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Abstract
Flax is one of the significant crops owing to oilseed and fibre attributes, exhibiting a wide distribution in
many parts of the world. The present study was designed to reveal the genetic diversity of 29 genotypes
of flax through morphological traits and 12 iPBS and 33 ISSR markers. According to the UPGMA-based
dendogram, genotypes of the flax were classified into the two major groups (A and B) and group B was
composed of two sub-groups (B1 and B2) according to the six phenotypic attributes considered for
analysis. Concerning molecular relationships of the genotypes, individual and combined UPGMA-based
dendograms were constructed with respect to the ISSR and iPBS markers. According to the Jaccard
similarity coefficients for ISSR data, flax genotypes were divided into two main groups (A and B) and the
“Van-1” genotype was in group A alone. Also, group B was divided into two separate subgroups. “Afyon-1”
and “İzmir-Kemeraltı” genotypes were located in group B1, while all the remaining genotypes were located
in group B2. In addition, the average genetic similarity was 0.755 regarding the findings of iPBS-
retrotsposon markers, flax genotypes were classified into two main groups (A and B), and these main
groups formed two subgroups among themselves. While “Konya-1” is located alone in A1 subgroup,
“Iğdır”, “İzmir-Kemeraltı”, “Mardin”, “Bitlis” and “Afyon-1” genotypes are located in A2 subgroup. While
“Van-1” genotype was located in the B2 subgroup alone, other genotypes were found in the B2 subgroup.
The average genetic similarity was determined as 0.578 according to Jaccard binary similarity
coefficient. According to the combined data of two markers, two separate groups (A and B) were revealed,
similar to the dendrogram constructed with ISSR data. “Van-1” genotype was located in group A alone.
Group B was divided into two subgroups (B1 and B2). The average genetic similarity was 0.722
according to the Jaccard similarity coefficient of matrix.

Introduction
Flax or linseed (Linum usitatissimum L.) is one of the oldest crops cultivated, with evidence of its use
dating back to ancient Egypt and Mesopotamia (Saha and Hazra, 2004). Asia, Ethiopia, and India are
considered as secondary centres of the plant (Choudhary et al., 2017; Chen, 2022). However, flax is now a
worldwide spread annual, herbaceous and self-pollinating crop species belonging to the Linaceace family
with 300 species (Đurić and Spasić, 2019; Akram et al., 2021). Concerning the orders of plants used for oil
and fiber, the plant ranked at the third in terms natural fiber and major oil crops in the World (Ahmed et al.,
2019). Today, major producers of flax include Canada, China, Russia, and India. Flax is also grown in
smaller quantities in many other parts of the World (Jhala and Hall, 2010; Mishra and Awasthi, 2020;
Stavropoulos et al., 2023). In the case of Türkiye, Anatolia is considered as homeland of many wild flax
species, being as of the first cultivation regions of flax (Şahin and Yıldız, 2022). Türkiye has ideal
environmental conditions for the cultivation and production of fiber and oil flax (Arslanoglu et al., 2022)
and flax is cultivated in different regions of Türkiye. The flax is locally named as “bızıktan, bezir, güdün,
cimit, sağlek, siyelek and zeyrek” (Dumanoğlu, 2020). However, it has been determined that the amount of
flax production in Türkiye decreased significantly between 1990 and 2020 (1,570-8 tons), respectively
(TUIK, 2019; FAOSTAT, 2020). In cultivated plants, the genetic relationship and revealing of the phenotypic
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and genetic diversity between plants form the basis of successful breeding studies. Therefore, evaluation
of genetic diversity is important for the selection, conservation, and evaluation of the most productive
genotypes. Different morphological, biochemical features and molecular markers were used to evaluate
the diversity in genotypes (Rana and Singh, 2017; Soto-Cerda et al., 2019; Landoni et al., 2020).

Amid the marker systems adopted, Inter Simple Sequence Repeat (ISSR) marker system is based on
amplification of DNA segments located between regions of identical but opposite microsatellite repeats
at a distance that allows amplification (Zietkiewicz et al., 1994). Primers used in this technique are also
known as microsatellites and can be di-, tri- and tetra- or penta-nucleotide repeats. In this technique, long
primers with a size of 15–30 bases are normally used (Gupta et al. 1994). ISSR shows higher
reproducibility, levels of variability, and simplicity compared to other dominant marker systems (Wolfe
and Liston, 1998). Therefore, ISSR has several advantages such as high reproducibility, high
polymorphism, low DNA requirements, easy handling and high genomic distribution (Heidari et al., 2016).
It has been widely used in the characterization of plant gene resources and has been reported to be
effective in many studies (Erdinc et al., 2013; Ekincialp et al., 2019; Ibrahim and Erdinc, 2020). DNA
sequences that can move in the genome and cause mutation are called transposons (Capy et al. 2000).
Transposons make up a large part of the genome (Mansour, 2007) and markers obtained from them are
widely used to determine genetic diversity (Roy et al. 2015). Since there is a universal tRNA complement
as the primary binding site of reverse transcriptase in long terminal repeat (LTR) retrotransposons,
Interspersed Repeats-based PCR (iPBS) marker system can be used in all plant species without the need
for sequence information (Kalendar et al. 2010). iPBS has been successfully applied in many plant
species including wild chickpeas (Andeden et al. 2013), grapes (Guo et al. 2014), peas (Baloch et al.
2015a), beans (Nemli et al. 2015; Öztürk et al. 2020), okra (Yildiz et al. 2015), Leonurus cardiaca (Borna et
al. 2017), Fagaceae (Coutinho et al. 2018), Ranunculaceae (Hossein-Pour et al. 2019), oregano (Karagoz
et al. 2020), pepper (Yıldız et al. 2020), and wild rhubarb (Erdinç et al. 2021).

