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ABSTRACT Precision Agriculture (PA) is a management strategy that utilizes communication and

information technology for farm management. It is a key to improve productivity by using the best

agricultural practices and optimal usage of resources. Agriculture faces diverse challenges due to soil

degradation, climate variation, and increasing costs. To unfold these challenges, PA uses Wireless Sensor

Networks(WSNs) and exploits acquisition, communication, and processing of the data as basic enabling

technologies to amplify the crop yield. Also, many other multidisciplinary technologies are supporting PA

in finding the most novel use cases for PA. The use of Machine Learning (ML) and Artificial Intelligence

(AI) has transformed PA at almost every level. The fog/edge paradigm is mitigating many challenges such as

network bandwidth and security by bringing computation closer to the deployed network. At the same time,

Software Defined Networks (SDN) brings flexibility, big data assists in handling data, and nano-technology

plays a crucial part in driving the innovation in PA. This paper delves into ways these technologies are

transforming PA in respective tracks, exhibiting the significance of integrating multidisciplinary approaches

towards the future of PA. In addition to a comprehensive survey, this paper proposes a multidisciplinary

architecture: AgriFusion, for efficient and cost-effective agriculture solutions. A list of industrial solutions

for different aspects of farm management and their underlying focused technology have been highlighted.

This can help to align research and industrial goals for PA. Furthermore, this paper defines a step approach

to describe the performance dichotomy between resource availability and objectives for PA. In addition,

solution architecture is proposed for designing Key Performance Indicators (KPI) in PA. In the end, some

open research issues in implementing PA and respective future scopes have been presented.

INDEX TERMS Internet of Things (IoT), Key Performance Indicators (KPI), precision agriculture, smart

farming, sensor networks

I. INTRODUCTION

T
HE Internet of Things (IoT) in recent years is directing

a paradigm shift in all the areas of human-machine

interaction. From the healthcare industry to manufacture and

from agriculture management to infrastructure, IoT has been

massively adopted. The projections from IoT Total Address-

able Market (TAM) show that the number of IoT-connected

devices in the world will grow from 7.6 billion to 24.1 billion,

with revenue tripling from USD 465 billion to over USD 1.5

trillion [1]. There is a rapid shift evolution from conventional

agriculture to farm management being controlled by different

IoT companies. The adoption of advanced IoT technologies

is helping growers in producing higher yields from farms

for catering to the rising demand. According to the new

market research published by Meticulous, the agriculture

IoT market is expected to grow at a Compound Annual

Growth Rate (CAGR) of 15.2% from 2020 to reach $32.7

billion by 2027 [2]. The technology advancement in IoT is

allowing both small and large-scale farmers to implement

Precision Agriculture (PA), which is a data-based manage-
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ment approach for farms to enable optimization, responding

to variability in crops.

The key features of IoT include battery-constrained sensor

nodes connected over a network, supporting data sensing,

and post-collection analysis. An explanation for the phrase

“IoT” as put forth by IEEE, is “a network that connects

uniquely identifiable Things to the Internet. The Things have

sensing/actuation and potential programmability capabili-

ties” [3]. IoT essentially uses connected devices to perform

a plethora of tasks like process monitoring, environmental

sensing, and health monitoring. Wireless Sensor Network

(WSN) are the most crucial underlying technology for IoT.

A WSN is a network formed by deploying sensors to collect

and forward the data to the enterprise/cloud for further pro-

cessing. This precise data from the sensors, aerial devices,

and IoT solutions are used for predicting climate change, in-

creasing farm productivity with environmental sustainability,

monitoring, and having a proactive reaction to crop perfor-

mance. It also helps in choosing a suitable crop by observing

and measuring the demand or dependent factors.

Consumer demand for agriculture is growing rapidly (59%

to 98% by 2050) [4] with an increased proliferation of tech-

nologies. The demand builds inevitable pressure on farmers,

resulting in different sources of stress such as plunging com-

modity prices, increasing debt, and usage of chemicals. In the

last few years, several thousands of farmers have committed

suicide because of crop insecurity, which deserves decent

attention [5]. Farmers are also faced with dwindling fossil

fuels, limited natural resources, and changing climate. To

tackle this foremost issue, farming has seen a major trans-

formation towards a more industrialized and technologically

driven approach. Characteristic features of generic PA and

IoT-based PA is mentioned in Section II and shown there in

Table 2. IoT technology carries a high potential in the sphere

of agriculture to transform agriculture in several aspects, pri-

marily by lowering the production risks. It provisions a farm

management concept that uses a combination of data, sen-

sors, and communication to tailor the farming requirement.

By using various smart devices, farmers can predict better

with an improved efficiency that promotes sustainable growth

while cutting resources. Data collected from the sensors are

used to track the state of the crop growth and foresee the

output of the production. It also helps to see any anomalies

along with timely mitigation of the risks on crop growth. Few

smart automated IoT solutions such as fertilizing, irrigation,

or pest control can enhance crop quality and achieve high

volumes.

Precision agriculture is continuously evolving according

to the advances in the underlying IoT technologies. This

evolution aims at achieving a set of key features to improve

efficiency and boost crop yields. These features include (a)

Data metrics for monitoring (b) Decision making (c) Crop

protection and management (d) Reduce waste and opera-

tional cost (e) Crop variability (f) Data trend for several use-

cases and (g) and Pests control. Core features responsible for

designing and comparing Key Performance Indicators (KPI)s
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- Less available land and 
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FIGURE 1. A schematic representation of IoT enabling the demand for

precision agriculture and smart farming. [7]

of precision agriculture depend upon technological factors

such as sensors, mobility, real-time monitoring, connectiv-

ity, and ease of application deployment. The next industrial

revolution is having the agricultural sector already on board

and farmers are adapting the innovative technologies to meet

the food demand [6]. This empowers farmers to get the

support of farming decisions at the right time, right place,

and importantly with the right inputs.

The instigation of new technologies provides more tools

for fine-tuning and boosting PA decision-making. Wider

digitization of agri-food (producing food agriculturally) pro-

duction is enabling optimization and precise utilization of

inputs, that results in positive environmental impact. The

overall performance of PA is increasing with the utilization

of new technologies. Introduction of Machine Learning (ML)

optimizes the entire application by augmenting error correc-

tion, security, predicting traffic, data processing, and resource

management. One of the most important requirements for the

PA is low latency, it can be achieved by providing computa-

tion power locally in the network through edge or fog com-

puting. The Sensor Node (node) are conventionally energy

and computation restricted, but light-weight processing at the

edge helps in interoperability and isolating the node from the

core network. The sensors deployed for PA generate a large

volume of data. Thus, big data is an important aspect in en-

abling real-time analysis and context awareness. Blockchains

also enhances precision agriculture by making the solution

efficient, fast, and secure. Other emerging technologies like

Software Defined Network (SDN) and Artificial Intelligence

(AI) help in the virtualization of the network in real-time.

This leads to improved resource and energy utilization and

enhanced responsiveness for the application.

Motivation: Current statistics point to the requirement of

food with the declining availability of natural resources,

along with the explosive proliferation of IoT devices. The

food and agriculture organization of the United Nation re-

ports that: "The world is not on track to achieve Zero Hunger

2 VOLUME x, 202x



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116814, IEEE Access

Singh et al.: AgriFusion: An Architecture for IoT and Emerging Technologies based on a Precision Agriculture Survey

FIGURE 2. Research trend analysis using survey word similarities to

demonstrate the usage of multidisciplinary technologies for precision

agriculture.

by 2030. If recent trends continue, the number of people

affected by hunger would surpass 840 million by 2030" [8].

Figure I shows the agricultural challenges that need immedi-

ate attention through PA and IoT. It also illustrates the major

application domain that can be covered with an IoT solution

to handle the agricultural challenges. Agriculture is projected

to be one of the crucial and dominant applications of IoT.

The requirements for IoT solution to achieve PA differs

from crop to application-specific use-case. AI, ML, nano-

technology, energy-efficient framework, and development of

the sensor networks are transforming the entire PA solution.

Energy harvesting and remote sensing have revolutionized

the network management, design, and architecture of the

PA framework. Blockchain and big data are helping in fast

analysis and diagnosis with enhanced privacy features. There

are fair amounts of comprehensive surveys that explore PA

and underline standalone technology. However, this study

aims at integrating all the emerging multidisciplinary tech-

nologies and presenting a comprehensive review of their use

in PA. This becomes much relevant as, one of the reports

by BBC says: Algorithms, drones, and robots can make

farming a lot friendlier to the environment but need to work

in collaboration [9].

Contribution: This paper targets to present an in-depth sur-

vey of different technologies contributing to PA. Agriculture

is transforming with the advances in different technologies

as shown in Figure 2, there is a necessity to accumulate and

unify the work. We can outline our contributions as depicted

in Figure 3 and described below,

1) We provide an overview on relevance and requirement

of the PA in current state-of-the-art.

2) Various PA solutions and architectures based on differ-

ent applications are presented.

3) We explore, classify, and analyze the complementing

future technologies for PA. The literature on ML, AI,

edge computing, blockchain, nano-technology, remote

sensing, energy harvesting, WSN, cloud and edge/fog

based computing, different IoT architectures, and simu-

lators in the context of PA is presented. To the best of our

knowledge, this is the first work that does a comprehen-

sive survey on interdisciplinary emerging technologies

in the context of PA.

4) Our main contribution lies in introducing the signifi-

cance of the fusion of multidisciplinary approaches for

the future of PA. We propose these technologies at each

layer of IoT for an optimized architecture as AgriFusion.

5) The analysis of industrial solutions for PA and their

focus technology is briefly discussed, identifying the

trend and map the industrial development with research

scope.

6) We list and propose a generic step approach to designing

the KPIs for any PA application.

7) Finally, we identify the future research directions in PA

that exploits the novel technologies along with open

issues based on a literature survey.

We have aimed to layout a consolidated state-of-the-art sur-

vey for the research community that would be instrumental

in the adaptation and deployment of optimized PA. Table 1

gives an overview of the technology coverage of available

survey papers in contrast to our work. Most of the survey

papers are technology specific, however in contrast this work

covers all the technologies aligned with PA.
Paper Organization: The paper organization is as follows.

Section II covers the related work and Section III gives a brief

description and alignment of IoT with PA. Section IV de-

scribes the basics of emerging technologies for PA. Section V

discusses the industrial-based solutions and framework used

for PA along with their focused technology. Section VI dis-

cusses the implication of KPIs and its designing process for

the PA. Section VII unfolds the multidisciplinary architecture

for PA. Section VIII identifies future research directions

along with open challenges in implementing PA, and the last

Section IX presents the conclusion. Structure of the paper and

our contribution can be visualized through Figure 3.

II. RELATED SURVEY PAPERS

Precision agriculture is the term coined after variously de-

scribed smart farming notions like site-specific, prescription

farming, and variable rate technology for crop management.

IEEE has several standard frameworks, among which P2413-

2019 and IEEE 1451-99 [39] feature architectural framework

of the IoT and security harmonization respectively. These

standards are used for the implementation of IoT for PA

applications, where sensors and other devices can inter-

operate and collaborate without caring about the underline

communication. Each day, there’s plenty of development in

IoT applications, specifically in PA. Figure 4 shows the three-

tier architecture of an IoT solution for attaining precision

agriculture within the greenhouse. It shows different com-

ponents and interactions of data acquisition, data analysis,

and end-user application. Data acquisition is done in the

greenhouse by deploying the sensors. Data collected by these

sensors is forwarded to the gateway, followed by the cloud

for data analysis and data mining. The extracted and mean-

ingful information is shown in the application. All of these
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FIGURE 3. Structure of our survey.

interactions are supported by different technologies, such as

WSN, ML, AI, and likewise. The current literature explores

the association of various technologies for the PA thoroughly.

