is our plan to provide annual updates 

for these white papers so your feedback 

is essential - whether it is to point out 

inadvertent omissions of specific areas of 

development that need to covered, or to 

suggest major future trends that deserve 

further debate and in-depth analysis. Please 

direct all your feedback to whitepaper@

ukras.org. We look forward to hearing  

from you! 

 

Prof Guang-Zhong Yang, CBE, FREng 

Chairman, UK-RAS Network
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Agri-Food is the largest manufacturing 

sector in the UK. It supports a food chain 

that generates over £108bn p.a., with 3.9m 

employees in a truly international industry 

and exports £20bn of UK manufactured 

goods. However, the global food chain is 

under pressure from population growth, 

climate change, political pressures affecting 

migration, population drift from rural to 

urban regions and the demographics of an 

aging global population. These challenges 

are recognised in the UK Industrial Strategy 

white paper and backed by significant 

investment via a Wave 2 Industrial 

Challenge Fund Investment (“Transforming 

Food Production: from Farm to Fork”). 

Robotics and Autonomous Systems 

(RAS) and associated digital technologies 

are now seen as enablers of this critical 

food chain transformation. To meet these 

challenges, this white paper reviews the 

state of the art in the application of RAS in 

Agri-Food production and explores research 

and innovation needs to ensure these 

technologies reach their full potential  

and deliver the necessary impacts in the 

Agri-Food sector.

The opportunities for RAS range include; 

the development of field robots that can 

assist workers by carrying payloads and 

conduct agricultural operations such as 

crop and animal sensing, weeding and 

drilling; integration of autonomous  

systems technologies into existing farm 

operational equipment such as tractors; 

robotic systems to harvest crops and 

conduct complex dextrous operations; 

the use of collaborative and “human in 

the loop” robotic applications to augment 

worker productivity; advanced robotic 

applications, including the use of soft 

robotics, to drive productivity beyond 

the farm gate into the factory and retail 

environment; and increasing the levels of 

automation and reducing the reliance on 

human labour and skill sets, for example, 

in farming management, planning and 

decision making.

RAS technology has the potential to 

transform food production and the UK has 

an opportunity to establish global leadership 

within the domain. However, there are 

particular barriers to overcome to secure 

this vision:

1.  The UK RAS community with an 

interest in Agri-Food is small and highly 

dispersed. There is an urgent need 

to defragment and then expand the 

community.

2.  The UK RAS community has no specific 

training paths or Centres for Doctoral 

Training to provide trained human 

resource capacity within Agri-Food.

3.  While there has been substantial 

government investment in translational 

activities at high Technology Readiness 

Levels (TRLs), there is insufficient 

ongoing basic research in Agri-Food 

RAS at low TRLs to underpin onward 

innovation delivery for industry.

4.  There is a concern that RAS for Agri-

Food is not realising its full potential, 

as the projects being commissioned 

currently are too few and too small-

scale. RAS challenges often involve the 

complex integration of multiple discrete 

technologies (e.g. navigation, safe 

operation, grasping and manipulation, 

perception). There is a need to further 

develop these discrete technologies 

but also to deliver large-scale industrial 

applications that resolve integration 

and interoperability issues. The UK 

community needs to undertake a 

few well-chosen large-scale and 

collaborative “moon shot” projects.

5.  The successful delivery of RAS 

projects within Agri-Food requires 

close collaboration between the RAS 

community and with academic and 

industry practitioners. For example, 

the breeding of crops with novel 

phenotypes, such as fruits which are 

easy to see and pick by robots, may 

simplify and accelerate the application of 

RAS technologies. Therefore, there is an 

urgent need to seek new ways to create 

RAS and Agri-Food domain networks 

that can work collaboratively to address 

key challenges. This is especially 

important for Agri-Food since success 

in the sector requires highly complex 

cross-disciplinary activity. Furthermore, 

within UKRI many of the Research 

Councils and Innovate UK directly fund 

different aspects of Agri-Food, but as yet 

there is no coordinated and integrated 

Agri-Food research policy per se.

Our vision is a new generation of smart, 

flexible, robust, compliant, interconnected 

robotic and autonomous systems working 

seamlessly alongside their human co-

workers in farms and food factories. Teams 

of multi-modal, interoperable robotic 

systems will self-organise and coordinate 

their activities with the “human in the 

loop”. Electric farm and factory robots with 

interchangeable tools, including low-tillage 

solutions, soft robotic grasping technologies 

and sensors, will support the sustainable 

intensification of agriculture, drive 

manufacturing productivity and underpin 

future food security.

To deliver this vision the research and 

innovation needs include the development 

of robust robotic platforms, suited to 

agricultural environments, and improved 

capabilities for sensing and perception, 

planning and coordination, manipulation 

and grasping, learning and adaptation, 

interoperability between robots and existing 

machinery, and human-robot collaboration, 

including the key issues of safety and user 

acceptance. 

Technology adoption is likely to occur in 

measured steps. Most farmers and food 

producers will need technologies that 

can be introduced gradually, alongside 

and within their existing production 

systems. Thus, for the foreseeable future, 

humans and robots will frequently operate 

collaboratively to perform tasks, and that 

collaboration must be safe. There will be 

a transition period in which humans and 

robots work together as first simple and 

then more complex parts of work are 

conducted by robots, driving productivity 

and enabling human jobs to move up the 

value chain.
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Robotics and Autonomous Systems (RAS) are set to 

transform global industries. These technologies will 

have greatest impact on large sectors of the economy 

with relatively low productivity such as Agri-Food (food 

production from the farm through to and including 

manufacturing to the retail shelf). The UK Agri-Food chain, 

from primary farming through to retail, generates over 

£108bn p.a., with 3.7m employees in a truly international 

industry yielding £20bn of exports in 2016.
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1. ECONOMIC, SOCIAL AND ENVIRONMENTAL DRIVERS

1.1 ECONOMIC AND SOCIETAL FACTORS 

Robotics and Autonomous Systems (RAS) are set to 

transform many global industries. These technologies will 

have greatest impact on large sectors of the economy 

with relatively low productivity such as Agri-Food (food 

production from the farm through to and including 

manufacturing to the retail shelf). The UK Agri-Food chain, 

from primary farming through to retail, generates over 

£108bn p.a., with 3.7m employees in a truly international 

industry yielding £20bn of exports in 2016 [1].

The global food chain cannot be taken for granted: it is 

under pressure from global population growth and needs 

to drive productivity, climate change, inescapable political 

impacts of migration (e.g. Brexit and potential US migration 

restrictions), population drift from rural to urban regions, and 

the demographics of an aging global population in advanced 

economies including China. In the UK the uncertainty 

associated with Brexit is already affecting migrant worker 

confidence and availability. These issues, manifest via 

different mechanisms (demographics, urban drift, etc.),  

are now impacting on many sectors of the global Agri-Food 

industry. In addition, jobs in the Agri-Food sector can be 

physically demanding, repetitive in nature, conducted in 

adverse environments and relatively unrewarding.

Given these circumstances the global Agri-Food sector 

could be transformed by advanced RAS technologies. 

The recent Made Smarter Review [2] considered that 

digital technologies, including RAS, deployed in food 

manufacturing alone could add £58 bn of GVA to the UK 

economy over the next 13 years. Robotic automation would 

also help to attract skilled workers and graduates to the 

sector. These opportunities have been further recognised 

by national government and are outlined in the Industrial 

Strategy White Paper [3]. The Secretary of State for BEIS 

announced in late February 2018 a £90m ISCF Wave 2 

investment (Transforming food production: from farm to fork) 

to support innovation, including robotics and digital systems 

to drive innovation in the Agri-Food chain. This follows an 

earlier £160m investment that funded the UK Agri-Tech 

Catalyst program (now near completion).

1.2 ENVIRONMENTAL BENEFITS 

As well as delivering economic benefits, such as increasing 

productivity and reducing waste throughout the food supply 

chain, developing a new focus for RAS within Agri-Food 

will have significant societal and environmental benefits. 

For example, the food chain uses 18% of UK energy 

consumption [4], while high mass farm machinery is causing 

unsustainable compaction damage to our soils; meanwhile, 

many species of British wildlife face risk of extinction due to 

modern farming practices [5], including widespread use of 

herbicides and pesticides, industrialisation of machinery,  

and reduction in hedgerows and drainage due to increasing 

field sizes.