Both ISSR and iPBS markers are highly reproducible and require only small amounts of DNA for analysis.
They are also relatively easy and cost-effective to use, making them popular choices for population
genetic studies, phylogenetic analysis, and biodiversity conservation. Overall, ISSR and iPBS markers are
useful tools for genetic comparison because they can provide insights into the evolutionary relationships
and genetic diversity of populations, which can be used to inform conservation strategies and other
applications (Demirel 2020; Kumlay et al. 2021; Eren et al. 2022). For those reason, we herein aimed the
potential differences when individual or combined use of ISSR and iPBS for characterization of flax. Also,
some phenotypic attributes such as technical stem length, technical stem fresh weight, technical stem
dry weight, root length, root fresh weight and root dry weight were recorded. Finally, the scattering of the
genotypes with respect to the molecular and phenotyic data were carried out.

Material And Methods
Plant material and experimental design
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Plant materials were obtained from Türkiye and a total of 29 flax genotypes were used (Table 7). The
experiments were carried out at the greenhouses of Agricultural Research and Application Centre, Igdir
University of Türkiye. The study was performed as a factorial experiment using a completely randomized
design with three replicates. Prior to sowing, the seeds were surface-sterilized using 1% (v/v) hypochlorite
for 2–4 min and then the seeds were rinsed with distilled water to remove the residues of the disinfectant.
Then, the seeds were sown in 2,5 L-plastic pots containing peat and grown with a 26 − 30°C/day relative
in the experimental area.

Morphological evaluation

All plants were harvested after 76 days and some morphological attributes including technical stem
length, technical stem fresh weight, technical stem dry weight, root length, root fresh weight and root dry
weight were recorded.

Genomic DNA extraction

The genomic DNA was extracted from the cotyledon leaves in 8-day seedlings according to the protocols
of Aydin et al. (2018) with slight modifications. Also, 12 iPBS and 33 ISSR markers were selected for
genotyping. The concentration and quality of the genomic DNA samples were determined using
nanodrop spectrophotometer (MAESTRO).

iPBS-Retrotransposon Amplification

In total, 50 iPBS-retrotransposon primers were screened in eight randomly selected flax genotypes, and
the 12 most polymorphic primers were selected for testing in all genotypes (Table 2). PCR
amplicafications were made according to the conditions proposed by Kalendar et al. (2020). Briefly, the
PCR reaction was carried out in a total volume of 25 µl, containing 3X Dream Taq Green PCR buffer, 5
mM dNTPs, 10 µM primer, 1.75 units Dream Taq DNA polymerase and 10 ng DNA. Concerning PCR
amplification, it was firstly carried out starting with 4 min denaturation at 95 oC, then followed by 15 sec
denaturation at 95 oC, 1 min binding at 50–65 oC (depending on primer), and 1 min at 68 oC. The final
extension phase was carried out by keeping it at 72 oC for 5 minutes.

ISSR Amplification

First, a total of 63 ISSR primers were screened in eight randomly selected flax genotypes, and 33 primers
were selected for amplification of all genotypes, with the clearest readable bands and high polymorphism
(Table 3). PCR reaction was carried out with 2.5 µl of 10 × buffer (Tris–HCl (pH 8.3) 100 mM; KCl 500
mM), 0.1 mM dNTP, 3.0 mM MgCl2, 10 pmol primer, 0.75 U Taq DNA polymerase (Takara Biotech Co.,
Ltd.) and 30 ng of template DNA. Regarding PCR amplification, the reactions started with 5 min
denaturation at 94 oC, and were followed by 35 cycle-1 min denaturation at 94 oC, 1 min binding at 50–
59,7 oC (depending on primer), 1,5 min elongation at 72 oC, and final extension of 7 minutes at 72 oC
(Ahmed et al. 2019).
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Gel-Electrophoresis and Image Analysis

The purified DNA was checked by gel electrophoresis (Hoefer) with 6µl of Redsafe (RedSafeTM) added at
a concentration of 0.5% µg/mL in 1X TBE buffer. Then, the gel image was recorded by the DNA Redsafe
GEN-BOX Ultra Viole (UV). PCR, 0,5 µM each primer pair, 12 mM Tris-HCl (pH: 9.1), 60 mM KCl, 0.012%
Triton X-100, 0.28 mM each dNTP, 2–3 mM MgCl2 and 1 unit of Taq DNA Polymerase enzyme (Thermo
Fisher) and PCR studies were carried out. The next of PCR, the samples to which DNA loading buffer was
added were loaded onto 4% agarose gel and 1X TBE solution was used and electrophoresis was
performed for 2–5 hours by applying 60V/cm (Saroha et al., 2022). Additionally, in PCR processes,
SensoQuest GmbH made use of the Labcycler Gradient brand Thermal Cycler. Band/allele size, UV pro
ImageER. It was used in the scoring and photographing stages, which were recorded in the computer
environment with the Eyes program. Cluster analysis Bayes statistics and MrBayes v.3.1.2 (Ronquist and
Huelsenbeck, 2003) program were used. In addition to the analyzes were made by using the Jaccard
similarity index in Principal Positioning Analysis (PCoA). Therewithal, PCoA analysis results were
obtained using the MVSP v.3.13 software.