The various aspects of technologies and protocols involved

in the domain of agriculture is briefly covered in the re-

view [27]. It explores the major components of IoT that can

be instrumental for smart farming, along with the introduc-

tion to the various network topologies and network architec-

tures mapped with the layers of IoT. It connects IoT-based

technologies like big data, cloud computing, and analytics

to agriculture applications and also touches on the security

issues in agriculture. This survey doesn’t cover other major

technologies such as ML, AI, and insights into the fog and

edge computing. This gap is filled by building a distributed

model based on the agent for computing paradigms in [34].

It proposes a communication architecture to automate the

installation using operating rules and smart processes, but

eventually lacks in including ML and AI services for further

optimization. The survey by Tzounis et al. [18] is a detailed

overview of recent IoT technologies and their potential value

towards the agricultural sector. It delves into cloud comput-

ing, fog computing for the aspect of resource utilization, and

big data to improve and automate real-time processes. It also

brings the concept of interoperability among heterogeneous

devices to provide the added value of WSN as potential

value for future farmers. Literature review of different IoT

applications in the agriculture sector is done in [29]. It covers

WSN, communication protocols, and different network types

of IoT along with the major underline challenges in the field

of agriculture. It also discusses the country’s policies for IoT-

based agriculture but suffers from a deficiency in terms of

its discussion which is limited to projects and approaches. It

leaves out many aspects such as ML, network management,

and other emerging technologies in its discussion.

The review on big data technologies in the IoT domain

is done in [10]. It explores state-of-the-art across big data

technologies and suggests a conceptual framework. It sug-

gests how certain big data technology can be adapted to

other IoT domain applications. The discussion could have

been enriched with the inclusion of other technologies along

with covering big data. The survey by Wolfert et al. [11]

and Kamilaris et al. [13] expands the scope of big data

applications beyond smart forming towards the food supply

chain. The review aims to cover related socio-economic

challenges which can be solved through big data applica-

tions. It exhibits the interesting proprietary systems where a

farmer is part of a collaborative system for food production.

This paper is crucial due to bringing technological aspect in

socio-economic perspective, however lacks to bring in other

technologies supporting the economic growth. In contrast,

Wolfert et al. [11] takes an in-depth look into the advances

of big data in various industries and converges the approach

for agriculture application. It covers the study of around 34

solutions including tools algorithms and dimensions of big

data along with the analysis of overall impact. It reflects the

opportunities of big data for smart farming. In the end, it pro-

poses the requirement for the openness of data resources for

academic research and business ventures in the agricultural

domain.

IoT technologies such as radio frequency identification,

cloud computing, WSN, and other applications enabling

smart agriculture are discussed by Elijah et al. [22]. It show-

cases opportunities and trends towards application scenarios

and business, also emphasizes using data analytics over IoT

for enhancing productivity in the agriculture sector. The

critical aspect of future trends and opportunities carries the
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TABLE 1. Comparison of the State-Of-The-Art for precision agriculture with our work.

Group → PA Application Oriented Technology specific Survey Architecture / Framework
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Mouzhi Ge et al. [10] x x x x x x X x x x x

Wolfert et al. [11] x x x x x x X x x x x

Radoglou et al. [12] X X x X x x x x x x X

Kamilaris et al. [13] x x x x x x X x x x x

Khanna et al. [14] X X x x x x x x x X x

Torky et al. [15] X x x x x X x x x X x

Cisternas et al. [16] X X x X x x x x x x x

Glaroudis et al. [17] X x x x x x x x x X x

Tzounis et al. [18] X x X x x x X x X X x

Vuran et al. [19] X X X x x x x x x X x

Boursianis et al. [20] X x X X x x x x x X x

Jha et al. [21] X x x x X x x X x x x

Elijah et al. [22] X x X x x x x x x X X

Mohammadi et al. [23] x x x x X x X X X x x

Kulbacki et al. [24] x X x X x x x x x x x

Ali et al. [25] x x x x x X x x x x x

Ayaz et al. [26] X x X X X x x x x X x

Farooq et al. [27] X x X x x X X x X X X

Kour et al. [28] X x X x X x x x x x x

Farooq et al. [29] X x X x x x X x X x x

Bodkhe et al. [30] x x x x x X x x x x x

Tsouros et al. [31] x X x X x x x x x x X

Mekonnen et al. [32] X x x x X x x X x x x

Sishodia et al. [33] x X x X x x X x x x x

Francisco et al. [34] X x x x x x x x X X x

Shafi et al. [35] X X x X x x x x x x X

Thakur et al. [36] X X x x x x x x x X X

Vitali et al. [37] X X x X X x x x x X x

Ferrag et al. [38] X x x x x X x x X x x

This Work X X X X X X X X X X X

interoperability between different technologies, which is not

discussed in this paper. A brief overview of various WSN

technologies is presented by Thakur et al. [36]. It covers the

different environmental parameters for achieving precision

agriculture on different crops and also highlights different

sensors and communication technology used for PA. Several

research questions are designed in the discussion, but it does

not include the coverage of future applied technologies. The

survey by Glaroudis et al. [17] attempts to focus on the

basic characteristics and performance of the IoT application

for agricultural use cases. It provides KPIs to highlight the

suitability and challenges for an efficient implementation

of smart farming. This survey is a very brief classification

of the IoT protocols but does not identify the potential

in adopting future technologies based upon the underlying

methods. In contrast, Cisternas et al. [16], identifies the

type of technologies, framework, and their comparison to

decide which implementation suits the most. The findings

of this paper discuss that remote sensors are the most used

technology, but in essence do not compare or discuss other

emerging technologies and network management functions.

The study did by Khanna et al. [14], does the comprehensive

observation of IoT in regard to the upward market trend. It

covers the functional aspect of the IoT domain, connectivity

along with open issues but leaves an open-ended question -

"What will derive next generation of PA when technology is

not constant?". This question is answered through this paper,

i.e. integration of technologies towards common application

objective is the key for PA.

The overview of emerging technologies such as big data,

remote sensing, and the use of Unmanned Aerial Vehicle

(UAV) are shown in [12]. It emphasizes using remote sensing

technologies for better crop production, as remote sensing is

rapidly increasing in the past few years with the availability

of high-resolution images. UAVs play an important role in

powering remote sensing in PA applications. In the same

context, the author also discusses the use of UAVs for ob-

taining high-resolution images for PA applications. It covers

the spectrum of technologies but exhibits the challenge to in-

tegrate all and come up with a reliable workflow application.

VOLUME x, 202x 5
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FIGURE 4. A schematic representation of the three-tier architecture of the IoT solution for precision agriculture in a greenhouse. The figure demonstrates data

acquisition from the greenhouse, analysis, and application.

The survey by Boursianis et al. [20], Kulbacki et al. [24], and

Sishodia et al. [33] provides an overview of the potential use

of UAVs in PA. It focuses on soil mapping and production

mapping using Global Positioning System (GPS) data by

examining the different methodology and applications for

aerial crop monitoring and other tasks such as sprinkling over

the crop. Over time, UAVs have increased capabilities and

have expanded their applications in complex terrain. Drones

help in providing high-quality remote sensing by providing

spectral imaging. It gives a nice sketch of remote sensing

combined with UAVs for agriculture operations like Variable

Rate Application (VRA) and displays the role of UAVs in

various sectors of PA including weed management, plant

growth, and crop disease management. It helps in transform-

ing traditional practices into bringing intelligence but can

be further exploited by using ML and AI along with edge

computation for power efficiency and analysis.

The security and privacy-preserving technologies for adap-

tation of IoT technology in agriculture are covered by Ferrag

et al. [38]. The main focus of this work is on blockchain

based solutions, along with a consensus algorithm for PA.

It also provides a classification of threat models, privacy, and

integrity properties for IoT-based agriculture solutions. The

detailed study of the blockchain in IoT-based PA solutions is

undertaken by Bodkhe et al. [30] for an efficient trustworthy

and secure ecosystem. The survey proposes an analysis of

traditional solutions in regard to attacking models to maintain

trust and transparency in deploying blockchain for irrigation

systems. It includes the study of country-specific projects

that can be referred to as blockchain based agricultural so-

lutions. Besides, Torky et al. [15] proposes novel blockchain

models specifically for the IoT-based agriculture systems.

There remains a lot of research directions in the security

space of blockchain that is discussed by Ali et al. [25]. It

brings the attention of leveraging blockchain with emerging

technologies such as big data and ML along with tackling

6 VOLUME x, 202x



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116814, IEEE Access

Singh et al.: AgriFusion: An Architecture for IoT and Emerging Technologies based on a Precision Agriculture Survey

TABLE 2. Characteristic features of generic PA and IoT enabled PA with the help of progressive technologies.

Sr. No. Generic Precision Agriculture IoT characteristics enabling Precision Agriculture

1 Uses multi-year crop growth characteristics in accordance to terrain
attributes.

Provides detailed metrics for agricultural monitoring.

2 Usually estimates risk with historical data. Efficiency in predicting risk and yield with improved decision-
making.

3 Data is mostly collected from field using basics such as tractors,
sprayers, planters, etc.

Access to necessary data from any device.

4 Uses static indicators (hail, drought, rain, etc.) for the crop manage-
ment.

Management of applications like irrigation and automated planter
controls with better crop protection.

5 Controlled approach by using regular data during the crop cycle. Identify trends and developing pattern using technologies like AI and
ML.

6 Usage of indicators such as soil, field history, resistivity, colouring for
the growth prediction.

Usage of UAVs and multi-spectral sensors to determine the health of
the plant.

7 Estimates the yield by tracking the crop status (disease level, water
stress, and other point indicators).

Lowers the production risk by foreseeing the output of the production
and mapping with distribution demand.

8 High level process automation with manual assessment of the growth. Process automation by using self-commissioning the growth.

9 Incorporating security using field devices and local storage. Implying data security in the PA by end-to-end encryption.

constraints of IoT edge for transactions.

Various key drivers of IoT in the agriculture industry along

with major hurdles in the technology implementation are

reviewed by Ayaz et al. [26]. An introduction to the major

applications for smart agriculture and underline services is

presented at a very high level, including major equipment

and technologies. The survey by Jha et al. [21] talks about

different automation practices using Deep Learning (DL),

AI, and ML. This paper discusses the problems in the agri-

culture field like water management, crop disease, and the

potential solution by using these techniques. It also gives

a brief overview of automation in agriculture and proposes

a solution for the specific use-case of leaf identification

and watering using IoT. Mohammadi et al. [23] discussed

on DL, which is an advanced class of ML to facilitate

the analytics. It highlights the importance of DL towards

data analytics and introduces the underline challenges in

the extension for agricultural use-cases. The inclusion of

IoT along with emerging technologies needs the adaptation

of heterogeneity and interoperability that is covered in the

work of Kour et al. [28]. It highlights the development of

hardware and software systems, important public and private

projects, along with sustainable solutions in PA. However,

this survey doesn’t cover detailed insights into security and

the use of emerging technologies at different layers of IoT.

With more interconnected devices, the spatial and temporal

variations of data are increasing rapidly, thereby it is vital to

have intelligent processing and analysis. One of the ways to

achieve this is by using different ML algorithms. Mekonnen

et al. [32] did the comprehensive review of AI and ML

techniques in WSN based data acquisition for PA.