Soils 

There is a wide variety of soil types across the UK, exhibiting 

a range of properties to consider (e.g. texture, pH, fertility 

status). The profile of the soil in many parts of the UK is 

defined by clay, gravel or weathered bedrock horizons with 

a relatively shallow fertile topsoil above, making it imperative 

that agricultural machinery does not cause damage such as 

compaction or erosion. Compaction can lead to reductions 

in crop yields, and a need for greater fertiliser and fuel 

inputs. The total losses from degradation to soils in England 

and Wales alone have been estimated at around £1.2bn p.a. 

[6]. Furthermore, soil compaction has wider environmental 

costs; increasing waterlogging, surface run-off and nitrous 

oxide emissions, and restricting the habitat for soil fauna 

[7]. Fleets of small lightweight robots are now seen as a 

replacement for traditional high mass tractors, allowing a 

gradual reduction of compaction, re-aeration of the soil  

and benefits to soil function.

Water 

Agriculture uses 70% of all global fresh water supplies, and 

yet 4bn people live in global regions with water scarcity 

[8]. In the UK, weather can play an unpredictable role in 

agriculture with short periods of drought or flooding in 

many rural areas. This unpredictability makes it difficult to 

put in fixed systems of drainage or irrigation at a justifiable 

cost. The issues of water are complex: we need to find 

new means to drive water use efficiency within agricultural 

systems, while onward diffuse pollution to water bodies has 

serious negative environmental impacts. DEFRA estimates 

that the UK cost of diffuse pollution (nitrate, phosphorous, 

pesticide and sediment run-off, etc.) amounts to c. £311m 

per annum [9]. Field robots are already being deployed to 

help farmers measure, map and optimise water and irrigation 

use. Likewise robots that use precision technologies to  

apply fertilisers and pesticides within agricultural systems  

will reduce environmental impacts.
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Pesticides 

Agricultural systems globally are now highly reliant on the 

large-scale application of synthetic pesticides to control 

weeds, insects and diseases. An improved understanding 

of chemical safety and environmental impacts has led to 

multiple product withdrawals, reducing the number of active 

ingredients available to farmers. Furthermore, ever higher 

regulation and registration costs has reduced the number 

of new pesticides entering the agricultural market. There is 

therefore a global need to find new ways to produce crops 

that do not require or reduce the use of pesticides. There 

are now a number of crop weeding robots that reduce the 

need for herbicides by deploying camera-guided hoes [10], 

precision sprayers [11] or lasers [12] to manage weeds. 

Although in its infancy, this technology shows great promise. 

In addition, novel sensors deployed on robots can reduce 

pesticide use by both detecting pests and diseases and 

precisely targeting the application of insecticides and 

fungicides. Robots could also be deployed as part of 

integrated pest management systems, for example, for 

the accurate and low-cost dispersal of biopesticides to 

counteract crop pests and diseases.

Electrification of farm vehicles and implements 

The proliferation of electric motors and actuators in 

applications ranging from industrial processes to modern 

passenger aircraft and cars is indicative of the drive 

away from mechanical traction and actuation systems 

to electrically based systems. Large diesel vehicles are 

likely to remain in practical use for many years to come, 

however the optimum use of such vehicles has been to go 

as large as possible, which in itself leads to issues such 

as soil compaction and “brute force” delivery of fertilizers, 

herbicides and pesticides. The migration from monolithic, 

fossil-fuel-based agricultural platforms to fleets of smaller 

electric powered robotic platforms offers the possibility of 

much lower emissions with locally generated power. Recent 

years have seen an increase in the use of agricultural land 

for solar photovoltaic, wind turbines and anaerobic digestion 

plants. Therefore, the potential for dual use of not only 

the land, but also the electricity generated, is of interest 

to the agricultural robotics community. Many agricultural 

implements are driven directly from the prime mover (often a 

tractor) via a mechanical linkage. By using electric drives the 

efficiency can be much higher and the whole system made 

safer as a result. One of the most common sources of injury 

and death on the farm is the mechanical linkages in large 

farm machinery. Therefore there are potentially major health 

and safety benefits to electrification and automation of  

farm equipment.

1.3 PRECISION AGRICULTURE

Also known as ‘smart farming’, precision agriculture 

has its origins in developments first applied in industrial 

manufacturing as far back as the 1970s and 80s. It concerns 

the use of monitoring and intervention techniques to improve 

efficiency, realised in application through the deployment 

of sensing technologies and automation. The development 

of precision agriculture has been driven by the desire to 

better handle the spatial and temporal variability, e.g. in soil 

water-content or crop varieties, from farm-scale, down to 

field-scale, through to sub-field scale [13]. One approach 

is to utilise more intelligent machines to reduce and target 

inputs in more effective ways. The advent of autonomous 

system architectures gives us the opportunity to develop a 

new range of flexible agricultural equipment based on small, 

smart machines that reduces waste, improves economic 
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viability, reduces environmental impact and increases food 

sustainability. There is also considerable potential for robotics 

technologies to increase the window of opportunity for 

intervention, for example, being able to travel on wet soils, 

work at night, etc. 

Sensory data collected by robotic platforms in the field can 

further provide a wealth of information about soil, seeds, 

livestock, crops, costs, farm equipment and the use of water 

and fertiliser. Low-cost Internet of Things (IoT) technologies 

and advanced analytics are already beginning to help 

farmers analyze data on weather, temperature, moisture, 

prices, etc., and provide insights into how to optimise yield, 

improve planning, make smarter decisions about the level 

of resources needed, and determine when and where to 

distribute those resources in order to minimise waste and 

increase yields [14]. Future telecommunications availability 

is likely to enhance IoT capacity, with agri-tech test beds 

already under development.

1.4 LIVESTOCK AND AQUACULTURE

Robotics and autonomous systems for livestock 

At the farm level, robotic systems are now commonly 

deployed for milking animals [15]. The take-up is a relatively 

small percentage at the moment, but an EU foresight 

study predicts that around 50% of all European herds will 

be milked by robots by 2025 [16]. Robotic systems are 

starting to perform tasks around the farm, such as removing 

waste from animal cubicle pens, carrying and moving 

feedstuffs, etc. Systems are in use and under development 

for autonomously monitoring livestock and collecting field 

data, all commercially useful for efficient and productive 

livestock farming. There are further opportunities to apply 

more advanced sensor technologies, combined with more 

autonomous systems, to perform tasks on the farm. This 

applies to both extensive production and intensive (indoor) 

systems. Extensive livestock utilise c. 45% of UK’s area that 

is grassland and not fit for crop production, and derive food 

products from this resource. Thus management of this feed 

resource is also important.

A further application for robotic systems concerns the 

management of farmed animals, such as dairy cattle, 

pigs and chickens, where intervention via the provision of 

appropriate and timely data can help reduce waste and 

environmental pollution as well as improve animal welfare 

and productivity on the farm. Welfare accreditation schemes 

and measures undertaken for assurance purposes (RSPCA 

Assured, Red Tractor, etc.) rely heavily on systems-based 

approaches by inspectors observing the farm intermittently 

at a group level. Precision farming on the other hand has 

the potential to offer animal-centric health and welfare 

assessment that would operate continuously to assess the 

condition and state of individual animals. Other wider societal 

benefits may follow in terms of improved working conditions, 

a stronger more competitive UK agricultural sector (via 

improve feed conversion efficiency per kg of meat produced) 

and better food security, providing consumers with greater 

access to lower-cost, higher quality meat products.

Farmers must constantly monitor their animals and their 

setting in order to ensure animal health and maintain a 

comfortable, stress-free environment for optimal production. 

Though the UK has some of the highest animal-welfare 

standards in the world, there are pressing concerns over 

maintaining this post-Brexit due to potentially cheaper low-

welfare imports from outside Europe. Other constraints (e.g. 

high feed costs, environmental regulation, consumer concern 

over animal welfare and food security, long-term public-

health concerns such as antimicrobial resistance) add to the 

pressure in this cost competitive sector, driving governments 

and consumers to demand greater supply-chain control. 

Unfortunately human monitoring involves many limitations, 

including contamination and farm-worker health risks, and 

provision of only limited frequency, resolution and fidelity of 

data. It is also a slow, costly and labour-intensive process. 