Data analysis
Three replicates (each replicated corresponded ten plants) were used for data analysis. The flax plants
were compared for their agronomic and morphological attributes using one-way variance analysis (p < 
0.05) (SPSS 22). Pearson correlation (r) was used to determine the relationship between the investigated
parameters. Also, principal component analysis (JAMOVI) and heatmap clustering (ClustVis) were
employed to cluster the dependent variable parameters corresponding to the genotypes (independent
variables). Concerning the statistics of molecular analysis, scoring was made according to the binary
data system and recorded as "1" in the presence of the band and "0" in the absence of it. Molecular data
was analyzed using PAST3. The similiarity between molecular and phenotypic data were determined
using Jaccard similarity coefficient and Euclidean coefficient, respectively. The dendogram showing the
genetic link between the flax genotypes was constructed by the UPGMA method using the similarity
coefficients. The polymorphic information content (PIC) was calculated according to Powell et al. (1996)
and Smith et al. (1997). The effective number of alleles (ne), gene diversity (h) and Shannon information
index (I) (Yeh et al., 2000) were calculated using POP-GENE 1.32. The population structure of the flax
germplasm was determined with Bayesian clustering model using STRUCTURE 2.3.2 (Pritchard, 2000).
Most likely number of clusters (K = number of subpopulations) was determined according to Evanno et al.
(2005) and the number of clusters (K) was plotted against the logarithm probability according to the
standard deviation (ΔK). Finally, Mantel test (Mantel, 1967) was applied to determine the consistency
between the molecular and morphological data using GenAlEx (6.51) (Peakall and Smouse, 2006).

Results
Genetic diversity by morphological traits and correlation analysis
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In accordance with the experimental design, as we stated in the findings, growth potential capacities were
tested by artificially growing in organic soil under controlled conditions. In addition, a total of 29 genotyps
registered varieties and unknown genotypes of flaxseeds obtained from different provinces of Türkiye
were used. The morphological characteristics of the relevant flax genotypes are listed in Table 1. All
characteristics measurements were performed in Agricultural Research and Application Center, Igdir
University, and randomly-chosen to twenty plants for each plot. In addition, in the study, we approximately
examined 6 traits selected from flax plants and we addressed our comments. Accordingly, the values of
the parameters ranged as follows: technical stem length (19.32-45.39cm), technical stem fresh weight
(0.13-0.82g), root length (4.07-7.84cm), and root fresh weight (0.03-0.13g) (Table 1). Specifically, the
highest technical stem length was observed for "Ankara-Çankaya", while the lowest height was recorded
for “Royal”. In addition to the highest root length was observed for "Afyon-2", while the lowest was
recorded for "Eckendorfi". Concerned with the technical stem fresh weight, the highest and lowest weight
were recorded as 0.82g and 0.13g for “Ankara-Çankaya” and “Royal”, respectively. Accordingly, the root
fresh weight, the highest and lowest weigh values were observed as 0.13g and 0.03g for “Van-1” and
“Konya-1, Sarı-85”, respectively. Correlation analysis revealed that plant technical stem length was
positively correlated with technical stem fresh weight (r = 0,520; p < 0,05). Technical stem fresh weight (r = 
0,810; p < 0,05) was positively correlated with root dry weight. In addition, the relevant coefficients were
not significant (Fig. 3).

Heatmap clustering and Principal Component Analysis (PCA) of plant growth and biomass production
traits

For the visualize, correlate and clarify the morphological traits considered to the genotypes, we performed
heatmap (Fig. 1) clustering and PCA (Fig. 2). Heatmap clustering revealed two major clusters. The first
cluster was comprised of technical stem length, root length. Additionally, the second major cluster was
associated with the development attributes of the flax. This cluster was comprised of technical stem
fresh weight, technical stem dryweight, root fresh weight and root dry weight. In order to explain the
percentage of variation; PCA was carried out to reveal what kind of relationship and what level of
differentiation there is between cultivars and related parameters (Fig. 2). Due to being based on the
correlations, as the heatmap scattering was also observed for PCA. For instance; attributes including the
technical stem length technical stem fresh weight and technical stem dry weight were clearly separated
from other morphological (root length, root fresh weight and root dry weight) parameters. In addition, two
components with Eigen values over 1 were observed. These two components (F1: 44.9% and F2: 20%)
explain the total variation of 64.9% (Fig. 2).