A. COMPARISON WITH OUR WORK

From the discussion of the state-of-the-art, we can recognize

the established inclusion of IoT for precision agriculture.

Also, we can identify the technology zones which are covered

by the discussed survey papers. For instance, both cloud

computation and edge computation play an important aspect

in building a solution for PA along with technologies such

as ML which is applicable in different layers of IoT. We

have seen that in most of the surveys in precision agriculture,

authors only consider one technology or provide a high-

level overview of utilization of IoT in the same context. It

remains vital to study all emerging technologies and their

interoperability in one comprehensive survey paper. A single

technology can give great results, but a more efficient ap-

proach will be achieved by combining most of the discussed

technologies towards a common goal.

In this paper, we have undertaken a distinctive discussion

of all emerging technologies for PA along with energy ef-

ficiency, data management techniques, and potential IoT ar-

chitectures suitable for precision agriculture. We also discuss

the importance and inclusion of energy harvesting and nano-

technology in this domain. This paper extends the discussion

on both the simulator and real-time deployment-based ap-

proaches. The focus of this work is twofold, first the survey

of new technologies that are revolutionizing beyond IoT in

the orientation of agriculture. Second, the adaptation of these

technologies towards a common multi-disciplinary solution:

AgriFusion. The implementation of a multi-disciplinary ap-

proach is new to the system, therefore we include literature

based on it and eventually propose the architecture along with

KPIs.

III. PRECISION AGRICULTURE AND INTERNET OF

THINGS

Agriculture is facing ever-increasing pressure to feed the

world. This demand and supply gap is getting further burden

due to land and water shortage, and the global requirement

towards preserving natural resources. IoT helps to fill this

gap by using low-cost sensors to send data from farm to the

enterprise for minimizing environmental impact and giving

benefit for social and working conditions. The illustrative

description of an IoT solution for PA is shown in Figure 5.

It highlights the role of different layers of IoT and mapped

techniques corresponding to the things layer, communication
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FIGURE 5. The illustrative description showing different techniques at each layer of IoT for precision agriculture.

layer, and application layer. Technology advancements in IoT

are helping agricultural businesses to implement PA as one

of the major applications of IoT. The origin of PA started

in the 90s, with the GPS and satellite provision in the farm-

ing vehicles to steer equipment and monitor automatically.

The advent of GPS enabled PA to precisely measure many

variables, gather data, and create maps of spatial variability.

Thereafter, the conjunction of satellite imagery with Variable

Rate Technology (VRT) supported the resource distribution.

One of the main objectives of the PA is to map farming prac-

tices with crop needs, reduce the footprint of farming, and

boost economics through more efficient agro-management

practices. PA seeks IoT technologies for farm management

to ensure the health and productivity of crops along with

ensuring soil sustainability. It includes new technologies for

higher crop yield and lowering the inputs needed to grow

crops. This approach relies upon real-time data from the

IoT services along with other relevant information such as

equipment and cost. IoT analytics serves the farmer with

the data for crop rotation, the optimal time for harvesting,

and the management of the farm. Advancement in the IoT

technologies with robotic drones and image processing inte-

grated with sensor information guide for future decisions. It

searches when, where, or what crop to plant and the ability

to identify treatment. In the past, PA was more oriented

towards larger operations however with enriching capabilities

of IoT (mobile apps, cloud/edge computing, smart sensors,

and drones), PA is possible even for family farms. Eventually,

PA is one of the main pillars to solve food crisis and demand

all over the world. The main objective of the PA is expanding

over -

• Identifying suitable crop.

• Increasing crop yield.

• Aligning crops with market demand and trend.

• Capturing relevant data for monitoring the performance.

• Environmental sustainability.

• Proactive response to the disease and climate changes.

• Reducing crop waste.

• Farm security.

• Improving the quality of decision-making for better RoI.

By using, PA farmer gets more metrics for agricultural

monitoring, which includes the nature of the nutrients, soil

samples, the requirement of fertilizer, and so on. This deeper

insight into the field allows the farmer to look into the state

of crop, accounting resource utilization, and underlying deci-

sions. The major underlying technologies for PA through IoT

are WSNs. It plays an important role in improved decision-

making by giving access to real-time data for evaluating

distinguished patterns. Also, in identifying potential risks

during both the growing and harvesting periods of the crop.

This access to farm records is available any time from any

device using technologies such as cloud computing. Having

the fear and pressure to achieve the yield, most of the farmers

tend to go overboard with the use of chemicals, which reduce
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Taxonomy of Emerging Technologies for Precision Agriculture

Reference

Survey Papers

PA Applications

Grouped with

Technology

Emerging

Technologies

for PA

Nano-

Technology [40]–[48]

[10]–[36],

[38], [49]–[59]

Native Sensor

Networks [19],

[49], [60]–[70]

IoT Computing

(Cloud, Edge and

Fog) [71]–[73]

Prediction and

Analysis

[74]–[83]

Remote Sensing

[20], [42],

[58], [84]–[86]

Security and Privacy

[38], [87],

[88], [88]–[92]

Artificial Intelligence

[81], [93]–[102]

Blockchain

[38], [88]–[92]

Cloud Based and

Data Management

[58], [66], [71],

[103]–[111]

Approach for

Energy Efficiency

[49], [70],

[112]–[122]

Simulators

[123], [124]

Energy

Harvesting [125]–

[131]

Fog and Edge

Computing [72], [93],

[104], [132]–[135]

IoT Architecture [34],

[136]–[148]

LPWAN [60],

[149]–[152]

Machine

Learning [56],

[69], [79], [80],

[153]–[161]

FIGURE 6. The taxonomy of this survey paper.

the environmental sustainability and build up the financial

pressure of using expensive chemicals. With the use of IoT

services, farmers can administer the requirement and use of

chemicals to maintain the high field and low soil pressure.

The taxonomy and classification of emerging technologies

used in this paper for PA is shown in Figure 6. It consists of

all the reference survey papers as used in section II, another

set of papers towards PA applications grouped with used

technology as discussed in section III-B, and relevant papers

for emerging technologies as in section IV.

A. IOT TOOLS AUGMENTING PRECISION

AGRICULTURE

Progressive technologies in IoT such as sensors and agri-

culture management software are the key enablers in data

collection and aggregation for PA. They leverage many IoT

tools to observe spatial variability and look into insights for

an optimized farming process. These tools include remote

sensors, VRT, soil sampling, etc. Other technologies like geo-

locating a field enable the deep analysis of soil resistivity and

information of the previous crop. Long-term monitoring of

the field provides information on environmental constants.

These point indicators help to identify disease, water stress,

and other crop parameters. IoT provisions a predictive and

control approach to identify and manage static indicators

before plantation itself, such as soil and crop history. Further,

during the crop cycle, most of the decisions are based on

models using big data, ML, and artificial neural networks.

The information system and communication technologies of

IoT make farm management more achievable for farmers.

A different set of PA applications are commonly used in

conjunction with IoT devices, drones, and robots. Other

than that, UAVs also help in risk reduction and disaster

management by using the fitments such as multispectral and

hyperspectral sensors for regulating the stress and health

of the plant. The overview of IoT technology applications

for PA and their supporting technology along with relevant

available literature is shown in Table 3. There has been rapid

progress due to the miniaturization of sensors with enhanced

capacity and capability to detect different metrics such as
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Agriculture applications mapped with technology

Native Sensor

Networks

IoT Computing

(Cloud/Fog/Edge)

Prediction

and Analysis

Remote

Sensing

Security

and Privacy

-Irrigation

-Harvesting

-Soil Quality

-Greenhouse

Sensing and

Monitoring

-Delivery Service

-Crop Disease

-Alarm System

-Security

-Energy efficient

solution

-On Premises

task

-Crop yield

-Weather forecast

-Automation

-Feature

Extraction

-Training tools

-Computer vision

-Image analysis

-Raising accuracy

through UAV’s

-Study of Yield

-Robot

management

-Weed

management

-Use of pesticides

-Reducing

labour cost

-Cyber attacks

-Vulnerabilities

-Insurance

-Policies

-Farm privacy

-Supply chain

Technology

Applications

FIGURE 7. Classification of technology and precision agriculture application.

TABLE 3. An overview of IoT technology applications for precision agriculture.

Table IoT Technology Applications for Precision Agriculture

Sr. No. Applications/Use-case Objective of the Supporting Technology References

1 Human-Machine interaction Reduce chemicals and fuels by automated assistance. [85], [86], [162]–[164]

2 Access to field data Facilitate the exchange of data. [62], [65], [71], [73]

3 Sampling locations Determining soil fertility, disease etc. [63], [68], [71], [165]

4 Fertilizer & stress monitoring Check the state of the crop and requirement. [64], [166], [167]

5 Sensor Fusion for monitoring Sensor measurement and multi-layer datasets. [62], [72], [168]–[170]

6 Learning, predicting, & analytics Classification, monitoring and analysis. [74], [78]–[81]

7 Remote sensing Identify nutrient deficiencies and stresses. [58], [84], [171]

8 Variable rate application Accurate mapping of field information. [42], [61], [63], [67], [172]

9 Harvest monitoring Localised crop information for harvesting. [77], [156]

10 Farm management Solution for monitoring system and data management. [59], [72], [87], [162]

11 Decision & Risk support system Decision support for every field operations. [69], [71], [173]

12 Feature Classification Feature extraction of crops and weeds. [75], [76], [82], [83]

13 Unmanned Aerial Vehicles Field level phenotyping and mgmt. [20], [85]

biomolecular, electrical, chemical, etc. towards the health of

the crop. These data are used for precision farming software

to control tools and other management activities. Connec-

tivity protocols are constantly evolving from short rangers

(ZigBee or Wi-Fi) to long-range ones (cellular connection,

Low-Power Wide-Area Network (LPWAN), and so on) and

play a fair share in establishing an IoT solution for intelligent

farming. Other location monitoring tools such as satellites are

used to monitor water level, crop biomass, etc. The improved

accuracy of Global Navigation Satellite System (GNSS) has

enabled the expansion of machinery guidance and Controlled

Traffic Farming (CTF) systems. These technologies using

IoT are effective for the PA which not only benefits the

farmers but also the data generated from the farms are further

used by policymakers, governments, and other stakeholders.

B. IOT SOLUTIONS FOR PRECISION AGRICULTURE

There is a clear view of the benefits of implementing IoT

solutions in agriculture. IoT gives a cohesive picture of the

field status along with the multifaceted analysis of crop

management. With the help of IoT, farmers can get insights

into the state of the farm, weather conditions, and field

management. It also helps in reducing the production risks

and overall operating cost, which results in reduced resource

waste. In advance, the grower gets ample information to plan

the yield volumes and plan the distribution strategies assisted

by IoT solution. This helps in outlining potential revenues

and streamline harvesting as per the lucrative market supply

chain demand. In long term, this pattern and trends assist

in getting insights on crops, seasonal behavior, disease, and

mitigation techniques in advance. IoT for PA furnishes risk

management and planning to improve mostly all facets of

farm management mainly due to cheaper solutions with more
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ambitious technologies.
IoT solutions depend upon the farm use-case and deriva-

tive applications. Following are the most important and com-

mon applications of IoT for PA and can be classified into five

prominent groups as depicted in Figure 7. The classification

is done by identifying the key technology used by certain

applications. There were few overlapping technologies for

PA applications, but then the priority is given to the scope

and goal of the application.