Automation offers the potential for continuous data capture, 

allowing more timely and effective intervention, improved 

animal welfare and reduced production costs.

Robotics and autonomous systems for aquaculture 

Aquaculture production is already a vertically integrated and 

professional supply chain, but operates in an environment 

with a number of challenges that limit production, where 

sensors and robotic systems can play a role. Any systems  

deployed are naturally required to be more robust to  

extreme conditions and environments. The environment  

for aquaculture is often hostile and difficult to access by  

human operators with remote locations and inclement  

weather, with access only by small boat, leading to high  

operating costs and significant health and safety issues.  

The use of autonomous sensing and remote operation could 

significantly reduce the requirement for an on-site human 

presence making such facilities safer and easier to manage. 

Major challenges include environmental and health issues, 

such as algal blooms, sea lice and gill diseases. Could 

robots be used to monitor and offer a mode of treatment 

to control parasites, for example? Could robots assist in 

benign control of seals and other protected species? Are 

there autonomous means of maintenance for the required 

infrastructure, especially as the industry has started to 

move recently to “higher energy” sites? Could more precise 

understanding of the environment and behaviour of fish 

lead to better management control and therefore better 

productivity? These and many other challenges exist in the 

aquaculture sector, even those systems that are land-based.
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1.5 DISADVANTAGED FARMS

The vast bulk of previous agri-robots projects have focussed 

on agribusiness style environments such as large flat 

monoculture fields, and controlled industrial scale indoor 

growing. In Britain, these environments are predominantly 

in the South and East, and their productivity has historically 

been a major reason for these areas’ economic successes. 

In contrast, the North and West’s geography contain more 

varied and hilly terrains, which has created a different type of 

farming based around smaller family farms, smaller vehicles 

and often more intensive manual work, especially dairy 

and sheep farms. In EU classification these are known as 

“disadvantaged” (and the more extreme cases as “severely 

disadvantaged”) farms. Disadvantaged farms have largely 

been left behind by successive waves of automation 

including agri-robotics. However in the distant past they 

were once as productive as the agribusiness areas: the 

Peak District, for example, was farmed intensively during the 

Bronze age, and many hill farms and now moorlands have 

gradually fallen into disuse purely because large machines 

cannot navigate their terrains as human workers once did. 

Agri-robots designed specifically for these terrains could help 

make them economically viable.

1.6 NON-CONVENTIONAL CLOSED 

(‘VERTICAL’) FARMING

‘Vertical farming’ systems utilise indoor farming techniques 

and closed environments where all environmental factors, 

including nutrients, temperature, humidity and lighting, can 

be controlled [17]. The co-design of robotics with specialised 

sensing and crop genetics, where plants have been bred 

to take advantage of the closed environments, is now 

enabling these systems to move from niche low-volume 

markets, such as localised production of herbs for high-

end restaurants, to mainstream reliable delivery of volume 

produce at ‘Amazon’ scales. Such large-area enclosed 

farming systems have been referred to previously as ‘vertical 

farms’ to emphasise the high density configuration of plants. 

In reality, robotic sensing and effector units, typically gantry-

mounted, may be engineered to accommodate plants in any 

combination of vertical or horizontal modules to optimise 

the use of space. Thus, such systems are particularly well 

suited for high-density urban environments, where the 

production of crops with guaranteed growth times near the 

point-of-purchase enables minimisation of both waste, due 

to over-production, and the carbon footprint associated with 

long-distance transport chains. Rural economies may also 

gain benefits from access to locally derived and nutritionally 

advantageous fresh produce lines that have traditionally been 

cost-prohibitive or logistically impossible to deliver.

The required components for ‘vertical farms’ include 

temperature and humidity control, balanced crop-nutrient 

chemistry, process engineering of hydroponics or other 

growing media, semiconductor illumination, non-invasive 

sensing and robotics. Now these engineering elements are 

all realisable, the final ingredient required is the design of 

crops specifically for such systems, as opposed to their 

translation from field or polytunnel varieties. Within these 

controlled environments, crops can be bred specifically to 

maximise yield or other desired output traits, without the 

need to breed for other factors, e.g. resilience to specific 

pests, weeds, etc., as in conventional growing systems. 

Robotic systems would then allow novel output traits to be 

nurtured and bred into future produce, such as beneficial 

health and nutritional aspects, or to minimise the energy 

and waste in any downstream processing. A further benefit 

would be to deliver plants that are more compatible with 

autonomous plant care and harvesting.

While ‘vertical’ production systems may not be economically 

or environmentally competitive with the existing systems 

for the foreseeable future, the potential for such units within 

urban and industrial environments cannot be considered in 

isolation. As plants are potential sinks for effluents, heat and 

excess energy production then the rationale for such food 

production facilities needs to be considered alongside their 

potentially beneficial effects that would otherwise have to be 

dealt with via alternate, less sustainable means. An exemplar 

is the positioning of British Sugar Ltd. as the biggest UK 

tomato producer as a consequence of being a sink to the 

carbon dioxide release from the sugar processing and the 

exothermic reactions which promote tomato growth. By 

appropriate design of the automation and robotics within 

non-conventional vertical farming units, the economic 

arguments for installing such systems may be overlaid with 

their ability to solve issues within parallel sectors such as 

exploiting alternative waste and excess energy streams.

1.7 FOOD MANUFACTURING AND 

PROCESSING

While post-harvest activities are beyond the main focus of 

this white paper, we note that the need for new research 

and innovations across Agri-Food does not stop at the 

farm gate. For example, the meat sector presents particular 

challenges in productivity, due to the increasing difficulties in 

finding skilled workers with the qualifications needed to carry 

out meat cutting tasks. Robotisation of these jobs has thus 

become an important objective for companies looking to 

improve the safety and health of workers, as well as finding 

new solutions to mitigate the increasing production costs 

linked to current and future labour shortages. Collaborative 
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robotics (cobots), where robots work together with humans, 

presents an alternative solution to help increase productivity, 

improve health and safety, and attract skilled workers and 

graduates to the food processing industry.

Agricultural robotics could also facilitate earlier labelling and 

tracking of food products throughout the manufacturing 

supply chain, bringing numerous benefits such as improved 

information for consumers on where their food is from and 

faster action to mitigate food safety issues. In turn, the food 

metadata could be fed back to the field operations to further 

improve the primary production.

In general, there may be many potential synergies between 

agricultural robotics and the downstream processing 

of agricultural products in the food chain, where whole 

supply chain efficiencies could be unlocked through future 

application of RAS technologies. Common challenges that 

span the whole Agri-Food supply chain include the demand 

for soft robotics; human-robot collaboration; safety, of both 

food products, people and other assets; automation of 

intra-logistics, from in-field transportation to packhouse to 

warehouse operations; sensing and image interpretation for 

analysis and manipulation of complex food products; and 

long-term autonomy, requiring the development of robust, 

fault-tolerant systems able to operate 24/7 in challenging 

field and factory environments.

1.8 ETHICAL ISSUES

Various ethical issues arise from the emergence of robotic 

technologies in agriculture, with growing concerns over the 

impact of AI technologies on employment across sectors. 

A generation ago, manual labourers in UK farms and food 

factories were predominantly British, while today’s industry 

relies heavily on c. 65,000 migrant labourers. There is a 

similar pattern worldwide, with migrant labour replacing 

native workers across developed countries. In turn, these 

workers may wish their own children to achieve a higher 

standard of education and work in more skilled jobs, while 

the demographics of an ageing population further limits the 

supply of manual labour. The average age of a UK farmer is 

58 years, while many agricultural jobs require high levels of 

intrinsic fitness, which is not necessarily compatible with the 

demographics of age. We see robotic automation not only 

as a means of performing the “dull, dirty and dangerous” 

jobs that people no longer wish or cannot do, but also as 

a creator of desirable and rewarding employment, enabling 

human jobs to move up the value chain and attracting skilled 

workers and graduates to Agri-Food.