Phenotypic characterization

According to the six phenotypic attributes considered for analysis, a UPGMA-based dendogram was
constructed (Fig. 4). The genotypes of the flax were classified into the two major groups (A and B) and
group B was composed of two sub-groups (B1 and B2). Of the genotypes, only Ankara-Çankaya genotype
was located in the A group, whilst 9 genotypes (Dakota, Antares, Sarı-85, Rolin, Bursa, Iğdır, Muş, Samsun-
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1 and İzmir-Kemeraltı) and 13 genotypes (Mardin, Mersin-1, Afyon-1, Bitlis, Konya-1, Afyon-2, Sinop, Van-
1, Siirt, Kilis, Diyarbakır, İzmir-Karşıyaka and İzmir-Tepecik) were included in the B1 subgroup and B2
subgroup, respectively. According to the Euclidean similarity coefficient, the average similarity coefficient
of the genotypes was determined as 13.47. The closest genotypes pairs were as Sinop and Konya-1
(2.56), Dakota and Sarı-85 (2.73) and Rolin and Samsun-1 genotypes (2.87). On the other hand, the most
distant genotypes from each other were as Ankara-Çankaya and Bitlis (44.20), Ankara-Çankaya and
Mardin (42.20) and Ankara-Çankaya and Konya-1 (41.10). According PCoA, the phenotypes were
classified into three groups. The scattering of the genotypes was largely similar to cluster analysis. In this
context, while the Ankara-Çankaya genotype was located at a single point, it was determined that the
İzmir-Kemeraltı genotype was located in the third group, unlike the dendogram in the cluster analysis in
the second group (Fig. 5).

iPBS and ISSR amplification

A total of 91 scoreable bands were obtained from 13 iPBS primers used to reveal the genetic variation in
a population of 23 flax genotypes, and 77 of the obtained bands showed polymorphism (Table 2).
Accordingly, the lowest polymorphic band production per primer was obtained from primer 2085 with 1
band, while the highest band production was obtained from primer 2232 with 9 bands. Primers 2228,
2375 and 2376 showed 100% polymorphism. While the average polymorphism % of the primers studied
was 82.55, the lowest polymorphism rate was found to be 33% in the 2085 primer. The mean
polymorphism information content (PIC) value was calculated as 0.90 for 23 flax genotypes. The
minimum PIC value was obtained from 0.09 from 2239 primer, while the highest PIC value (0.93) was
obtained from 2220 primer (Table 2). The ne value for the thirteen iPBS primers ranged from 1.33 (2085)
to 1.73 (2230). The average ne value was calculated as 1.58. The average h value was calculated as
0.34. The lowest and highes h value were as 0.09 (2085 primer) and 0.47 (2415 primer), respectively. I
values ranged from 0.19 (2085 primer) to 0.67 (2415 primer) with an average value of 0.50 (Table 2).

In the characterization of flax genotypes with ISSR markers, a total of 309 scoreable bands were obtained
from 33 primers, and 212 of the obtained bands were found to be polymorphic bands (Table 3). The
lowest polymorphic band production was obtained from the 812 primer with 2 bands, while the highest
band production was obtained from the Sola-5 primer with 13 bands, and the average number of
polymorphic bands was found to be 6.42.

Primers 8f and Sola-5 showed 100% polymorphism, primer PHV-6 had the lowest polymorphism rate with
33%. At the same time, the polymorphism average of the primers was determined as 67.91. The mean PIC
value of the primers was calculated as 0.73, and these values ranged from 0.23 (5f) to 0.93 (I12 and LOL-
8) (Table 3). While the mean ne value was found to be 1.49 for 33 ISSR primers used in the study, Sola-4
had the highest ne value with 1.89 and 5f had the lowest ne value (1.23). The mean h value of the
primers was calculated as 0.30. The lowest h value was obtained from the B10 primer with 0.15 and the
highest h value was obtained from the Sola-4 primer with 0.47. The highest Shannon index was 0.66 in
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the Sola-4 primer, the lowest value was found in the B10 primer with 0.27, and the average of the primers
was calculated as 0.46 (Table 3).

Phylogenetic analysis with molecular data

The Jaccard similarity coefficient was used to determine the genetic relationships between flax
genotypes with iPBS-retrotsposon markers and a UPGMA-based dendogram was obtained (Fig. 6).
Accordingly, flax genotypes were divided into two main groups (A and B), and these main groups formed
two subgroups among themselves. While Konya-1 is located alone in A1 subgroup, Iğdır, İzmir-Kemeraltı,
Mardin, Bitlis and Afyon-1 genotypes are located in A2 subgroup. While the Van-1 genotype was located
in the B2 subgroup alone, other genotypes were found in the B2 subgroup (Fig. 6). According to the matrix
values obtained with the Jaccard binary similarity coefficient, the average genetic similarity was
determined as 0.578. The closest genetic similarity was between Mersin-1 and İzmir-Tepecik (0.936),
followed by İzmir-Tepecik and Siirt (0.895) and Mersin-1 and Siirt genotype pairs (0.886). The lowest
genetic similarity was determined between Afyon-1 and Ankara-Çankaya genotypes with 0.308, Ankara-
Çankaya and Iğdır and Van-1 and Afyon-1 genotypes were determined as other distant genotypes (0.309
and 0.310, respectively).

Principal coordinate analysis (PCoA) was also performed to determine the genetic diversity and four main
groups were formed. According to the scattering, Van-1 genotype is located at a different point while, as
in the cluster analysis, it was noted that Konya-1, Iğdır, İzmir-Kemeraltı, Mardin, Bitlis and Afyon-1
genotypes, which are in the same main group, are located close to each other in the dendrogram. In this
context, it was observed that the results of cluster analysis and PCoA analysis performed to examine
genetic variation of iPBS-retrotsposon markers were largely compatible with each other (Fig. 7).