• Native sensor networks

• IoT computing (Cloud and Edge/Fog)

• Prediction and Analysis

• Remote Sensing (UAVs, Drones, and Robots)

• Security and Privacy

Applications using native sensor networks:

The wireless sensor network is the key enabler of IoT solu-

tions for real-time decision-making towards the applications

such as irrigation, harvesting, predicting crop fields, or es-

timating fertilizer requirements. The low-cost CCD camera

is equipped with a sensor network i.e. Wireless Multime-

dia Sensor Network (WMSN) to meet the requirement of

event detection. Over the years sensors are evolved from

monitoring environmental factors to leaf compatible wire-

less sensors based on Radio-Frequency Identification (RFID)

technology [64]. These miniature sensors help to monitor

water stress levels and environmental impact. They are also

equipped with flexible solar cells for energy harvesting. The

study by Mat et al. [169] uses WMSN particularly in a green-

house environment and proves the efficiency of feedback

control for irrigation. Shi et al. [62] present the modular

set up to adapt the application context of PA and minimize

energy consumption. IoT-based smart water management

platform plays an important role in the cultivation of crops.

The conjunction of several crop factors helps IoT-based irri-

gation methods to enable precise irrigation as shown in the

work of Kamienski et al. [63]. Another way to optimize the

solution of smart farms is by using a genetic algorithm where

operating conditions are handled as penalty and objective

functions [61]. LPWAN solutions are less expensive with

high reliability as demonstrated by Singh et al. [49] in lever-

aging the LoRaWAN solution for greenhouse monitoring. It

uses the MQTT communication method for implementing

control functions to enhance the development of agricultural

IoT [60]. Khoa et al. [68] propose a new technology that is

inexpensive and highly efficient by using Lora-based trans-

mission. Adeyemi et al. [67] incorporated adaptive decision-

support solution and predictive control approach to enable

efficiency in irrigation. Greenhouse environmental monitor-

ing system uses series of sensors to monitor crop growth

and process the data in real time [70]. The cloud platforms

can process and display the sensor data and provide intel-

ligent decision feedback while supporting scalability [65].

In the greenhouse, it is vital to monitor the plant growth

requirements in every phase of the plant. Halim et al. [66]

considers this to develop an automated scheduler for each

phase and bring down the maintenance and labor cost. For

effective monitoring, sometimes sensors and communication

devices are partly or completely buried underground. This

needs change in the design and implementation of the IoT

network architecture [19].

Applications using IoT computing:

The challenge of processing and analyzing the generated data

is crucial. In this scenario, the paradigms of IoT and cloud

computing exploits the data to manage both the business

and environmental performance. Sending all the data to the

cloud delves into computational load and latency. Thereby,

fog and edge-based computing move the processing abilities

closer to the data source [72], which makes it suitable for

mission-critical applications. Furthermore, the proximity of

computation to the data source maximizes the efficiency of

resource allocation, privacy, and service delivery. Omoniwa

et al. [174] explores the two-tier fog and reduces the con-

siderable amount of data transmission to the cloud. This

reduces the waiting time and allows the management of

agricultural land with the clustering mechanism. Further,

this computation can be improved by applying data mining

algorithms at the edge itself. Computation at the edge helps

to identify events like crop disease locally and notify the

farmer by SMS [71]. The sensors deployed in the farms need

some shade to provide stable and accurate measurements. It

is seen in the work of Ferentinos et al. [73] that a spatial

representation of temperature and humidity had a difference

with higher variability during the day. Thereby, to exploit

fully the capability of WSN with computation efficiency, the

actuators and sensors need improved design and development

as demonstrated by Singh et al. [49].

Applications based upon prediction and analysis:

Agriculture is transforming from only collecting the data

to the capability for quick prediction and analysis. Pham

et al. [80] highlights digital farming as the incorporation

of capabilities required for extensive data collection, com-

putation, and predictive analytics. PA demands proactive

anticipation of dysfunctions to realize immediate remedial

actions. This can be achieved through a prediction frame-

work by contributing to corrective actions for better crop

yield. Santos et al. [79] uses the combination of IoT-driven

technology, LoRa along with the ARIMA prediction model.

Data mining techniques help to identify behavior patterns

from the data collected by the sensor network in the field.

The work done by Rodríguez et al. [74] provides a client

application tool for the farmers involved in floriculture. This

application is integrated with the prediction API and learning

algorithms to forecast greenhouse environmental conditions.

Computer vision systems are widely employed for produc-

ing accurate descriptive data. It is identified in the work

by Patrício et al. [81] that intelligent IoT devices can be

coupled with AI for automation of field tasks, and integration

with agricultural machines. It is essential to have a reliable

and updated description of the crop for proper prediction.
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Remote sensing uses satellite imagery that helps to a certain

extent but underpins limits in terms of low or moderate

resolutions. The deep learning technique assists in imagery

refinement to exploit information derived from images. These

images can be acquired by airborne multispectral sensors or

UAVs. Mazzia et al. [77] proposes a novel satellite imagery

refinement framework and uses the same for the case study

in a vineyard. The utilization of satellite-driven maps gives

a better viewpoint of crop health and stands as a better

tool for growers. However, the acquisition of hyperspectral

imagery is still a compound challenge, mainly due to high

data dimensionality and involved complex information anal-

ysis. The review by Dao et al. [82] exhibits the strength

long with the limitation of hyperspectral imaging in the

context of agricultural applications. A huge amount of data

is collected using various means such as sensors, automated

tools, and images incorporating remote sensing. The images

are then analyzed to develop a model for the prediction of

various applications. Features of the images are extracted,

segmented, and classified as input to the model. Different

techniques help in this process such as neural network, fuzzy

logic, and deep learning [75]. Semantic segmentation of

the aerial farm images remains a challenge, to solve this

Chiu et al. [78] proposes a solution i.e. Agriculture-vision. It

annotates nine types of field anomaly patterns and proposes

an effective model for pattern recognition. Further to this,

precise weed and crop classification can be achieved by using

deep learning. Fawakherji et al. [76] used a robot to train and

label pixel-wise segmentation of data sets in a different con-

text. Another pixel-based classification approach of the crop

was done by Bosilj et al. [83]. It coupled the classification

technique with morphology-based segmentation without any

computation overhead and was able to provide descriptors

with better resolution.

Applications based upon remote sensing and UAVs:

Modern technology development across remote sensing tech-

niques uses UAVs that assist in raising accuracy, cover

large land areas, and enable accuracy of the observation

for PA. The major challenge in the operation of the crop

monitoring system is the long-distance communication from

sensor nodes and the appropriate usage of routing algorithms

aligned with energy consumption. The viability of the net-

work for efficient services needs security and privacy as the

crucial parameters. Network size and transmission media are

the functions of architectural components based on IoT tech-

nologies and application use-case. Triantafyllou et al. [58]

propose architectural components for PA in cooperation with

energy-saving schemes. It covers a case study of yield using

remote sensing and depicts spatial variability to adopt site-

specific management. However, it limits the scope by not

including heterogeneous data and technologies that can be

used in remote sensing for depicting correlations in yield and

inputs. The use of UAVs extends the capability of remote

sensing for the applications like irrigation, use of pesticides,

weed management, crop disease management, and many

others. The use of drones makes agricultural applications

very specific and interesting. Review by Boursianis et al. [20]

enfold the use of multiple Unmanned Aerial System (UAS) to

accomplish composite agricultural missions by cooperating

and using techniques like particle swarm optimization and

genetic algorithm. Agricultural production needs a lot of

input from natural capital that requires the economic feasi-

bility of employing human workers for different tasks. As a

consequence, a robotic application is required to react dy-

namically to the highly variable environment. In this context,

robot for PA needs to be configurable, incorporate safety

measures, adhere to the sensitivity of the crop, and follow the

general principle of service. Marinoudi et al. [86] outlines

the constraints and inherent relationship of using robotics

in agriculture. However, there is room for improvement to

manage and coordinate between fleets of the robots aligned

with task alongside incorporating techniques such as image

analysis, ML, and AI [163].

Applications building security and privacy in PA:

On-field sensors and devices connect synergistically to pro-

vide an efficient farming solution. The use of heterogeneous

devices and connectivity has exposed vulnerabilities and

cyber-attacks in the agricultural domain. These attacks vary

from exploiting autonomous vehicles (UAVs, tractors, etc.)

and flooding the farms to over sprinkling of pesticides re-

sulting in an unsafe farming environment. Large coordinated

attacks have the potential to bring down the economy of a

country by targeting the agriculture sector. A report [175]

extensively elaborates various threats in PA and the demand

for research in this domain. With the ubiquitous use of IoT

technologies, it is crucial to build and follow the compliance

and regulation for protecting the solutions. Security in PA is

paramount, a minor security breach has the potential to affect

the entire food supply chain. The standards can be enforced

by regulations drawn by the country or by following cyber-

security operation standards drafted by an individual/local

authority. Further, the food supply chain can have cyber

insurance policies but with the integration of AI and smart

applications, it is even more difficult to quantify and predict

the involved cyber risk [88]. Several contributions have been

made to designing and optimizing the cyber-physical systems

for agriculture. The ongoing trend is in using a combina-

tion of technologies to empower cyber-security. In the same

context, Selmani et al. [87] uses solar photovoltaic water

systems to guarantee a bidirectional communication in the

greenhouse.

IV. EMERGING TECHNOLOGIES AND APPROACHES

FOR PRECISION AGRICULTURE

The Smart agricultural solutions are designed based upon

the target crop and required application. Therefore, to match

these requirements, authors have proposed work using differ-

ent technologies and frameworks. This section reviews ap-

plication areas and organizes them by their used technology.

We can identify the IoT technologies based on their usage
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Technology Supporting Precision Agriculture

Network

Architecture

Data

Collection

Prediction

and Learning

Data and

Security

Computation

and Connectivity

-Software

defined networks

-System

architecture

-Energy

harvesting

-Inclusion of

energy efficient

approach

-Simulators

-WSN

-Remote sensing

-UAV’s

-Nano technology

-Machine

learning

-Artificial

intelligence

-Fuzzy heuristic

approach

-Predictive

analysis

-Data

management

-Blockchain

-Big data

-LPWAN

-Cloud

computation

-Edge and fog

computation

FIGURE 8. Classification of multidisciplinary approach for precision agriculture.
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FIGURE 9. Precision agriculture applications using different technologies.

in different applications for PA. Figure 9 illustrates some of

these PA applications mapped with emerging technologies

diagrammatically. The outer circle shows different PA ap-

plications and use-cases such as smart irrigation, harvesting,

and disease management. The inner-circle shows emerging

technologies that support IoT solutions in achieving the

PA goals. IoT leverages different technologies for analysis,

prediction, and computing for PA. These technologies can be

classified into the following broad areas as shown in Figure 8.

For the classification of multidisciplinary technologies, the

focused scope of the technology is classified under the um-

brella of the following categories:

(A) Network Architecture

(B) Data Collection

(C) Prediction and Learning

(D) Data and Security

(E) Computation and Connectivity

A. NETWORK ARCHITECTURE

The management of network architecture requires network

configuration, maintenance, and performance management

of the deployed devices in the field. The three-tier archi-

tecture and the involved interactions of the IoT system for

PA are shown in Figure 10. It depicts the deployment of

sensors in the crop area and knowledge extraction in the

next layer for a decision support system. The last layer is

for the user to handle and plan applications such as auto-

guidance, command, and response, etc. Data is gathered from

the crop area, following that knowledge is extracted and then

used by the end-user. The real-time gathered information in

the crop area helps manage nutrients, pesticides, and water

for the plants. At the next level of knowledge extraction,

data goes through the distribution platform for performing

different actions. The last level is for the user to provide

command, response, and visualization of crop data. The

design of the network architecture needs to be adaptable

towards events and problems likely to occur. The architecture

for PA solution depends upon the topology, required Quality

of Service (QoS), energy, and security management along

with low maintenance in real-time.