There are ethical issues concerning the ownership of data, 

similar to other technological domains where a small number 

of companies own or control the majority of the information 

and potentially the infrastructure. In a similar fashion, a 

power asymmetry already exists between farmers and large 

agribusinesses [18], Smart Farming faces two extreme future 

scenarios: 1) closed proprietary systems where the farmer is 

part of a highly integrated supply chain, or 2) open systems 

in which all stakeholders are flexible in choosing technologies 

and business partners [19]. Therefore, developments such 

as open-source data and publicly-funded data collection 

networks should be considered. Attention will also need 

to be given to the security of data collection, ensuring that 

objective measurements are taken and that the data can be 

relied on for use in decision making [20]. Legal and ethical 

aspects of autonomous agricultural robots, including liability 

frameworks and re-use of robot-collected data are further 

discussed by Basu et al. [21].



The development of precision agriculture has 

been driven by the desire to better handle the 

spatial and temporal variability, e.g. in soil water-

content or crop varieties, from farm-scale, down 

to field-scale, through to sub-field scale. The 

advent of autonomous system architectures 

gives us the opportunity to develop a new range 

of flexible agricultural equipment to reduce and 

target inputs in more effective ways.

7 // Agricultural Robotics
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2. TECHNOLOGICAL FOCUS

The recent focus of the agri-robotics community has been 

to identify applications where the automation of repetitive 

tasks is more efficient or effective than a traditional human or 

large machine approach [22, 23]. Research is needed into 

robotic platforms that can operate close to the crop (either 

on the ground or at elevation) and advanced manipulation, 

especially with interactive or tactile properties, e.g. for 

picking soft fruit. The use of heterogeneous “multi-modal” 

platforms that combine ground-based and aerial vehicles 

provides opportunities for targeted support and intelligence 

for the individual platforms, plus the ability for human 

operators to have an “eye in the sky” for observation and 

mission planning. Collaborative and cooperative behaviour 

becomes advantageous for large-scale arable and fruit crops 

as tasks can be performed in parallel, giving economies of 

scale. Land management is a specific issue of concern in 

the UK landscape, given the issues of fertilisation, water 

management and carbon content in the soil, so the use 

of advanced sensing and soil management using remote 

platforms including robotics will be increasingly important. 

Additionally, the use of robotics for livestock management 

is a specific opportunity for the deployment of autonomous 

platforms, as has already begun in automated milking 

stations, and with potential applications for raising animals  

in fields, barns, sheds and aquaculture, or fish farms.

2.1 RELATED AREAS

There is a plethora of related areas that are already using 

automation (such as in large parts of the industrial food 

production in the UK), and research is needed to investigate 

how this can be more tightly integrated into the agriculture 

industry. The food chain is managed using complex food 

production and software systems that rely on accurate data 

about all aspects of the location, quality and quantity of 

agricultural foodstuffs. Robotics and automation are already 

being used extensively in the processing side of the food 

industry, however this is not being leveraged to the same 

extent on the production side in the field. The application of 

large data sets in combination with remote sensing (as used 

in tracking raw materials for industrial production, e.g. with 

RFID tags) to optimize the quantity and quality of crops or 

livestock produced has the potential to revolutionize the UK 

agricultural sector. Technologies from related areas including 

the Internet of Things, Big Data and artificial intelligence 

can be used alongside autonomous systems technologies 

to automatically fuse and interpret collected data, assess 

crop status, and automatically plan effective and timely 

interventions in response to sudden events and the change 

of crop conditions (e.g. weather, diseases, pests).

2.2 TECHNOLOGY VISION

Our long-term technology vision encompasses a 

new generation of smart, flexible, robust, compliant, 

interconnected robotic systems working seamlessly 

alongside their human co-workers in farms and food 

factories. Teams of multi-modal, interoperable robotic 

systems will self-organise and coordinate their activities 

alongside and within existing Agri-Food systems. Electric 

farm and factory robots with interchangeable tools, including 

low-tillage solutions, novel soft robotic grasping technologies 

and sensors, will support the sustainable intensification of 

agriculture and drive manufacturing productivity throughout 

the food chain. Future agri-robotic systems will deploy 

artificial intelligence and machine learning techniques to 

increase their own productivity. Meanwhile, investigation 

of alternative systems for food production, including 

innovations from areas such as vertical farming, will further 

help to address the sustainable intensification of agriculture, 

while protecting the environment, food quality and health. 

A vital aspect of making this transition effective is the clear 

demonstration of economic benefits, which has always been 

the primary driver of change to the agricultural community.

Facilitating the transition to automation 

While full automation is often hailed as the ultimate aim 

in technological development, and the future agriculture 

systems may look very different from those of today, only 

very few large companies can afford the disruption of full 

automation. So to achieve this long-term vision will require 

a gradual transition from the current farming practices, and 

most farmers will need technologies than can be introduced 

step by step, alongside and within their existing systems. 

Furthemore, while some emerging robotic technologies 

are already achieving or approaching the robustness and 

cost-effectiveness required for real-world deployment, other 

technologies are not yet at that stage. For example, soft 

fruit picking still requires fundamental research in sensing, 

manipulation and soft robotics. Thus, at least in the short-
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term, the collaboration of humans and robots is fundamental 

to increased productivity and food quality [24]. There are a 

number of comparatively low-cost platforms available now 

that are certified for use alongside human workers. Work 

is needed though to identify the nature of the robot-human 

interactions and joint workflows needed.

Thus, much of the research needed in the short- and 

medium-term should focus on facilitating the “transition 

to automation”, with mixed systems likely to dominate in 

the coming years, benefitting from collaboration between 

humans and robots, with combinations of electric, diesel and 

hybrid powered vehicles, as the required technologies for 

electrification mature and become ready for market. In the 

short-term, progress may depend on retrofitting of existing 

farm vehicles. For example, a human-driven tractor could 

tow a variety of robotic implements for different field 

operations such as selective harvesting or weeding. In the 

longer term, autonomous robotic vehicles will start to replace 

the legacy vehicles. This trajectory will also enable the 

UK vehicle and implement manufacturers to develop new 

products that span the transition from the current diesel-

powered farm vehicles to the robotic farming systems of  

the future. The UK is well placed to implement these 

changes due to its strong automotive sector in industrial  

and agricultural vehicles, with extensive infrastructure  

already in place.

Small, smart, interconnected, light machines 

One advantage of modern robotics is their ability to be built 

using low-cost, lightweight and smart components. Due to 

their prevalence in consumer electronics, such as mobile 

phones, gaming consoles and mobile computing (laptops, 

tablets etc), high quality cameras and embedded processors 

can be built in to many platforms at very low cost. New 

materials and fabrication techniques such as additive 

manufacturing and advanced composites are also making 

the manufacture and deployment of robotic platforms much 

cheaper and decoupled from a mainstream manufacturing 

process or supply chain. For example, a 3D printer located 

on a farm could be used to manufacture spare parts on 

demand, at very low cost, or even to improve the platform 

by adapting to the local conditions. Using collaborative and 

cooperative behaviour in a fleet of robots further provides 

the opportunity to spread tasks over multiple platforms and 

thereby reduce the damage caused by heavy conventional 

agricultural platforms on the soil or existing crops. The 

robotic fleet can also take advantage of multiple data 

sources to calibrate the task, reduce waste and focus on 

areas of greatest need, potentially reducing fertilizer costs 

and environmental impact.
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3. ENABLING TECHNOLOGIES FOR FUTURE ROBOTIC 

AGRICULTURE SYSTEMS

A wide range of technologies will enable the transition 

of agricultural robotics into the field. Some technologies 

will need to be developed specifically for agriculture, 

while other technologies already developed for other 

areas could be adapted to the agricultural domain, for 

example, autonomous vehicles, artificial intelligence and 

machine vision. Here we briefly review the current status, 

opportunities and benefits of various enabling technologies 

from hardware to software, multi-robot systems and human-

robot systems.
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3.1 ROBOTIC PLATFORMS

Agricultural platforms can be divided into domain- and 

task-specific robots designed to perform a specific task on 

a given crop in a pre-defined domain, and generic platforms 

designed to perform several tasks in different domains.  

Both are likely to play important roles. Since farms in general 

have very different infrastructure, early robots may be able 

to operate only on a given farm and only to a limited extent 

across different farms. Similarly to current farm vehicles, 

we may see therefore a combination of robots adapted to 

a specific task and the emergence of multi-purpose robots 

able to carry out a multitude of different tasks, analogous 

to the myriad use cases of the modern tractor. A common 

challenge is that most current robotic platforms are not 

robust to real-world conditions such as mud, rain, fog, 

low and high temperatures. For example, most current 

manipulators are not equipped to deal with humidity  

in glasshouses.