The UPGMA-based dendrogram was obtained using the Jaccard similarity coefficient for ISSR data
(Fig. 8). Accordingly, the flax genotypes were divided into two main groups (A and B) and the Van-1
genotype was in group A alone. Also, group B was divided into two separate subgroups. Afyon-1 and
İzmir-Kemeraltı genotypes were located in group B1, while all the remaining genotypes were located in
group B2 (Fig. 8). According to Jaccard similarity coefficient, the average genetic similarity was
determined as 0.755. While the closest genetic distance was found between Mersin-1 and Afyon-2
(0.941), Siirt and Afyon-2 and Sinop and Afyon-2 genotype pairs followed these genotypes with a
similarity coefficient of 0.915. On the other hand, İzmir-Kemeraltı and Antares were the most distant
genotypes with a similarity coefficient of 0.585, while Muş and İzmir-Kemeraltı (0.589) and Ankara-
Çankaya and İzmir-Kemeraltı (0.591) genotypes were other distant genotype pairs.

According to PCoA of ISSR data, Van-1 genotype was located at a different point, similar to the cluster
analysis, and the İzmir-Kemeraltı and Afyon-1 genotypes, which were in a different group in the cluster
analysis, were also close to each other. It was also determined that Konya-1, Mardin, Bitlis, Muş and
Ankara-Çankaya, which are in the third group, are located at more distant points than other genotypes
(Fig. 9). In ISSR data, as in iPBS data, cluster and PCoA results were found to be compatible with each
other.
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In the UPGMA-based dendogram obtained by combining iPBS and ISSR marker data, two separate
groups, A and B, were formed, similar to the dendrogram constructed with ISSR data, and Van-1 was in
group A alone. Group B was divided into two subgroups (B1 and B2). Afyon-1 and İzmir-Kemeraltı
genotypes were in group B1 and the remaining genotypes were in group B2 (Fig. 10). Considering the
matrix formed according to the Jaccard similarity coefficient, it was determined that the average genetic
similarity was 0.722. Of the genotypes, Mersin-1 and Afyon-2 genotypes had the closest genetic distance
(0.928), Mersin-1 and İzmir-Tepecik and Siirt and Afyon-2 genotype pairs followed this genotype pair with
similarity coefficients of 0.908 and 0.906, respectively.

While Ankara-Çankaya and İzmir-Kemeraltı (0.554) genotypes were the most distant from each other, it
was determined that İzmir-Kemeraltı and Antares (0.556) and Kilis and İzmir-Kemeraltı (0.562) genotype
pairs were the other distant genotype pairs. PCoA of molecular data revealed four groups. Accordingly,
While Van-1 genotype was in a single group, İzmir-Kemeraltı and Afyon-1 genotypes and Ankara-Çankaya
and Muş genotypes were located in two different groups. The remaining genotypes were found to be in a
different group (Fig. 11). In this context, it is noteworthy that there is a great deal of similarity with the
distribution of genotypes in the dendogram obtained as a result of the cluster analysis. In the Mantel
analysis using two different marker systems and genetic distance matrices obtained from phenotypic
traits, it was determined that the correlation between ISSR and iPBS was high and this correlation was
significant (Fig. 12). Although the correlation between the morphological marker and ISSR was low, this
correlation was found to be significant, but the correlation between iPBS and the morphological marker
was low and not significant (Fig. 12).

Population structure analysis

The population structure was analyzed using molecular data with STRUCTURE. In the STRUCTURE
analysis performed with the data of iPBS marker system, the highest Delta K was found as 8 (Fig. 13).
The population consisting of 23 genotypes was divided into 8 subpopulations (Fig. 14). Membership
coefficients were especially high in VI and VIII subpopulations (9 and 8 genotypes, respectively), and high
membership coefficients were not determined in IV and V subpopulations (Table 3). According to the
population structure performed with ISSR data, the highest Delta K value was 2 (Fig. 13), and it was
determined that 2 subpopulations were formed accordingly (Fig. 15). Concerning the membership
coefficients, there were 7 genotypes in the first subpopulation and 13 genotypes in the second
subpopulation. The membership coefficients of the remaining three genotypes (Ankara-Çankaya, Iğdır
and Bitlis) were found to be close to each other (Table 5). Finally, we carried out Structure analysis using
the combined molecular (iPBS + ISSR) data and the highest Delta K value was found to be 2 (Fig. 13).
Accordingly, 2 subpopulations were formed (Fig. 16). Regarding membership coefficients, there were 11
genotypes in the first subpopulation and 12 genotypes in the second subpopulation (Table 6).

Discussion
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For the use of plants as genetic resources, a comprehensive understanding of plant genetic diversity is
required, as in general many plants achieve a narrow yield of genetic treatments and adverse impacts are
increased against different stresses (Mishra et al., 2012; Suvi et al., 2020). Genetic diversity analysis at
the morphological and molecular level has an important role in optimizing breeding practices and yields.
In addition, significant genetic variation has been reported in the flax plant at the morphological and
molecular level (Khan et al., 2013). Herewith the study, we addressed our targets on revealing the
morphological and molecular variations. The molecular characterization and discrimination were based
on the used two different markers systems including iPBS and ISSR. Of the morphological attributes
considered, the lowest and highest values of technical stem length were recorded in Royal (19.32cm) and
Ankara-Çankaya (45.39cm), respectively. Our current findings are in parallel with previous reports
(Brunšek et al., 2022 (49.10-73.63cm); Emam, 2019 (66.97-82.36cm); Korolev and Bome, 2017
(59.24cm)). The highest value of fresh stem weight (0,82g) was recorded in “Ankara-Çankaya” genotype
whilst the lowest value (0,13g) was recorded in “Royal” genotype. The highest and lowest root length
values were 7,84cm and 4,07cm for “Afyon-2” and “Eckendorfi”, respectively. Those values were relatively
lower than the values (0,56 − 0,60cm) reported by Yıldız and Özgen (2004). Regardin fresh weight of root,
the highest and lowest values were as 0,13g for “Van-1” and 0,03g for “Konya-1” and “Sarı-85”. The
manifested significant differences might be attributed to the quality of the seeds, environmental factors
in cultivation media.