Software Defined Networks:

A software-defined network segregates the control plane

from the data plane in the deployed architecture. There is

a logically centralized controller that controls and manages

the behavior of the network. As per the instructions from

the controller, network devices (sensors and other on-field

devices) forward and process the data. This gives the provi-

sion to manage network configuration globally by integrating

APIs between the data, control, and application planes. By
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FIGURE 10. The Interaction between different Layers of IoT Solution for Precision Agriculture. The illustration shows the utilization of an IoT solution at crop area

for treatment, knowledge extraction for decision support, and planning for the end user.

facilitating the flow control, network architecture becomes

flexible, offering potential benefits specifically in energy

and configuration management.Integration of SDN with PA

based sensor deployment can help in managing efficient

resource allocation and performance. It provides a global

view of the entire network management that is crucial for

vast crop fields. Network deployment for the agriculture use-

case needs the regular management of network topology,

QoS, and remaining energy with the changing crop cycle.

This can be achieved centrally in the control plane and

management/integration of technologies at different levels of

architecture. Integration of SDN paradigm with agricultural

solutions has introduced simplicity and flexibility in the

network, suitable for the farmer to farmer solution. SDN

based vehicular sensor network architecture helps in gaining

performance by making the data plane efficient and simple.

In farms, there can be unstable wireless links that may

lead to connection failures. Hence, the vehicular network

can bring reliability between controller and switches as the

topology of sensor networks in agriculture can easily change

and adapt to the old rules. In the same context, Huang et

al. [176] build SDN based agricultural vehicular sensor net-

works based on extended open vswitch. Ndiaye et al. [177]

reviews the different techniques available for SDN-based

network management. It expresses that the major challenge

of implementing SDN is in enabling and integrating different

technologies while encountering the cost and nature of the

application. The work done by Alonso et al. [178] proposes

a double Deep-Q [179] learning approach using edge IoT

architecture to manage virtual data flows in SDN. It reduces

the implementation cost and allows dynamic management of

the resources.

System Architecture:

The system architecture should have the capability to han-

dle enormous data received from heterogeneous devices,

that should be processed appropriately and effectively. The

implementation of architectures depends on the complexity

of the system and the intended requirement. The design of

the architecture greatly rests on the performance functions

such as reliability, security, data throughput, and physical

environment [147]. Internet of Underground Things (IOUT)

consists of sensors and communication devices partly or

entirely below the ground. To facilitate seamless integration

of the complex network with the underground sensors, sens-

ing technology, and communication mechanism has to be

identified accordingly [19]. The network requires low power

consumption and management cost, in this scope Deniz et

al. [136] designed the sensor node employing BLE commu-

nication. However, this is limited to a perspective of having

larger connectivity coverage in a big greenhouse. In con-

trast, Codeluppi et al. [144] presents LoRaWAN based smart

farming modular IoT Architecture: LoRaFarM for improving

and customizing the management of farms. The review by

Ray et al. [138], highlights architecture capabilities related

to the tool, technology, and methodology along with possible

research opportunities. In addition, Lytos et al. [148] covers

the state of the art for agriculture architectures including

14 VOLUME x, 202x



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116814, IEEE Access

Singh et al.: AgriFusion: An Architecture for IoT and Emerging Technologies based on a Precision Agriculture Survey

big data both in research and commercial space. Vasisht et

al. [180] propose an end-to-end IoT platform for agriculture:

FarmBeats, that enables seamless data collection from vari-

ous sensors, cameras, and drones. Farm management infor-

mation systems are continuously developed in many farming

solutions. An architecture design method for farming and

deriving the customized application from the requirement

analysis is provided by Koksal et al. [143]. This approach

is illustrated using two case studies for wheat production and

smart greenhouses in Turkey. A major challenge in intelligent

farm management is the limited availability of the energy

source at the edge of the network. The network needs an

energy-efficient framework to adapt and collect the data upon

any change. An energy-efficient algorithm to guarantee the

transmission rate with minimal energy consumption is pro-

posed by Lerdsuwan et al. [145]. The architecture based on

power networks is undergoing a fundamental shift, Mahmud

et al. [141] contribute in this context by accumulating and

summarizing the significant ideas for controlling, optimizing,

and managing distributed energy resources.
Intelligent farming is one of the crucial applications of IoT

solutions, providing a computational platform for imperative

interactions between machine-to-machine and the sensor net-

work. Nobrega et al. [146] reviews the recent developments

and evaluates the gateway performance for the IoT network.

To realize accurate sensing, more devices are getting added

to the network for instance, Xue-Fen et al. [142] presented a

hybrid node with the inclusion of smartphones for distributed

agricultural service. In addition, Pastor et al. [137] uses

edge computing along with the ubiquitous sensor network

to monitor the greenhouse. Another set of architecture uses

distributed computing for precision agriculture. This user-

centric design model is used to facilitate the decision-making

and for optimal usage of resources. Architecture based on dif-

ferent decision trees [34] is used to automate the installation

and support the farmers. It includes layered communication

and processing at edge or fog nodes as per the interconnected

functionalities. This work can be further extended by using

ML and AI as shown by Andrew et al. [139] to revamp the

results.

Energy Harvesting:

Several energy-efficient schemes have been introduced to

tackle the limitation of the limited battery capacity of the

sensors. An alternative method is to do the energy harvesting

using different ambient sources such as solar, wind, vibra-

tion, raindrops, and wireless power transfer from different

methodologies. Ambient energy is harvested to supply the

rechargeable sensor nodes with power to enhance the lifetime

of the network. The review by Jawad et al. [181] discusses

the possible harvesting mechanism for the agricultural use

case. Solar energy based on photo-voltaic provides a cost-

effective solution for agriculture [127]. Wireless power trans-

fer significantly contributes to transmitting electromagnetic

energy between two devices. UAVs can help to extend the

battery lifetime of the deployed sensors through the harvest-

ing of electromagnetic radiation in an agricultural field. In

the survey: The digitization of Agriculture Bacco et al. [126],

authors focus on the technical challenges mapped with cost,

resistance to environmental conditions, and energy efficiency.

The targeted solution to this problem is through the inclusion

of energy harvesting techniques for gaining reliability and

prolonging the lifetime of the network, which can bring

down the maintenance cost as well. Another method for

energy harvesting is by converting bipolar thermal gradients

to electrical energy. Sigrist et al. [131] introduced harvesting

architecture along with a novel low power circuit to rec-

tify the small bipolar voltages utilizing ambient conditions.

Still, there remains a remarkable difference between the

power consumption rate and the harvested energy. Energy

harvesting can be done from multiple resources at varied

time as per the availability. Gleonec et al. [130] presents the

sensor network powered by energy harvesting from multiple

resources simultaneously and calculates the energy budget of

the sensor over different tasks. A comprehensive review by

Sherazi et al. [129] highlights the trend of current research

and aims at minimizing energy consumption. It does not

look into performance metrics aligned with energy harvest-

ing. There are solutions like solar-powered node [128] to

monitor agricultural production whose performance can be

further investigated while using a different set of emerging

technologies.

Energy Efficient Approach:

Energy efficiency can be gained by employing various tech-

niques during different phases such as deployment, radio

connectivity, edge computing, and by applying algorithms

for fault management and load balancing. Singh et al. [182]

demonstrated the road map for achieving an energy-efficient

solution in the greenhouse. Several power reduction tech-

niques such as radio optimization, data mitigation, and

sleep/wake strategies were discussed in the review paper by

Jawad et al. [181]. The energy efficiency of the network can

gain momentum by including efficient energy harvesting sys-

tems on top of energy prediction models to maximize its ben-

efits [183]. Transferring data from sensor nodes to the sink

uses routing protocol, this should meet few parameters such

as rate of energy consumption, robustness, convergence, and

scalability in the field [184]. By choosing an energy-efficient

routing scheme, the overall energy consumption of the net-

work can be minimized. A substantial amount of the energy

is exhausted in the transmission of data [152]. Thereby, it

is crucial to send the data only when it is necessary and

avoid retransmissions. Lakshmi et al. [114] discusses the

routing protocol that can be used in the context of IoT-based

precision agriculture. Obtaining low power consumption and

high reliability are crucial factors for the development and

design of the sensor network. The factors such as transmis-

sion frequency of the sensed data and configuration of radio

modules impact directly the energy consumption of the node.

Therefore, it is crucial to choose a communication protocol

with less power consumption rate. Srbinovska et al. [121]
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propose low maintenance and low-cost sensor network for

greenhouse crop production by retaining the communication

module in an ideal state for most of the time.
There are a lot of contributions in the scope of energy

efficiency and energy management techniques [185] towards

building an IoT solution in agriculture. Saraswat et al. [116]

deployed an energy-efficient WSN network for the PA mon-

itoring system. However, this work does not consider the

interference caused by the crop itself in the real-time propa-

gation of the signal. Dhall et al. [112] covered this challenge

by proposing a duty cycling algorithm for special events such

as cloudy weather, etc. It offers an efficient path selection

based on the residual energy of the node however, results

are simulation-based that may differ in the real world. On

top of the duty cycle, a sleep/wake scheme is proposed

named as SWORD [118] for energy efficiency in PA. Another

simulation done by Yang et al. [115] demonstrates that by

the addition of backup routing nodes the connectivity can

be further increased. It uses ZigBee based sensor network

for monitoring a greenhouse over an NS2 network simula-

tor and predicted the path using Received Signal Strength

Indication (RSSI). Another similar use case to determine

the growth of the greenhouse in an energy-efficient way is

shown in [70]. The IoT platform consists of heterogeneous

components and their interactions such as multiple WSN

gateways, databases, and connectivity. Kuo et al. [168] uses

IEEE 802.15.4e time-slotted channel hopping protocol for

multi-hop, energy-efficient, and collision-free transmissions

and [186] uses time-synchronization for lowering the cost

of LoRa solutions securely. Saqib et al. [113] propose an

approach for collecting data for a fully automated agricultural

system. This model can be used for any wide-area informa-

tion monitoring system as it emphasizes low cost and covers

larger distances rather than data speed in the agricultural

context. Variable sampling interval helps in gaining energy

efficiency while using heterogeneous devices on the field. For

example, Hamouda et al. [120], proposes a system to moni-

tor different parameters for respective agricultural activities.

Sensor node sampling is done for each area independently

to sense the soil temperature and humidity. The dynamic

power management approach for estimating soil parameters

is given in [187], to establish an adaptive balance between

nutrient estimation and energy consumption. An extension

for the energy efficiency as the next-generation architecture

is proposed by Nguyen et al. [93]. This is done by including

AI and DL to reduce the power consumption of the platform.

Also, techniques such as fuzzy-based clustering [117] for

transmitting sensed data can be beneficial in minimizing the

energy consumption and in improving the network lifetime.

Simulators:

Simulators are used to evaluate the performance of different

wireless technologies, along with performance parameters

intrinsic to different protocols. Each network has its acqui-

sition and underlines processing of the data, connectivity,

and the QoS. The networks can show different behavior for

energy consumption while sending a huge amount of infor-

mation to the enterprise or cloud. Several case studies and

solutions are implemented on a simulator like NS2, before

actual realization on the farms. This enables the study of

different performance metrics before the actual deployment.