Mechatronics and electronics  

The development of rapid prototyping techniques and low-

cost processors have led to an explosion in the use of 3D 

printing and “maker” technology, raising the potential of low-

cost robotic platforms for a variety of applications. 

The use of embedded software enables highly configurable 

and application-specific platforms that can use common 

hardware modules and be adapted to a variety of roles. 

While such approaches have been used extensively in 

UAVs and smaller-scale robots, there is much scope for the 

expansion of robotics in Agri-Food on a much wider scale. 

Issues that need to be addressed to migrate from prototypes 

to robust commercial platforms include robustness and 

reliability, power management (the platforms need to be 

able to operate all day, in some cases 24/7, for extended 

periods), usability (the platforms must be able to be used 

effectively by non-specialists), maintenance (e.g. self-

diagnosis) and integration with mobile communications. 

Further challenges include better characterisation of the  

mechanical properties of soil relevant to these robots, 

ruggedized platforms capable of operating in inclement 

weather, real-time sensing and control algorithms to adapt 

locomotion strategies to an ever-changing environment, and 

co-design of locomotion with other capabilities. For example, 

how does crop/fruit collection affect locomotion? What 

locomotion capability do we need to enable efficient sensing 

of crops?
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Locomotion 

Agricultural robots need to move in challenging dynamic and 

semi-structured environments. Ground robots needs to travel 

on uneven, inhomogeneous, muddy soil, while aerial vehicles 

need to operate for long periods of time, in different weather 

conditions. Current agri-robots are mainly designed by 

borrowing technology from other sectors (e.g. drones) or as 

an add-on to existing platforms (e.g. autonomous tractors). 

As such, they may be not fully optimised for their tasks, or 

may retain some of the limitations of existing platforms.

UAVs can fly using multiple rotors or a fixed wing platform 

(with precision of location in the former and extended flight 

time in the latter), whereas ground platforms need to be able 

to locomote on rails and concrete floor in greenhouses, on 

gravel or grass in polytunnels, and in extremely muddy and 

difficult terrain in open fields [25]. We will therefore see a wide 

variety of robots being developed with different means to 

locomote. Compared to tractors, these robots are extremely 

lightweight, but as robots (or autonomous tractors) are to 

perform more energy-demanding task, the robots will also 

increase in size and weight. Most agricultural robots today 

run on batteries and electrical motors. Future developments 

will depend on how the battery technology evolves, but we 

will probably see both electric and combustion engines in the 

field for the foreseeable future.

A key aspect of any robotic platform is the impact of the 

weight and locomotion system on the ground and crops, 

and therefore different platforms have been used, including  

 

tracked and multiple wheeled robots. The platforms are 

also dependent on the required task, for example, heavy 

crop harvesting (such as volume arable or root vegetables) 

will need a heavier platform than soft fruit picking. Legged 

robots have the potential of minimising their footprint, while 

maximising the flexibility of locomotion (e.g. moving sideways 

or in narrow spaces between crops, etc). Their agility, 

combined with the possibility of carrying specialised sensors, 

may help unlock the full potential of precision agriculture.

Manipulators 

Manipulators will be needed for a range of tasks in future 

agriculture, replacing dexterous human labour, reducing 

costs and increasing quality, or performing operations more 

selectively than current larger machinery like slaughter 

harvesters. Work in this direction is ongoing, with soft 

grippers used for experimental work on selectively harvesting 

mushrooms, sweet peppers, tomatoes, raspberries and 

strawberries. Other applications such as broccoli harvesting 

can be performed with cutting tools, but will also require 

gentle handling and storage of the picked crop. In the open 

field, and for protected crops, there are complementary 

tasks to harvesting where manipulators can also play an 

important role. This includes mechanical weeding, precision 

spraying, and other forms of inspection and treatment. 

Manipulators will also be needed for the increased 

automation seen in food handling applications, such as  

large automated warehouses.
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3.2 SENSING AND PERCEPTION

The integration of sensor systems within autonomous 

robotic systems offers the significant potential for new 

measurements that would otherwise be unobtainable. For 

example, current work addresses large area field mapping 

for bulk moisture by mobile robots, through the application 

of cosmic ray sensors adapted from the static COSMOS 

approaches [26]. Significant advances in satellite- or drone-

based remoting sensing capabilities open opportunities in 

monitoring crop growth status with unprecedented temporal 

and spatial resolutions while at an affordable cost. Many 

open source satellite datasets (e.g. from the European 

Space Agency [27]) are freely available for farmers. Robotic 

platforms further offer the possibility of forensic testing of soil 

with the geotagging and immediate results from sampling 

sensors (such as laser-induced breakdown spectroscopy), or 

secure collection of samples for later analysis in a systematic 

and uncontaminated manner. The use of compact robots 

and on-board secure collection systems will further enable a 

step change in the regulatory efficiency and reliability of land 

management systems using robots.

Localisation and mapping 

The use of GPS navigation in agriculture has become 

almost ubiquitous with the deployment of RTK (Real 

Time Kinematics) allowing accuracy of centimetres for 

the automated positioning of large farm machinery such 

as tractors and combined harvesters. More recently, 

approaches using data manipulation of the GPS signal 

alone have shown promise to deliver equivalent accuracy 

without the cost of extra radio beacons. Accurate location 

data is not confined to unmanned vehicles with GPS, 

as precise localisation systems are available using visual 

fiducial markers and/or optical, acoustic or radio beacons, 

depending on the speed and accuracy required. Sensor 

information is also required in detecting objects and risks 

in field in order to ensure safe operation of robotic vehicles. 

To minimise damage to crops, the accuracy of relative 

positioning and navigation is more important than that of 

absolute navigation and position as provided by RTK GPS 

in many applications. For example, it is desirable to drive 

robotic vehicles to follow crop lines in accuracy of  

centimetres or follow the tracks left by previous tractor 

operations. Multi-modal systems based on a combination 

of GPS, INS, LiDAR, vision, etc have further potential for 

providing accurate and robust solutions, without requiring 

in-field infrastructure such as beacons.

Several attempts have been made to utilise seed and weed 

mapping concepts by passively recording their geospatial 

location using RTK GPS. Farming robots can be further 

equipped with pattern classification techniques that can 

predict the density and species of different weeds using 

computer vision. Other methods focus on a dense semantic 

weed classification in multispectral images captured by  

UAVs [28].

With the addition of advanced vision systems, including 

depth perception, scanning sensors such as LiDAR and 

artificial intelligence for decision making and classification, 

the concept of precision can be taken to another level.  

The ability offered by ground based robots to precisely 

control the location of scanning sensors, such as LiDAR, 

opens up the possibility to return quantified biomass 

estimates over whole crops as well as related phenotypic 

data, such as growth rates and morphology, through the 

integration of accurate location data with rangefinder scans 

using simultaneous localisation and mapping (SLAM) 

techniques. Similarly, robotic sensing platforms offer the 

potential for broad area analysis of insect pest or pollinator 

movement and their speciation, utilising 3D microphones 

alone or in combination with light backscatter measurements 

to enable daylight measurements of characteristic flight 

trajectories. Thematic maps can be built up for diseases, 

pests or weeds, which enable variable rate treatments,  

a key concept in precision agriculture.

Crop monitoring 

The use of both land-based and aerial platforms can 

allow the third dimension to be accurately added to 

the management of crops using data fusion and SLAM 

techniques. This can be combined with virtual reality or 

augmented reality (VR/AR) systems to provide monitoring 

and intervention possibilities to an individual plant scale. 

Long-term data collection will further enable the modelling 

of crops over time, for example, tracking the development 

of the crop canopy, and thus improved prediction of future 

growth patterns.