Concerning molecular analysis, a total of 289 polymorphic bands (N = 77 in iPBS and N = 212 in ISSR)
were recorded and and the average number of polymorphic bands per primer was calculated as 5.92 and
6.42, respectively. Lancíková and Žiarovská (2020) reported the genetic diversity in flax with IRAP and
iPBS marker systems. IRAP primers revealed 38 (mean 6.3) and 46 (mean 7.7) polymorphic bands in two
different populations, whereas all of the bands obtained from iPBS primers were monomorphic.
Corresponding to the reports using different retrotransposon marker systems in flax, Holasou et al. (2016)
reported 41 (mean 5.86) and 78 (mean 6.0) polymorphic bands from IRAP and REMAP primers,
respectively. Average number of bands per primer for iPBS in grape varieties was 5.7 and 6.75 for grape
varieties (Guo et al., 2014) and peas (Baloch et al., 2015a), respectively.

The relevant values of mean number of polymorphic bands are not entirely related to the marker
technique but is, in general, related to the species investigated. With respect to the uses of ISSR marker
for genetic characterization of flax gene resources, Ahmed et al. (2019) observed 4.7 polymorphic bands
per primer from 47 polymorphic bands, and Atri and Kumar (2018) recorded 11.5 polymorphic bands
from 344 bands. The polymorphism rate of iPBS and ISSR markers were found to be 82.55% and 67.95%,
respectively, for the present study.

Regarding reports on uses different retrotransposon markers in flax, Lancíková, and Žiarovská (2020)
found the mean polymorphism rate in the range of 30.8 to 24.6%, while Habibollahi et al. (2015)
determined the highest rate as 54.53%. Similarly, Smýkal et al. (2011) obtained 36.70% in the IRAP
marker system, Holasou et al. (2016) obtained polymorphism rates of 53.25% and 58.92% from two
different retrotransposon marker systems. In another study, the rate was found to be as 100% (Žiarovská
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et al., 2022). In this respect, a higher polymorphism rate was obtained than the iPBS primers used to
determine the genetic variation among the flax genotypes in the present study. While high polymorphism
rates such as 90% with 18 polymorphic bands (Pali and Mehta, 2016), 89% with 66 polymorphic bands
(Atri et al., 2018), 95% from 298 bands (Uysal et al., 2010) were recorded from ISSR primers, El Sayed et
al. (2018) obtained a low polymorphism rate (21.41%). The polymorphism rates of the present study are
consistent with the reports of Rajwade et al. (2010) and Osman et al. (2021) (63.90% and 64.40%,
respectively).

PIC values (Shete et al. 2000), which are commonly used to indicate the level of polymorphism of a
marker locus used in linkage analysis in genetic studies, provide a broader table for evaluating diversity
compared to the number of bands obtained because it takes into account the relative frequencies of each
band (Cömertpay et al., 2012). Therefore, PIC results allow the selection of larger polymorphic markers to
reduce the number of loci required for precise genotype characterization. In the study, averages of 0.75
from iPBS primers and 0.73 from ISSR primers were obtained. Of the former reports, the mean PIC value
was 0.42 in the IRAP marker system (Smýkal et al., 2011), while in another study, 0.37 in IRAP primers
and 0.31 in REMAP primers (Holasou et al., 2016). In comparison to the previous reports concerned with
uses of retrotransposon marker systems in flax, it is noteworthy that high PIC values were obtained in the
present study. PIC values of ISSR marker system were found to be as 0.88 (Ahmed et al., 2019), 0.68 (Pali
and Mehta, 2016), and 0.86 (Atri et al., 2018) in flax gene resources. In this context, it is seen that the PIC
value obtained from ISSR primers in the study is relatively compatible with the previous reports.

The mean ne value was found to be as 1.58 and 1.49 in the iPBS and ISSR primers, respectively.
Habibollahi et al. (2015) reported the ne value between 1.15 and 1.37 with IRAP markers in the flax gene
resources. Similarly, Holasou et al. (2016) also reported average effective allele counts (ne) of 1.19 and
1.23 in different retrotransposon markers, which are lower than the present study. Average h and I values
were 0.34 and 0.50 for iPBS, 0.30 and 0.46 for ISSR, respectively. Concerning the studies with uses of
IRAP and REMAP, it was determined that average values of h were between 0.10 and 0.21 and I averages
were between 0.16 and 0.31 values. In this study, higher average values were recorded with iPBS in
genetic diversity indices.