In the same context, simulator: LWS [124] is designed for

wireless underground sensor networks to incorporate soil

path loss for agriculture applications. It demonstrates the

performance of LoRaWAN with different node densities,

coverage, and depth of the sensor nodes. Soto et al. [123]

compared the performance metrics of ZigBee, LoRa, Blue-

tooth, and WiFi. However, the accuracy of simulation results

is not always identical to a real-life deployment, but only

gives a relative glance from the actual results.

B. DATA COLLECTION

Data collection is an important element from data acquisition

to processing and analysis. Data is collected through several

means such as WSN, remote sensing, and likewise. Different

techniques and approaches for data collection are discussed

below-

Wireless Sensor Networks:

Advancement in sensor technology has an indispensable im-

pact in fetching plants, the environment, and other informa-

tion required for an application. Sensor networks have acted

as a key player for the deployment of a variety of applications

for precision agriculture. Crop field monitoring for detect-

ing environmental conditions, monitoring disease, and other

sets of network applications represent huge benefits for the

farmers. It can be classified into terrestrial WSN and wireless

underground sensor networks [57]. The design and perfor-

mance of sensor networks depend upon deployment strategy,

localization, synchronization, characteristics of wireless ra-

dio, and security measures [188]. Optimal WSN solutions

need to spend minimal power consumption during all phases

of acquisition, sampling, and performing efficient commu-

nication. The architecture of a typical wireless sensor node

constitutes perception, network, and application layers. The

sensor node detects physical phenomena and uses various

methods of routing protocol, intelligently based approaches,

etc. [189] to forward the data to the gateway or cloud for

further analysis and representation. Ahmed et al. [190] anal-

yses MAC and routing solutions to achieve better throughput,

performance, and energy. It proposes a computing solution to

save the bandwidth of the network with lesser delay. Efficient

communication technology is the basis for an effective WSN

solution. It ranges from short, medium, to long-distance

wireless communication. It is identified in the work by Feng

et al. [191] that NB-IoT, ZigBee, and LoRaWAN are the

most appropriate communication technologies for agriculture

applications. Madushanki et al. [192] gives an overview of

different wireless technologies ranging from high to lower

frequency that has been used in respective percentages for

PA. The current penetration of WSN in agriculture along with

potential value and challenges are presented in [18]. There
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has been a substantial increase in the use of greenhouse agri-

culture globally. It is highly dependent upon the construction

and the material used to build the greenhouse to maintain

the ambient conditions for plant growth. With the use of

WSN, greenhouses are no more versatile and have in-depth

information on the climatic conditions. The main challenge

in the greenhouse is the requirement of extensive supervision

to maintain ambient conditions for plant growth and attain

high yield and crop quality. There can be several sensor

systems in regard to some performance parameters [193] for

different PA applications. Different types of sensors used

in the greenhouse along with the range of communication

protocols are discussed in [194]. Hamouda et al. [195], a

greenhouse smart management system (GSMS) is developed

to monitor, control the cooling, and have smart irrigation in

the greenhouse. A prototype of optimized WSN is developed

by Ferentinos et al. [73] to investigate special variations of

environmental conditions in the greenhouse and shows high

variation of temperature and humidity. Implementation of

WSN in greenhouses still has open challenges such as the

limited lifetime of the network, optimization of transmission

intervals, and sampling technique. Thereby, balancing the

trade-off between cost, coverage, and handling the layout

to manage communication limitation is of important con-

sideration [196]. Another recent advancement in WSN is

the intelligent collaboration with UAVs for large-scale and

geographically distributed deployment [197].

Remote Sensing:

Developing more productive agricultural solutions is trig-

gered by remote control and sensing techniques using differ-

ent types of sensors and UAVs. These UAVs help in improv-

ing accuracy with efficient monitoring of the fields, including

field and aerial perspective. Remote sensing involves differ-

ent categories of intelligent input control systems such as

GPS, GIS, UAV tracking, and advanced sensors. Out of these,

sensors are the basis for a decision support system in remote

sensing [58]. All collected data from the sensors is stored

in the remote server through APIs for different features as

per the architecture. Further, all the services are mounted in

the cloud to provide remote access from any location. Based

on the solution-oriented architecture, farmers can remotely

interact with the tools and services deployed in the farm

for applications ranging from planting to harvesting. Pallavi

et al. [198] proposed a remote sensing application for the

greenhouse to control different environmental parameters.

It demonstrates the remote management of parameters like

light, temperature, and soil moisture for greenhouse monitor-

ing.

Unmanned Aerial System:

UASs are instrumental from the start of the crop, during its

different growing phases, and finally harvesting and complet-

ing the supply chain. In the start, they are used to producing

precise maps to plan planting, soil analysis, and later used for

irrigation and fertilizer management. They can scan the field

and spray the right amount of pesticides at the designated

point. The sensors mounted on the UAVs help to detect crop

health and improve conditions locally. UASs assist in soil

and field analysis that becomes the input for the farmers to

start planting. Thereafter, UASs help in spraying and crop

monitoring. The dataset generated from the UASs multispec-

tral sensors helps in the classification and training of the

NNs [77]. Nowadays, the use of UAVs is expanding and is

growing with the combination of 3D reconstruction modeling

techniques. The paper [20], claims IoT and UAS as two

prominent technologies that have the potential to transform

agriculture. Further, UAS based solutions can be enriched

with the inclusion of ML techniques.

Nano-technology:

Advancement in nanotechnology in materials and biomass

is improving PA applications. Nanoscale carriers do the

delivery of fertilizers and pesticides at a micro and specific

level. Another advancement is in the development of nano-

fabrication that enables to get insights into plant cells and

other disease-related issues. Conversion of products into

nano form enhances the delivery, growth regulators, and

other physiochemical properties. Nanotechnology is used

in several ways ranging from fertilizers, crop monitoring,

and the packing involved in supply chain management [42].

The development of nano fertilizers and nano pesticides

helps to gain sustainability [48] as it does not impact the

soil decontamination but promotes growth and productiv-

ity. Prasad et al. [46] highlights the current challenges of

sustainability that can be solved with the improvement of

nanotechnology. Sensors used in agriculture applications are

also converging towards nanoscale dimensions with the help

of electrochemical nanosensors, wireless nanosensors, and

nanobarcode technology. Usage of these nanomaterials also

implies potential risk with the level of exposure. The safety

practices and regulatory consensus for responsible use of

nanotechnology in agriculture are shown in [47].

C. PREDICTION AND LEARNING

Prediction and learning algorithm involves knowledge clas-

sification from the dataset. Major technologies contributing

towards prediction and learning are discussed here:

Machine Learning:

ML is creating new opportunities for data-intensive science

applications such as crop management, yield prediction, dis-

ease detection, and maintaining crop quality. By using ML

over sensor data, intelligent programs can provide decision

support and recommendations to the farmers. It involves a

learning process from the training data to perform a task. The

performance of this task is measured by the objectives set in

designing KPI metrics that are derived from experience over

time. The role of ML in PA solutions is shown in Figure 11.

It shows a different set of ML-powered applications mapped

with the categorization of its capability. ML is classified

into supervised and unsupervised categories. In supervised
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FIGURE 11. Role of machine learning in precision agriculture solutions. The

figure illustrates application mapped with the domain use-case of ML.

learning, a generalized mapping is done with input and the

objectives set for output. It predicts the missing outputs

using a trained model and available data set. However, in

unsupervised learning, the goal is to discover patterns with

no distinction between over training and test datasets. There

are a lot of ML learning models in both categories to seek

as much information as possible before applying the classi-

fication model. To encourage further progress in promoting

the efficiency of ML, several data sets and classifications

are presented such as CropDeep [158]. Liakos et al. [157]

reviews several articles on ML in agriculture. The findings

in this paper state that the majority of the paper related to

ML are in crop management and others are mostly for soil,

and water management. Another review paper by Garadi et

al. [56] lists the issues and challenges of using ML and DL

methods to develop an end-to-end security solution. ML is

also used to avoid water stress and unpleasant impact through

patterns and association in the growth of plant [155].

Artificial Intelligence:

Artificial Intelligence is an emerging technology that uti-

lizes learning capabilities to provide multidimensional agro-

intelligent solutions. The AI algorithms can do most of

the manual work, reducing cost and time. The paper [100]

showed that the AI algorithm performs better than the man-

ual growers in the greenhouse by enabling automation and

decision-making. The role of AI at different layers of the

IoT solution is shown in Figure 12. Most of the use-cases

of AI are for increasing productivity and reducing labor

cost [102]. AI is used to model different applications such as

weed management and processing volumes of available data

through sensing. It can be applied in different segments of
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FIGURE 12. Role of artificial intelligence in precision agriculture. The figure

shows the application of AI at various stages of data cycle for incorporating

capabilities.

the solution architecture. AI in embedded sensing provisions

running Neural Networks (NN) locally for decision-making

near the sensed data itself. Edge AI enables energy efficiency

by sending only meaningful data to the cloud enterprise.

Aggregating advanced AI like deep belief networks with

computer vision opens opportunities for featuring different

insights of the sensed data.

Fuzzy and Heuristic Approach:

Fuzzy logic enables the reasoning capabilities in the agri-

cultural solution. It helps in controlling tools and devices

used in the farms for quick automated decision-making. It

provides the capability of dealing with uncertainties with

acceptable reasoning. It has basic four modules as member-

ship functions. First, it creates a fuzzy set with the received

input and then uses its knowledge base to apply if-then

rules to simulate the reasoning process. Finally, it comes up

with a crisp value by transforming the fuzzy set. Low-cost

fuzzy logic to control nonlinear systems in the greenhouse is

demonstrated by Algarín et al. [199] and its contribution in

energy efficiency for sensor network is presented by Maurya

et al. [200].

Prediction based Approach:

The predictive technique uses exploratory data analysis and

other regression models to effectively predict agriculture

yield or disease. Prediction techniques enhance the produc-

tivity of the field by providing recommendations and alerts at

the local level. This minimizes the expenses and contributes
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FIGURE 14. LPWAN features favouring agriculture applications.

to sustainability. It integrates production recommendations

and maximizes agricultural planning for profitability. Also,

it enables the grower to perform predictably rather than

reactively. There are different solutions and techniques for

prediction, such as utilizing ML for crop yield and forecast-

ing climate status. The work by Chen et al. [150] proposes

a predictive soil farming solution: AgriTalk, for outdoor soil

cultivation.

D. DATA AND SECURITY

Data collection practices are improving, which presents mul-

tiple benefits in agriculture. It encourages better management

of decisions by referring to old data. Having this sample data,

there comes a challenge of sharing, securing, and owning the

data for a secure utilization of the application.

Data Management:

It provides a basis for software applications in performing

operations and knowledge mining. It enables the storage and

representation of data collected from heterogeneous devices

to provide real-time support. The crucial criteria for data

management are energy efficiency that directly negates the

overall cost. The service for facilitating information manage-

ment is done by integrating multiple applications securely.

The main challenge in the management of data is ’what

to keep where’. There are techniques like context-aware

approach [108] to facilitate automation and a controlled en-

vironment in the greenhouse. This data management system

relies on a sensor network to provide decision support for

different applications.

Blockchain:

In the agricultural solution, the main challenges lie in pro-

viding data security and privacy. With the adaptation of

IoT-based agriculture, an adversary may use a data injec-

tion attack, which demands more secure communication.