Such ground and aerial robotic platforms offer additional 

prospects for enabling localised extremely high signal-to-

noise, high resolution sensing that may not be achieved 

by passive remote (satellite) or semi-remote (rotary or fixed 

wing UAV) sensing technologies. At the simplest level, these 

robotic platforms offer the potential to extract close proximity 

(within 10s of millimetres) reflectance and transmission.
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Multispectral Imaging (MSI) data helps compensate for 

the erroneous measures that occur due to the surface 

topology and orientation of individual crop tissues. At a 

more advanced level, the use of robotic manipulators to 

locate sensors around crops or livestock could enable 

responses to be tested and examined, through applying 

artificial stimuli. For example, through applying a focused 

beam of light at specific areas of crop tissue, and then 

modulating the spectrum and intensity, it is possible to 

drive photochemistries within specific parts of plants, e.g. 

stems, young leaves, senesced older leaves, etc., which 

can then be sensed via multispectral imaging. In this way 

significantly greater phenotype information may be recovered 

from across plants than could be achieved by passive 

fixed imaging detectors alone. Similarly, the cell structures 

and arrangements within fruits, vegetable and meats may 

be non-destructively examined in high resolution, e.g. for 

mapping subcutaneous bruising in fruits or fat ratios in 

meats. Nutrient and water stress of crops can be assessed 

by fusing MSI data with other data sources. Combining 

these assessments with crop growth models gives a better 

prediction of yield and loss, which leads to improved farming 

management and better food supply chain management.

Robotic vision 

Machine vision approaches offer significant opportunities for 

enabling autonomy of robotic systems in food production. 

Vision-based tasks for crop monitoring include phenotyping 

[29], classifying when individual plants are ready for harvest 

[30], and quality analysis [31], e.g. detecting the onset of 

diseases, all with high throughput data. Vision systems are 

also required for detection, segmentation, classification and 

tracking of objects such as fruits, plants, livestock, people, 

etc., and semantic segmentation of crops versus weeds 

[32, 33, 34], etc. to enable scene analysis (understanding 

“what” is “where” and “when”) and safe operation of robotic 

systems in the field. Robotic vision in agriculture requires 

robustness to changes in illumination, weather conditions, 

image background and object appearance, e.g. as plants 

grow, while ensuring sufficient accuracy and real-time 

performance to support on-board decision making and 

vision-guided control of robotic systems. Active vision 

approaches, integrating next-best-view planning, may be 

needed to ensure that all the relevant information is available 

for robotic decision-making and control, e.g. where the 

fruit or harvestable part of a crop is occluded by leaves or 

weeds. Approaches based on analysis of 3D point clouds, 

e.g. derived from stereo imagery or RGB-D cameras, 

offer significant promise to achieve robust perception in 

challenging agricultural environments [30, 35].

Machine vision is already making an early impact in animal 

monitoring, e.g. for weight estimation, body condition 

monitoring [36] and illness detection [37] in pigs, cattle 

and poultry. Individual animal identification, e.g. using facial 

recognition techniques adapted from work in human facial 

biometrics [38], will allow more targeted precision care and 

timely interventions for individual animals, thereby ensuring 

their healthcare and wellbeing as well as optimising farm 

production.

Robotic vision often depends closely on machine learning 

from real-world datasets, with approaches such as deep 

neural networks [39, 29, 40] gaining traction and further 

raising the possibility for robots to share their knowledge by 

learning from Big Data. An open challenge in robotic vision 

and machine perception for robotic agriculture is to enable 

open-ended learning, facilitating adaptation to seasonal 

changes, new emerging diseases and pests, new crop 

varieties, etc. Most existing work considers only the initial 

training phase prior to deployment of a robot vision system, 

but not the ongoing adaptation of the learned models during 

long-term operation. The development of user interfaces for 

“ground truthing” and semi-supervised learning in robotic 

vision systems for agriculture is also an open challenge.
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3.3 PLANNING AND COORDINATION

The true potential of robotics in agriculture will be harnessed 

when different types of robots and autonomous systems 

are brought together in a systemic approach. For example, 

UAVs are an excellent platform for environment monitoring, 

but with limited payloads and operational durability they 

are constrained when it comes to delivery of intervention or 

treatments on a larger scale. Hence, ground and airborne 

vehicles need to be integrated into heterogeneous fleets, 

coordinated either centrally or in a distributed fashion.

Planning, scheduling and coordination are fundamental to 

the control of multi-robot systems on the farm, and more 

generally for increasing the level of automation in agriculture 

and farming. For example, intelligent irrigation systems can 

respond to the change of weather conditions and crop 

growth status to automatically optimise the irrigation strategy 

so as to reduce the use of fresh water without loss of yields. 

The optimised strategy (e.g. when, where and the amount  

of water) is then implemented by computer-controlled 

irrigation equipment.

Such coordinated fleets also pose requirements for in-field 

communication infrastructure, such as Wi-Fi meshes, WiMAX 

ad-hoc networks, 5G approaches or other proprietary peer-

to-peer communication methods deployed in field.  

On a larger scale, the heterogeneous fleets deployed  

in-field can also include collaborating humans sharing the 

working environment with their robotic counterparts, giving 

rise to interaction and communication requirements between 

the robots and the human operator and workers in this 

context. Example applications include in-field logistics,  

where vehicles need to be scheduled for area coverage  

and routing problems.

More generally, holistic approaches to fleet management are 

required, which fully integrate component methods for goal 

allocation, motion planning, coordination and control [41]. 

These sub-problems have so far largely been studied  

in isolation, so basic research on integration and scaling  

to real-world scenarios is required. Aspects of swarm 

robotics could potentially be applied to fleet management 

systems in agriculture, as in the EU-funded ECHORD++ 

projects SAGA and MARS [42]. To enable robot-human 

collaboration, the fleets also need to be aware of the 

presence of humans and to predict likely human actions in 

order to anticipate potential collisions and ensure safety.  

In return, the motion of robotic systems needs to be legible 

to humans, to facilitate acceptance by and cooperation with 

their human counterparts.
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3.4 MANIPULATION

Automated manipulation and grasping of food items 

presents a series of unique challenges compared to 

other sectors. These include significant natural size and 

shape variations between examples of the same product, 

heterogeneous positioning of products (e.g. during 

harvesting) and the fragile nature of food products. Some 

areas of food harvesting have been successfully automated 

but these solutions are best suited to situations where the 

entire content of a field becomes ready for harvest at the 

same time, e.g. grains or root vegetables. If plants fruit 

over an extended period of time with only some ready to 

harvest at any particular time (e.g. tomatoes) automation 

struggles. This is because discrete items must be harvested 

individually without disturbing those around them and, due 

to the dexterity, advanced perception and decision-making 

required, human labour is still widely used.

Soft robotics [43, 44] is expected to play an important 

role. Soft end-effectors and grippers are needed for gently 

handling soft fruit and vegetables, such as soft robot hands 

for lettuce harvesting and suction devices for picking 

apples. Robots are increasingly made softer also on the 

actuator/joint level. Whereas stiff robot arms are suitable 

for blind operation in a factory environment, an agricultural 

manipulator requires sensorimotor coordination to achieve 

its task. Some tasks also require the right amount of force 

to be applied, dictating a force-based rather than position-

based approach to control. In general, grasping and 

manipulation applications in Agri-Food require robustness 

to the unforeseen, while maintaining their ability to actuate 

with precision. One way to achieve this is through variable-

stiffness actuators [45], which incorporate elastic structures, 

much like humans.

The development of compliant manipulators and grippers 

will in turn transform and simplify the design of agricultural 

robots by reducing the need for complex visual and tactile 

sensors. For this potential to be fully unlocked, novel design 

and control techniques need to be developed. Grasp 

planning is also a significant challenge. The most common 

approach is to use vision systems to locate products and 

use this to direct the grasp. However, this approach can 

fail if the object to be grasped is partially obscured by 

other products or foliage. Vision alone provides only limited 

data about an object during grasping and picking; human 

operators also use tactile feedback to adjust their action as  

a product is grasped to ensure it is picked successfully.
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3.5 HUMAN-ROBOT INTERACTION

The challenges for interaction range from domain-

independent aspects such as intuitive designs, immersive 

displays (e.g. Virtual and Augmented Reality) and tactile 

feedback, to very specific challenges stemming from the 

in-field conditions. Examples include the design of suitable 

interaction devices that are operable under harsh conditions, 

with constrained dexterity and precision of the operators, 

e.g. workers wearing gloves or having wet and muddy 

hands, or to guarantee the safety of often large and heavy 

semi-autonomous machinery in an environment shared 

with human workers. In contrast to robots in factories, 

where working areas can be fenced off when a robot is in 

operation, agricultural robots are limited by the absence  

of safety infrastructure in the fields, and require new 

innovative solutions.