Indeed, retrotransposon-based DNA marker systems, which have been used for many plant species, are
stated to be a powerful tool for the analysis of different aspects of natural genomic variability of higher
plants (Andeden et al. 2013; Guo et al. 2014; Baloch et al. 2015a; Nemli et al. 2015; Yildiz et al. 2015;
Borna et al. 2017; Coutinho et al. 2018; Hossein-Pour et al. 2019; Karagoz et al. 2020; Yıldız et al. 2020;
Erdinc et al., 2021). Regarding uses of ISSR markers in the characterization of the flax genetic resources,
there were mostly no findings related to the genetic diversity indices. In a study conducted by Talebi and
Matsyura, (2021), they reported the value of I and ne as 0.098 and 1.11, respectively. It was determined
that the genetic diversity indices of the ISSR primers used in the present study were higher than these
averages. In addition, the results obtained from iPBS and ISSR were highly consistent (r = 0.78), but iPBS
and ISSR data and morphological data were not so highly consistent (r = 0.07 and r = 0.15, respectively).
Baloch et al. (2015b) reported that these two marker systems showed high correlation in comparison of
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the wild lentil genotypes (r = 0.91). Also, the relevant correlation coefficients were found to be as r = 0.89
in chickpea (Andeden et al., 2013), and r = 0.44 in watermelon (Coşkun and Gülşen, 2022). However, no
findings were reported for the correlation of molecular and morphological data in flax but different
molecular and morphological marker data showed low correlation in species such as olive (Laaribi et al.,
2017) and watermelon (Coşkun and Gülşen, 2022). Similarly, in the dendogram and PCoA of
morphological attributes, it was observed that Ankara-Çankaya genotype was located in a different place
and separated from other genotypes. In the iPBS and ISSR analyzes, it was noted that the Van-1 genotype
was located in a different place and the same results were obtained in both cluster and PCoA analysis. In
general, it was determined that genotypes were basically divided into two groups in both marker systems.

Bayesian-based population structure analysis performed with iPBS and ISSR data divided the genotypes
into 8 and 2 populations, respectively, and in the analysis performed with combined molecular data, it
was determined that 2 subpopulations were formed. According to the findings of the present study,
geographical differences might not be predictor factors in dividing the genotypes into the populations.
Regarding membership coefficients, it is noteworthy that there are genetic differences between
populations, especially in the iPBS results. The presence of parts with different colors in each genotype
indicates that each genotype has low gene flow with other genotypes. This means that the introduction of
new genes into populations and genetic variability within populations increase. In the study by Holasou et
al. (2016), the flax genotypes were divided into two subpopulations with the uses of IRAP and REMAP
markers, whereas Habibollahi et al. (2015) reported that they were divided into 3 subpopulations. At the
same time, it was stated that gene transfers between these populations were low. In population analysis
studies with ISSR markers in flax genotypes, Nag et al. (2021) 8, Kumari et al. (2018) 2, Talebi and
Matsyura (2021) reported that 6 subpopulations were formed.

In population structure analysis, individuals with a membership coefficient of 0.8 or higher in a
subpopulation are considered pure, while individuals with a lower membership coefficient are considered
a mixture of at least two different subpopulations (Fukunaga et al. 2005). Accordingly, in the present
study, 8 genotypes (iPBS markers) (Mersin-1, Afyon-1, Afyon-2, İzmir-Tepecik, Siirt, İzmir-Kemeraltı, Bitlis
and Mardin) and 14 genotypes (ISSR markers) (Van-1, Afyon-1, Afyon-2, İzmir-Kemeraltı, Konya-1, Sarı-85,
Sinop, Siirt, Kilis, Bursa, Samsun-1, Mersin-1, İzmir-Karşıyaka and İzmir-Tepecik) were higher than 0.8 and
those can be described as pure.

Conclusion
We here, for the first time, revealed the genetic diversity and population structure of 29 flax genotypes
using individual and combined data of iPBS-ISSR markers. According to the Mantel analysis concerning
genetic distance matrices of morphological traits, the correlation between ISSR and iPBS was high and
significant. According to the structure analysis of combined data of iPBS + ISSR, 2 subpopulations were
obtained. Concerning the membership coefficients, there were 11 genotypes in the first subpopulation and
12 genotypes in the second subpopulation.
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Table 1
Morphological characteristics of flax (Linum usitatissimum L.) genotypes in One-way analysis of