An enormous amount of spatial data gets generated from

heterogeneous devices, which opens up the risk of unautho-

rized access causing the potential threat. Data attacks are

possible from the cloud or edge data leakage [88]. Other

attacks like side-channel attacks, third party attacks, data

fabrication attacks and likewise affect the supply chain and

networking of the solution. Thereby, the solution demands

threat modeling against privacy, authentication, availability,

integrity, and confidentiality [38]. The blockchain-based so-

lution is used in architecture management for eliminating

the risk of including a third party. One of the example use-

cases of farm management using blockchain is shown in

Figure 13. Different sets of farms participate in trusted agri-

cultural applications and likewise. There are a set of farms

that participate in the blockchain cluster for shared services

and enhanced security. As shown, farms 1-6 are in the same

trusted blockchain network and have the application record

for applications such as farm management, community sup-

ported agriculture, farm inventory, and its accountability.

The blockchain platform enforces policies for access control

to add transparency and scalability to the network. Lin et

al. [89] proposed a blockchain infrastructure for agricultural

systems and focus on the challenges of blockchain to be

tackled with the adaptation and implementation in real-world

e-agriculture solutions.

Big Data:

A wide variety of data is captured from farms that are

diverse and are of massive scale. Big data encompasses

this information to provide real-time agriculture operations,

decisions, and business models. It represents the set of in-

formation characterized by a huge volume and variety of
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data to reveal insights. Opportunities in big data applications

for agriculture include models to tackle crop risk, sensor

deployment, data analysis, and predictive modeling [11]. Big

data provides granular data to the farmers regarding rainfall

patterns, fertilizer requirements, and more. This way, farmers

can adhere to government regulations and guidelines to avoid

the overuse of chemicals. Further, harvesting big data helps in

achieving supply chain efficiencies by provisioning tracking

and routing.

E. COMPUTATION AND CONNECTIVITY

Current IoT technologies are using cellular, short-range, and

LPWAN networks to enable PA use cases. The cost of sen-

sors and hardware is dropping drastically, enabling solution

providers to offer off-the-shelf low-cost and customized so-

lutions. However, these simpler solutions need to unlock the

further potential of connectivity and computation to bring in

low latency, high resiliency, and scalable network specific to

agriculture solutions.

Low Power Wide Area Networks:

LPWAN acts as a connectivity enabler to support agriculture

applications, complementing both short and cellular commu-

nication. LPWANs are the perfect solution for PA applica-

tions. It provides features such as energy efficiency, long-

range, and low costs that are favorable for PA applications as

shown in Figure 14. A variety of technologies exist in both

licensed and unlicensed RF bands. Given remote locations

of agricultural land, these long-range and low-power tech-

nologies such as LoRaWAN are helpful in better coverage

and long operation time of devices. By retrofitting traditional

networks with LPWAN networks, vast distance farms can be

monitored efficiently. It provides a connectivity link range

of multiple kilometers to support scalability. The work done

by Singh et al. [152] on analysis of LPWAN, concludes that

LoRaWAN is more energy-efficient as compared to other

technologies such as Sigfox and NB-IoT. Various solutions

used LoRaWAN for PA such as [49] for greenhouse moni-

toring. Wu et al. [124] focuses specifically on LoRaWAN to

incorporate the soil path loss model and proposes more fine-

tuning in modulation schemes to yield better results. Another,

work by Fraga-Lamas et al. [201] proposes LoRaWAN based

architecture for the smart irrigation system.

Cloud, Fog and Edge computation:

Data acquisition procedures have evolved to a level where

addressing and managing data is possible over any layer from

edge/fog to cloud. Fog/Edge-based computation enables dis-

tributed architecture for service provisioning and acting lo-

cally, while cloud-based solutions help in mission-critical

solutions. Edge and fog computing brings the computation

closer to the end-users. This brings down the cost of sending

all data to the cloud and minimizes the considerable latency.

Cloud computing aims at sharing the maximum computa-

tional load to enable devices near the edge to be less costly

and encourages a longer battery life. The implementation of

edge, fog, and cloud computation is shown in Figure 15. On

the ’Y’ axis it shows the type of computation that can be done

and on the ’X’ axis it shows the values that can be brought

in with the respective usage in the solution. The work by

Guardo et al. [72] proposes a fog based framework for PA to

balance the computational load. A different set of nodes and
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devices with separate capabilities are taken for the different

tasks. Few nodes perform data filtering and aggregation, and

other nodes do actuation management. In the paper by Singh

et al. [152], it is demonstrated that most of the energy is

consumed in transmission so minimizing the frequency of

communication itself can increase the lifetime of the sensor

node. This can be achieved by performing edge computing

near the sensed data. In most of the solutions, data is sampled

at every fixed interval of time, irrespective of the change in

information or event. All the data are forwarded to the cloud

for processing and analysis. This adds to the transmission

cost on top of the data mining cost in the cloud. There can

be lightweight ML algorithms to support edge computation

for sending only meaningful information and can be further

managed by keeping intermediate fog nodes.

V. IOT SOLUTIONS FOR PRECISION AGRICULTURE

Agricultural solutions are immensely getting popular and

being adopted by the relevant users. Table 4 highlights some

commercially available solutions and companies with their

expertise on the application domain and used technology

for PA. This list of companies was selected by searching

and reading for trending precision agriculture companies in

the last three years for example by referring to the top ten

companies to watch in 2019 [204]. A large set of companies

work towards improving yield and automating farms. Others,

mostly work in data management, artificially lighting the

crop, and identifying stress and nutrients during the crop

cycle for disease and weed management. It is seen that lately,

companies have started aggregating multiple technologies

in building an application. Solutions such as UAVs on top

of WSN with remote sensing for aerial data collection and

data science following AI over big data are seen to be an

emerging trend. From the connectivity point of view, most

of the companies are building solutions using LoRaWAN

and NB-IoT as connectivity enablers. Companies like In-

tel and Microsoft are working in bringing down the cost

of embedded systems, along with making a collaboration

of heterogeneous devices and technologies for an effective

solution. There has been a shift in the focus of companies.

Initially, it was a separate solution track from biological

and technological domain companies. However, with time

now the focus is moved from consideration of biological or

technological space to solution-oriented goals infusing a mix

of domains and technology for a better solution.

VI. KEY PERFORMANCE INDICATORS IN IOT FOR

PRECISION AGRICULTURE

KPIs enable a quantitative comparison of different param-

eters involved in the operational plans. The generalization

of KPI starts from pre-deployment using simulations till

the final deployment. For PA applications, optimal KPIs are

designed to manage levels. One of the key benefits of using

KPIs is to provide a comparison set of alternative solutions

to visualize the performance aligned with the requirement.

A range of KPIs can be calculated to define the operational

plan, configuration plan, and final solution plan. One of the

challenges, while planning the solution for PA is to define

the optimal solution as per the requirement and available

resources. Often, the final objective has overlapped perfor-

mance criteria such as reducing cost, minimizing energy

consumption, increasing yield, or others. Some of these

criteria are conflicting and need a trade-off between them.

For instance, more messages are expected from the sensors

for implementing ML and at the same time, a longer life

is expected from the sensors. Thereby, at the end KPIs are

calculated and criteria are selected from a user acceptance

point of view. Figure 17 shows the performance metrics

of IoT for PA. It depicts different performance metrics to

control processes and information systems for an agricultural

monitoring solution. The illustrated performance metrics can

be selected as per the application requirement. For instance,

in the environmental sensing application, energy and cost can

be the potential KPI. The proposed design process of the

KPIs for any PA application is demonstrated in Figure 16.

It has three layers - the Requirement process, Data sourcing

process, and Design Process that are closely coupled to each

other. Firstly, in the requirement process, different level of

analysis is done over factors such as risk analysis, data

acceptance rate, and economic impact. The requirement is

gathered and mapped with the productivity, resources, and

other categories for acceptance. Thereafter, finalized details

from these acts as an input to the data sourcing process for the

identification and selection of data. At this stage, data is col-

lected, analyzed, stored, and selected to define the KPI goals.

Application-specific, KPI goals are defined among the agro-

partners by identifying different parameters and measured

variables. At this level itself, KPI list are formed with the

acceptance value. Finally, design and KPI goals are derived

in the design process. Here, the KPI goals are set as per the

application requirement. This is a sequential step approach

from collecting requirements to the design finalization. The

example of designing KPIs is demonstrated in Figure 19,

it keeps energy consumption as the major KPI criteria for

a PA application. Initially, the requirements of the use-case

are defined and different power requirements are identified.

Thereafter, since energy consumption is an important KPI

so analysis is done for all the possible factors impacting

energy consumption. Input from the analysis is mapped

with appropriate power requirements to satisfy and manage

KPIs. The solution architecture for developing agriculture

management KPIs are shown in Figure 18. The objectives

for the PA application are defined based on measurements,

that are further derived from indicators and defined in the

requirement phase. Performance metrics are calculated on

the deployment of sensors that can be latency, coverage, or

battery life of the sensor nodes. The trade-off between perfor-

mance metrics and connectivity requirements is adjusted as

per the application priorities. Accordingly, changes are given

as feedback to indicators. The KPI solution is designed to be

- SMART i.e. specific, measurable, attainable, relevant, and

time specific. As illustrated in the Fig 18, the network metrics
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TABLE 4. Industrial solutions for precision agriculture and respective focused technology [202], [203]

Sr. No. Company/Solution Focus Domain Focus Technology

1 Mothive Right time to harvest, predict disease, improve yield
and automate farms

ML, AI, Cloud Architecture

2 CropX Adaptive irrigation software with integrated wire-
less sensors

Soil Sensors, Aerial Imagery, Hydraulic Models

3 Ceres Imaging An aerial spectral imagery for water and fertilizer
application.

High-resolution multispectral imagery.

4 Arable Irrigation management tool, weather station and
monitor crop.

NB-IoT, LTE-M, Soil Moisture Probes, Mobile ap-
plication.

5 Gamaya Detection of disease, stress level and pests. Collect drone and satellite-based remote sensing
imagery.

6 AgriData Asset tracking system and predict yield, harvesting
time and disease.

Features and mapping capabilities for data manage-
ment.

7 Agrowatcher Identify water stress and disease using computer
vision.

Computer-vision technology and multispectral
imaging.

8 AgEagle Drone enabled imaging and analysis. Aerial imagery collection and analytics solutions.

9 PrecisionHawk Aerial data collection and management using au-
tonomous UAV.

Aerial mapping using Drones.

10 Aker Technologies Computer vision and biometric sensors to measure
fertility issues.

RGB and multispectral based crop health imagery.

11 Monsanto Data science and digital tools for agriculture. AI, Remote sensors, satellites, and UAVs.

12 Syngenta Counter threats and ensure nutritious and affordable
food

AI

13 Gavilon Local knowledge, market intelligence and global
distribution network

Crop nutrients analysis and distribution.

14 AeroFarms Data driven indoor vertical farming. LED Lighting, Predictive analysis, ML

15 Farmobile Uses Agronomic and machine data to inform in-
sights.

Data management

16 Surna Climate control equipment and management Controlled climate systems.

17 Freight Farms IoT farm management solution Building farm inside shipping container.

18 Voeks Inc Hydroponic and Farm designs PRIVA and ARGUS monitoring systems.

19 HelioSpectra Lighting needs based on natural light simulations Sensors and Lights.

20 FMC Agricultural Solutions Arc™ farm intelligence platform to predict pest. ML, AI with Crop models.

21 Skycrops Early diagnosis and reaction. AI and Robots

22 Farmable Efficiently track, monitor and record operations Application and database of farm records.

23 Azotic Technologies Technology for nitrogen fixation in crops. N-Fix technology

24 Gamaya Provides crop monitoring system by using ultra-
compact sensors.

Big data, Remote Sensing

25 ECF Farmsystems Provides heating, lightning, and irrigation solution. Sensors, Remote maintenance and analysis.

26 Agrivi Incorporates information about weather, fields and
equipment and provides management software.

Analytic and data management

27 PlantLab Radical new plant logic : Growing plants with less
resources.

Plant Production Units

28 CropX Automatic irrigation system including WSN and
mobile application.

Decision making, pattern analysis, LoRaWAN and
Cellular connectivity, Sensor deployment.