Human-robot collaboration 

Robots closely collaborating with humans (so-called cobots 

[46]) are delivering real step changes in many industrial 

sectors, and are anticipated to be vital to automation in 

agriculture. Use cases range from farm in-field logistics 

(transportation), where efficient and safe hand-over of 

goods and produce needs to be facilitated, to applications 

enhancing animal and crop welfare by means of integrated 

monitoring and intervention delivery. An illustrative example 

is the RASberry project at the University of Lincoln, where 

human pickers of strawberries are supported by mobile 

robots acting as transporters.

While some tasks for cobots require physical interaction 

between robots and humans, in other areas robots can 

act as a mediator or provide a remote presence for 

agronomists and farmers. Therefore a focus on intuitive and 

ergonomically appropriate interfaces and interaction design 

is needed. Concepts of shared autonomy and control, 

allowing operators to exercise control from remote locations 

over a potentially heterogeneous (ground, air, water) fleet 

of semi-autonomous robots, will also be important. As the 

technology matures, and in particular for safety-critical 

tasks, various levels of shared autonomy will be seen, where 

the human operator guides the high-level execution, while 

the robotic system performs the required sensorimotor 

coordination on the ground. The fan-out [47], or number of 

robots a human can control simultaneously, will help drive 

the mixture of human supervisors and robot agents in such  

a paradigm.

Safe human-robot interaction 

By relying on humans as supervisors, the autonomy levels, 

and associated risks and design complexities, can also be 

improved. Human supervision will be a vital safety factor for 

most agri-robotic systems for the foreseeable future, while 

the technology develops towards higher levels of autonomy. 

The robotic systems will also be learning and adapting 

to task and farm-specific constraints. Human and robot 

collaborators will therefore likely be mutually adapting to 

each other, in order to maximise performance.
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Approaches to safe physical Human Robot Interaction 

(pHRI) [48, 49] include supervisory systems to monitor 

the interaction and adjust the behaviour of the robot if an 

unsafe situation is identified. This typically involves slowing, 

or completely stopping the robot, to prevent accidents. 

However, this approach can significantly reduce productivity 

as the robot is not working to its full potential. Current 

research aims to improve on this approach by allowing 

robots to identify and predict unsafe situations, and then 

to adapt and adjust their operation to continue the task 

in a manner that allows both productivity and safety to be 

maintained [50]. A further approach to ensuring safe pHRI is 

to design robot systems which are inherently safe, meaning 

that if collisions occur between human and machine, injury 

will not result. The aim is to replicate the safe interaction 

that occurs when multiple people work collaboratively. 

This requires a change away from heavy, rigid and high 

inertia robots to systems which are more akin to biological 

creatures. Again this is a challenge that the new field of soft 

robotics may be able to address.

3.6 LEARNING AND ADAPTATION

Artificial intelligence technologies, especially in machine 

learning, are expected to play a major role in most of the 

above technology areas, and will be essential enablers for 

agricultural robots. Agricultural environments are subject 

to changes throughout the lifetime of a robotic system. For 

example, there may be new crop varieties, weeds, pests, 

diseases, treatments, legislation, climate change, etc., as 

well as new implements and robotic technologies. In AI 

terms this means dealing with an open world, so techniques 

to enable adaptation during operation rather than at the 

design phase will be crucial. Techniques that allow robots 

to learn from experience include reinforcement learning, 

learning from demonstration, and transfer learning to 

exploit prior knowledge, e.g. from another domain or task. 

Ongoing research is investigating deep learning methods 

[40], especially in perception-related tasks involving the 

interpretation of sensor data, including recognition and 

segmentation tasks in automated weeding and fruit picking. 

Robots will also need to leveragehuman knowledge, 

especially when facing situations that were not foreseen at 

design time. This additional input might be given by end-

users, maintainers, and/or domain experts. It might also be 

provided through direct control (i.e. teleoperation), natural 

interaction (e.g. via language or gestures) or by the means 

of labelled examples and data sets. These developments 

will link naturally into the use of Big Data in smart farming 

[19], alongside the use of satellite imaging, UAVs and 

ground robots for more localised and richer, multimodal data 

collection. These developments coupled with cloud-based 

storage will create an abundance of information that could 

potentially be utilised for smart planning and control of 

agriculture. An important requirement is the standardisation 

of data to ease the exchange between robots, domains, 

farms, countries and companies.
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RAS technologies have the potential to revolutionise all 

agricultural sectors. The nature of their contribution will 

differ across agricultural types, i.e. crops, livestock and 

aquaculture, and from phenotyping through to primary 

production activities. Across this spectrum there are many 

ways that robots could contribute, both economically 

(e.g. growing and harvesting more efficiently and cheaply), 

ecologically (e.g. reducing and eliminating the use of 

chemicals, while helping to maintain soil health) and ethically 

(e.g. increasing animal welfare via monitoring and timely 

intervention). In parallel, robotics may enable automation in 

the care of livestock and aquaculture or alternative growing 

systems, such as ‘vertical’ (protected-environment) farming  

or agroforestry systems combining agriculture and forestry 

on the same land.

The technology challenge areas for agri-robotics tend to 

divide into two classes: (1) Breeding / Phenotyping and 

(2) Farming / Primary Production. There is then a whole 

additional sector of post-harvest Agri-Food activities for 

robotics, which fall outside the remit of this white paper. 

Taking conventional terrestrial arable agriculture as a farming 

exemplar, the challenges can be illustrated as follows. 

Direct parallels may then be extrapolated for livestock and 

aquaculture as well as non-conventional farming systems, 

e.g. organic or ‘vertical’, however for the purposes of brevity 

these have been excluded from the narrative below. 

Phenotyping

 •  Laboratory: The identification and selection of genetics 

with beneficial abiotic (e.g. drought or saline tolerance) 

or biotic (e.g. fungal viral or bacterial disease resistance) 

input traits and complementary output traits (e.g. nutrient-

to-biomass conversion, shelf-life, flavour or nutritional 

qualities) is conventionally undertaken within controlled 

laboratory environments. These breeding activities have 

seen a degree of robotic integration in recent years 

to reduce the reliance on manual intervention, but the 

cost and complexity of implementation, as well as the 

questionable reliability and technology-readiness of the 

current systems, has limited their uptake.

•  Field: While laboratory phenotypic screens may be 

important for identifying beneficial breeding lines to cross, 

they are only a proxy for the primary goal of determining 

how that crop may thrive in real-world conditions. 

Robotics opens up the potential for mass direct in-field 

phenotyping of crops under true farm conditions [51, 

52]. Such uncontrolled ‘non-laboratory’ systems raise 

significant challenges over the singular identification of 

the specific trait that resulted in a beneficial phenotypic 

response. The robotic capability for repetitive and detailed 

assessment of the environment of individual plants opens 

up the potential for a paradigm shift in the development  

of agri-genetics.

Crop Management

 •  Establishment and Seeding: Ploughing is one of the 

most important primary cultivation processes, and 

involves the inversion or mixing of topsoil to prepare a 

suitable seed bed. Currently modern agriculture uses 

a huge amount of energy in ploughing: it is estimated 

that 80%-90% of the energy in traditional cultivation is 

used to repair the damage done by large tractors. Small, 

smart, electric robots provide an alternative solution, 

by avoiding excessive compaction of the soil in the first 

place, and performing micro-tillage using on-board 

implements. Nutrients could also be better targeted to 

the local environment of individual seeds using precision 

approaches. Seed placement and mapping could be 

further automated to optimise the density and seeding 

pattern with respect to the requirements for air, light, 

nutrients and ground moisture of the individual crop 

plants. Robotics will also have an important role to play  

in managing the inputs to primary production, including 

both monitoring and interventions, particularly for soil [53] 

and water [54].

•  Crop Care: One of the main operations in crop 

management is scouting to collect timely and accurate 

information. Autonomous robots carrying a range of 

sensors to assess crop health and status could thus 

assist in cost-effective data collection. Both aerial and 

ground-based platforms, or their combination [55], could 

be utilised. Fusing data collected by different devices or 

obtained from sources with a wide range of temporal 

and spatial resolutions and automatically interpreting 

data impose a number of interesting research challenges. 