29 Proagrica, part of RELX Group Farms management software Data management solution

30 Raven Applied Technology Field, machine and application controls Cloud based data management

31 Terrasharp Yield forecast, disease detection and monitoring. Remote sensing, drones and satellite data.

32 Microsoft Data coupled with the farmer’s knowledge. AI, Edge computing, ML, Drones, Computer Vision

33 IBM Watson decision to improve harvesting and crop
quality.

AI and Cloud technology

34 Intel Soil testing and monitoring solution. ML algorithms, FPGAs, Cloud platform, Drones,
Blockchain, Sensors, LoRaWAN
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and deployment gets affected by the change in monitoring

parameters. These parameters help to fulfill the objective of

the solution.

VII. AGRIFUSION: MULTIDISCIPLINARY APPROACH IN

IOT

The future of precision agriculture depends on advancements

in IoT technologies. However, it still faces a challenge due

to the lack of adaptive architecture that can deal with the

interoperability of heterogeneous components and technolo-

gies. An efficiently designed architecture can pave the way

for deploying IoT solutions for smart farming. Most of the

architectural models were based only on static nodes, one

technology, no prediction mechanism, and limited contribu-

tion towards energy saving. Some data-driven architectures

did not include data security at all. For instance, the archi-

tecture by Ferrández-Pastor et al. [34] illustrates the commu-

nication level with functionality in IoT. It does not cover the

FIGURE 18. Solution architecture for key performance indicators showing the

relation between objectives, measurements, and indicators for precision

agriculture.
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FIGURE 20. AgriFusion: Architecture with the fusion of multidisciplinary technologies for precision agriculture.

integration or plugins of different technology at respective

levels. The architectural model for PA should engage multi-

disciplinary technologies and their capabilities to provide an

enriched solution.

Based on the available solutions and engagement of dif-

ferent technologies in the literature survey, we proposed a

five-layer IoT architecture - Agri-Fusion. The Figure 20, has

three vertical scopes (1) Services involved in each layer,

(2) Architecture with main components for PA, (3) and

Inclusion of respective technology and use-case mapped with

all vertical scopes. In the architecture, the lower layer is the

perception layer, which consists of sensors and other sensing

devices. The sensed information is collected and forwarded

to the upper layer by the embedded device. Since there are

heterogeneous devices, so they need coordination and col-

laboration among them for energy efficiency and reliable data

acquisition. The ongoing research in this layer focuses on the

usage of nano-technology in developing sensors, and making

them extremely low power or rather battery-less with self-

managing capabilities. The network layer acts as a transmis-

sion medium for various kinds of information collected from

the perception layer. It also directs the perception layer for

different changes in a control scenario. This layer needs good

data protection, storage, and reduced load techniques. For

agricultural use-case, LPWANs are among the best suitable

connectivity enablers with added value from edge computing.

This layer sends data to the middleware layer to perform

data mining, data loading, and data processing. It enables a

different set of services for the application as illustrated in the

Fig 20. Also, it simplifies the management of new services or

devices in the solution. Integration of blockchain, AI, ML, or

big data helps to make this layer more intelligent and includes

automation for the different use-case. Further, the platform

layer is responsible for decision-making and data processing

for knowledge extraction. Various categories of algorithms

and models are based here for different applications such as
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crop yield prediction, image processing, and simulation ac-

tivities. The decision in this layer is derived by using ML, AI,

cloud computation along with other recent technologies such

as DL and NN. The core responsibility of data management

in this layer helps in setting up agriculture templates and

services for the application. The application layer provides

value and utility to the users through intelligent platforms and

systems for different applications like - early alarm systems,

environmental monitoring, and many more. It is responsible

to manage the control and feedback from the user to the

perception layer. AgriFusion architecture envisions the appli-

cability and utilization of different technologies along with

their integration at different layers of an IoT architecture.

This can be easily adapted to any PA solution by selecting the

technologies at each layer and aligning them with application

objectives.

VIII. FUTURE RESEARCH DIRECTIONS AND OPEN

ISSUES

The development of low-cost sensors and their adaptability

is envisioned to be seamless. The evolution of prediction

techniques such as AI and ML is gravitating to the research

domain. There is a necessity for low power or even battery-

less network with reliable connectivity. The data collected

needs real-time handling of data using big data and ac-

curate algorithms. The overall performance of the system

can be measured with the KPIs that can be inculcated with

technology-specific future research directions. Figure 21

shows the future PA applications and open issues based on

the reviewed literature. There is immense opportunity for

the development and enhancements of current technologies

focused on different PA use-cases. The research community

has contributed well to the innovation and key technologies

in PA but it remains very specific to technology or applica-

tion. Thereby, there is a scope of advancements in binding

different technology domains for a more precise and common

solution. The network architecture needs openness of the

platforms and better management for the adaptation of dif-

ferent technologies. Data collection strategies can exploit the

potential collaboration of real-time feedback and detection

of anomalies. As the data will grow so the heterogeneous

data sources, thereby prescribing relevant data are required

from the edge network. The applications that need heavy

computational and low latency can be supported by edge

and fog computing. Services involved for PA need to be

coupled with an intelligent prediction and analytics approach

to adapt uncertainty and dynamic factors. Crop wastage

can be avoided by performing the forecasting of harvesting

and mapping it with the supply chain requirements. This

will require smart service subscriptions and privacy-oriented

blockchain solutions. The battery is one of the major con-

straints for both environment and running the network. This

demands future PA applications to have battery-less devices

with self-management capabilities.

A. OPEN ISSUES BASED ON LITERATURE REVIEW

Based on analysis of the literature, few challenges are iden-

tified as an obstacle for adaptation and building PA applica-

tions. One of the biggest challenges is the acceptance of the

PA solution for both small and large-scale farmers. It is seen

that local farmers are a bit skeptical in acceptance of the IoT

solution, considering privacy and security as the major issue.

Thereby, privacy needs to be regulated and policies should

be transparent to maintain the trust of the farmers. With the

increase of different types of devices, device management,

coordination, and collaboration have become of utmost im-

portance. The base network for any PA application needs the

capability of self-management and configuration to handle

cost and enable a quick decision support system. To keep the

solution cost-effective for the farmers, devices are of mostly

average computational power. Existing ML algorithms need

comparatively heavy computation power and storage. So,

there is a need for lightweight ML and AI algorithms with

enriched automation techniques. Open issues based on litera-

ture review for different emerging technologies are shown in

Figure 21. It illustrates the open issues in different technology

segments such as big data, ML, security, and remote sensing.

B. PRECISION AGRICULTURE ERA 4.0; 5.0 TO NEW

GENERATION 6.0

The consensus to industrialize agriculture needs the adapta-

tion of PA and quantitative approach for combining collabo-

ration between humans and machinery. Farming 4.0 needs

telecommunication infrastructure and the ability to utilize

data for agricultural supply chain [205]. Digital farming or

Farming 4.0 uses a data-based digital system to enhance

the knowledge of growers. These farms incorporate AI and

UAVs to get more insights which are termed as Agriculture

5.0 [206]. Integration of robots and AI in the farm helps to

complete a certain task in a faster way than humans. Next-

generation of agriculture 6.0 will use deep training data set to

help early-stage farmers as well. The evolution of agriculture

is pointing the equipment makers to bring in technologi-

cal advancements through robots, UASs, and likewise next-

generation farm machines. The future towards Agriculture

6.0 will target achieving both production and environmental

goals. One of the crucial aspects in achieving this is by fusion

of multidisciplinary technologies, as depicted in this survey

paper.

IX. CONCLUSION

PA is becoming the absolute necessity to manage global food

requirements. With the help of sensors, IoT collects vital

information from the farms and forwards it to the cloud appli-

cation over a secure network. The collected data is processed

using different technologies such as big data, AI, and ML

to look for any inconsistencies and use them for decision-

making. Different applications such as a disease forecast alert

system help to tackle uncertainties for the farmers. It forms

the basis of Agriculture 5.0, the new set of frameworks for

smart agriculture.
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- ML & Dataset for Intrusion Detection System

- Energy and Resource Efficient Nodes

- Integration of Heterogeneous Technologies

- Satellite data are not of high resolution

- Uploading information to the cloud

Network Architecture

Data Collection

Prediction and Learning

Data and Security

Connectivity and Computation

Security and Privacy 

related Solutions

Machine Learning

based Solutions

Big Data and Cloud

based Solutions

PA Application 

Specific Solutions

Remote Sensing

related Solutions

FIGURE 21. Future research directions and open issues in precision agriculture.

This work reviews emerging technologies that power PA

solutions. Several new technologies are being employed by

different solutions to make PA more energy-efficient, adapt-

able, and precise. Solution architectures use different compu-

tation paradigms at edge, fog, and cloud for data processing.

These architectures are further supported by ML, AI, big

data, SDN, and other new technologies like nano-technology

and blockchains. The capabilities of remote sensing using

UAVs are exploited in several use-cases to achieve optimal

networks with high coverage and performance. Edge comput-

ing has a major role in sharing and bringing the computation

load closer to the source of data. This enhances reliability and

reduces the latency of the network by avoiding traffic over

the cloud. For agriculture applications such as monitoring

greenhouse, it is vital to control the tools and devices with

minimal time in processing the data. Another layer of fog

computing brings in capabilities such as storage, security,

and processing the data at the farm for a quicker response

such as smart irrigation and alert system. Large data sets

are produced from the farm that needs continuous analysis,

big data provides an analytics framework to identify crucial

information for prediction and application management. Sen-
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sors nodes are mostly energy constraints and act as the core

of the sensing platform. Energy harvesting through ambient

sources such as sun, wind, and raindrops can empower sensor

nodes to have longer battery life and service to the network.

Other energy efficiency techniques have a trade-off between

power consumption and its implementation. Securing in-

formation and delivery is another perspective for bringing

reliability to the network. Blockchain enhances this security

element with data storage capabilities to bring transparency

and secure services to the network. SDN adds flexibility

to the network by separating data and management planes

for resource utilization and bringing down the operational

cost. Nano-technology is driving the utilization of fertilizers

and tackling the plant stress level to the nanoscale. Overall,

these technologies are the driving force for tackling the need

for PA with environmental sustainability that can be further

accelerated by using a multidisciplinary approach towards a

common PA application.

Based on the comprehensive survey, we proposed an IoT

solution architecture: AgriFusion, where the applications and

multidisciplinary emerging technologies are mapped to each

layer of IoT for the efficient use-case. This will enable

the integration of multidisciplinary technologies towards the

common endmost application goal. Many challenges have

been identified, which are the KPIs for the application. We

proposed the step approach for designing the KPI for an

application along with the architecture to reflect the depen-

dency and interactions deriving the KPIs. Based on different

technologies, future research directions are identified in this

paper. These technologies are pushing precision agriculture

to a paradigm shift and opening new avenues of opportuni-

ties. By close analysis of the literature and industrial trends,

it is clear that the adoption of PA is exponentially growing

and will help in feeding the world.
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