Weed mapping involves recording the position and 

density (biomass) of different weeds species using 

machine vision. The resulting weed map can be further 

interpreted into a treatment map. Robotic weeding is an 

active area of current research, investigating alternative 

methods to kill, remove or retard unwanted plants without 

causing damaging to the crop. Intra-row weeding is more 

difficult than inter-row weeding, as it requires precise 

positioning of the crop plant. Alternative methods for 

4. THE CHALLENGES 
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weed control include vision-guided mechanical weeding, 

selective (micro-) spraying and laser weeding. Irrigation is 

another area where robots could assist in targeting water 

in the right place at the right time. Pre-harvest assessment 

and yield forecasting [56] by robotic sensory systems will 

further assist in choosing the right time to harvest the crop

•  Selective Harvesting: Selective harvesting involves 

harvesting only those parts of the crop that meet certain 

quality or quantity thresholds [57]. Two criteria are 

needed: the ability to sense the required quality factor 

before harvest (in-field grading) and the ability to harvest 

the product of interest without damaging the remaining 

crop. Selective harvesting presents several challenges for 

current robotic technology, perhaps the foremost of which 

is how to perform autonomous sensorimotor coordination 

with noisy and incomplete sensory data in the complex 

agricultural environment. This will likely require enhanced 

machine vision for recognition, segmentation, spatial 

localisation and tracking, as well as specialist robotic 

technology that is both robust and precise. Precision has 

traditionally been provided through stiff and easy-to-model 

robot mechanics. However, the increased computational 

resources available on robot platforms could enable some 

of the burden of precision to be handled through software 

and sensing, while allowing the robotic harvesting 

implements to become more passively compliant, safe 

and robust. Another challenge is to determine how much 

the robotic system should be adapted to a given crop 

and growing environment, and how much the growing 

environment should be adapted to enable better selective 

harvesting with robotic systems. There are interesting 

trade-offs to be made in this space, and which might 

differ from crop to crop. A related question is how to 

make sure the utilisation of expensive robotic hardware 

is maximised through the year, in particular for seasonal 

crops like soft fruits. Possibilities include development 

of adaptive technologies able to switch between tasks 

sharing common device capabilities, such as fruit picking 

and tree pruning.

Finally, there may be many additional opportunities for 

serendipitous parallel usage of autonomous robots alongside 

other field operations, for example, helping to monitor and 

secure  farm equipment from theft and criminal damage, or 

protecting the sensitive habitats and species of wildlife that 

often coexist with agriculture. 

THE OPPORTUNITIES FOR ROBOTICS AND AUTONOMOUS SYSTEMS IN AGRICULTURE
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5. BARRIERS, CONCLUSIONS AND RECOMMENDATIONS

This white paper is about the future development of UK 

agriculture. RAS technologies in agriculture will become 

ubiquitous in the next 5 to 10 years. Robots are helping us 

to determine the input quantities in order to achieve desired 

outcomes. This white paper highlights the main trends. There 

are many challenges and strains in the current state of the 

technology for agriculture and the mechanisms for its control 

and governance.

However, there are particular barriers to realising the potential 

of RAS technology for agriculture, including the following;

1.  The UK RAS community with an interest in Agri- Food RAS 

is small and highly dispersed. There is an urgent need to 

defragment and then expand the community.

2.  The UK RAS community has no specific training paths or 

Centres for Doctoral Training to provide trained human 

resource capacity for RAS within Agri-Food.

3.  The UK government is investing significant sums, including 

a new Industry Strategy Challenge Fund (ISCF) Wave 2 call 

(Transforming Food Production: from Farm-to-Fork), where 

RAS technologies have a key role. This recognises the 

demand, but we believe there is a danger of a mismatch 

where there is insufficient ongoing basic research in  

Agri-Food RAS to underpin onward innovation delivery  

for industry.

4.  There is a realistic concern that RAS for Agri-Food 

is not realising its full potential, as the projects being 

commissioned currently are too few and too small-scale. 

RAS challenges often involve the complex integration 

of multiple discrete technologies (e.g. navigation, safe 

operation, grasping and manipulation, perception). There 

is a need to further develop these discrete technologies 

but also to deliver large scale industrial applications that 

resolve integration and interoperability issues.

5.  The successful delivery of RAS projects within a sector 

domain, such as Agri-Food, requires close collaboration 

between the RAS community and with academic and 

industry practitioners. For example, the breeding of crops 

with novel phenotypes, such as fruits which are easy to 

see and pick by robots, may simplify and accelerate the 

application of RAS technologies. Therefore, there is an 

urgent need to seek new ways to create RAS and Agri-

Food domain networks that can work collaboratively to 

address the major challenges. This is especially important  

for the Agri-Food domain since success in the sector 

always requires highly complex cross-disciplinary activity. 

Furthermore, within UKRI most of the Research Councils 

(EPSRC, BBSRC, NERC, STFC, ESRC and MRC) and 

Innovate-UK directly fund work in the Agri-Food domain, 

but as yet there is no coordinated and integrated Agri-

Food research policy per se.
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There is a range of technical problems that need to be 

addressed in a systematic and visionary manner. What are 

the potential solutions to these problems? The following 

recommendations are suggested to the government,  

funding agencies, industry and research centres:

 •  UKRI, including Research England, funding is required to 

train and expand human expertise for Agri-Food RAS.  

This may include Centres for Doctoral Training but should 

also provide provision for lower-level skills development 

through to apprentice level.

•  The community needs to be defragmented. We 

recommends the investment in Network+ grants to 

stimulate and condense the community alongside the 

establishment of larger scale Agri-Food RAS hubs 

including demonstration farms. We recommend that these 

hubs are virtual and multi-centred, working tightly with 

farmers, companies and satellite universities to create 

the infrastructure to catalyse RAS technology. We do not 

believe any single UK centre currently provides the scope 

and capacity of expertise to deal with all the fundamental 

RAS challenges facing the sector. Given the global impact 

of Agri-Food RAS, we also recommend the UK secures 

international collaboration to accelerate RAS technology 

development.

•  We recommend any new networks must comprise 

academic and industry Agri-Food domain expertise (crop 

and animal scientists, farmers, agricultural engineers), as 

well as representation from national RAS and government 

laboratories (such as the Agri-Tech Centres and Catapults), 

to ensure RAS solutions are compatible with industry 

needs. We believe many solutions to Agri-Food challenges 

will come from integrating RAS with more traditional 

technologies (agricultural engineering, crop and animal 

sciences, etc).

•  The UK Research Councils, such as the EPSRC, 

STFC, ESRC, BBSRC, NERC and MRC, would benefit 

significantly from a coordinated Agri-Food research 

foresight review that integrates RAS technologies.  

A foresight review would help recognise the complex 

cross-disciplinary challenges of Agri-Food per se, but  

also how RAS can be integrated into a wider program. 

This in turn could encourage more effective responsive 

mode applications aligned with RAS application areas  

in Agri-Food.

•  To deliver impact, Agri-Food RAS needs to integrate 

multiple technologies and resolve significant interoperability 

issues. We recommend that UKRI commissions a small 

number of large scale integration or “moon shot” projects 

to demonstrate routes to resolve these issues and deliver 

large-scale impact.

•  With the new changes there is a big potential for 

cooperation with China, India and other countries in 

addressing global challenges such as sustainable food 

security (see, for example, the UKRI Global Challenges 

Research Fund). The UK has an instrumental role in this 

process and at the same time these new collaborations 

have the potential to open new avenues.

•  The ongoing and large-scale government investment 

behind high TRL (e.g. Innovate UK led) research 

addressing Agri-Food sector needs is impressive. 

However, these investments will not succeed without 

investment in large-scale lower TRL research.
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Our vision is a new generation of smart, flexible, robust, 

compliant, interconnected robotic and autonomous 

systems working seamlessly alongside their human 

co-workers in farms and food factories. Teams of 

multi-modal, interoperable robotic systems will self-

organise and coordinate their activities with the “human 

in the loop”. Electric farm and factory robots with 

interchangeable tools, including low-tillage solutions, 

soft robotic grasping technologies and sensors, will 

support the sustainable intensification of agriculture, 

drive manufacturing productivity and underpin future 

food security.
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