variance (ANOVA).
Variety Technical

Stem Length
Technical Stem
Fresh Weight

Technical Stem
Dry Weight

Root
Length

Root
Fresh
Weight

Root Dry
Weight

Van-1 25.59 ± g-l 0.42 ± e-h 0.11 ± d-g 5.57 ± 
b-h

0.13 ± a 0.03 ± a-
c

Mersin-1 23.55±ı-l 0.37 ± g-k 0.08 ± h-k 5.48 ± 
b-h

0.05 ± g-k 0.01 ± 
de

Afyon-1 26.55 ± f-l 0.19 ± lm 0.05 ± l-n 4.64 ± 
f-h

0.08 ± d-f 0.01 ± e

Afyon-2 23.89±ı-l 0.31 ± h-l 0.07 ± j-l 7.84 ± 
a

0.06 ± f-ı 0.01 ± 
de

Muş 31.92 ± de 0.38 ± f-j 0.07 ± j-l 5.57 ± 
b-h

0.11 ± b 0.02 ± 
de

Ankara-
Çankaya

45.39 ± a 0.44 ± d-g 0.09 ± f-k 6.36 ± 
b-e

0.06 ± f-ı 0.02 ± 
de

İzmir-
Kemeraltı

29.74 ± d-h 0.60 ± bc 0.12 ± d-f 6.11 ± 
b-f

0.09 ± b-d 0.03 ± a-
d

İzmir-
Karşıyaka

25.06 ± h-k 0.44 ± e-g 0.09 ± e-j 5.77 ± 
b-g

0.11 ± bc 0.02 ± b-
d

İzmir-
Tepecik

24.93 ± h-k 0.63 ± b 0.13 ± cd 5.92 ± 
b-g

0.09 ± b-d 0.03 ± a-
d

Iğdır 33.52 ± b-d 0.82 ± a 0.17 ± b 6.98 ± 
a-c

0.06 ± e-h 0.03 ± 
ab

Bitlis 20.60 ± kl 0.29± ı-l 0.04 ± mn 5.67 ± 
b-g

0.04 ± h-k 0.01 ± 
de

Sinop 22.92 ± j-l 0.41 ± f-h 0.08 ± h-k 5.67 ± 
b-g

0.06 ± f-ı 0.02 ± c-
e

Diyarbakır 26.64 ± f-j 0.45 ± d-g 0.09 ± g-k 5.72 ± 
b-g

0.08 ± d-f 0.02 ± 
de

Siirt 28.51 ± d-ı 0.39 ± f-ı 0.09 ± e-j 6.11 ± 
b-f

0.04± ı-k 0.01 ± 
de

Konya-1 22.90 ± j-l 0.14 ± m 0.03 ± n 6.53 ± 
a-d

0.03 ± k 0.01 ± 
de

Eskişehir 23.86±ı-l 0.43 ± e-h 0.10 ± e-j 5.16 ± 
d-h

0.06 ± e-h 0.02 ± c-
e

Different letters indicate significant difference according to a Duncan’s multiple range test (p < 0.05).
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Variety Technical
Stem Length

Technical Stem
Fresh Weight

Technical Stem
Dry Weight

Root
Length

Root
Fresh
Weight

Root Dry
Weight

Samsun-1 31.19 ± d-f 0.28±ı-l 0.07 ± j-l 5.15 ± 
d-h

0.04 ± j-k 0.01 ± 
de

Mardin 22.03 ± j-l 0.28± ı-l 0.06 ± k-m 4.50 ± 
gh

0.04± ı-k 0.01 ± 
de

Kilis 26.56 ± f-j 0.26 ± kl 0.05 ± l-n 5.31 ± 
d-h

0.04± ı-k 0.01 ± 
de

Bursa 38.01 ± b 0.77 ± a 0.15 ± bc 7.01 ± 
ab

0.09 ± cd 0.04 ± a

Hermes 23.04 ± j-l 0.54 ± b-e 0.11 ± d-g 4.56 ± 
gh

0.08 ± d-f 0.02 ± b-
d

Rolin 30.29 ± d-g 0.50 ± c-f 0.34 ± a 4.93 ± 
e-h

0.04 ± j-k 0.02 ± 
de

Antares 37.29 ± bc 0.59 ± bc 0.12 ± de 4.63 ± 
f-h

0.04±ı-k 0.02 ± c-
e

Royal 19.32 ± l 0.13 ± m 0.08± ı-k 6.67 ± 
a-d

0.04 ± j-k 0.02 ± 
de

Dakota 32.94 ± cd 0.54 ± b-e 0.11 ± d-h 4.73 ± 
f-h

0.07 ± d-g 0.02 ± c-
e

Eckendorfi 27.26 ± e-j 0.56 ± b-d 0.10 ± e-ı 4.07 ± 
h

0.06 ± g-j 0.02 ± 
de

Sarı-85 32.44 ± d 0.35 ± g-k 0.07 ± j-l 5.47 ± 
c-h

0.03 ± k 0.01 ± 
de

Beyaz
Gelin

20.93 ± kl 0.27 ± j-l 0.07 ± j-l 5.88 ± 
b-g

0.08 ± de 0.01 ± 
de

Karakız 32.77 ± cd 0.44 ± e-g 0.08±ı-k 5.90 ± 
b-g

0.04 ± h-k 0.02 ± 
de

Df 28 28 28 28 28 28

F-value 14.99 21.00 44.87 3.70 14.98 3.03

p-value .000 .000 .000 .000 .000 .000

Different letters indicate significant difference according to a Duncan’s multiple range test (p < 0.05).
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Table 2
Number of total bands, polymorphic bands, and some genetic diversity parameters of the iPBS-

retrotransposon primers used in this study.
Primer Amplified bands % Polymorphism PIC ne h I

Total Polymorphic

2076 8 6 75.00 0.85 1.44 0.28 0.44

2077 9 8 88.89 0.90 1.56 0.32 0.48

2085 3 1 33.33 0.09 1.10 0.09 0.19

2095 8 7 87.50 0.91 1.68 0.38 0.56

2228 3 3 100.00 0.59 1.59 0.33 0.49

2232 11 9 81.82 0.93 1.76 0.42 0.60

2239 7 6 85.71 0.69 1.42 0.29 0.46

2277 9 7 77.78 0.83 1.52 0.30 0.45

2374 8 7 87.50 0.88 1.68 0.39 0.58

2375 7 7 100.00 0.80 1.72 0.42 0.61

2376 6 6 100.00 0.83 1.49 0.31 0.48

2390 9 8 88.89 0.88 1.63 0.36 0.53

2415 3 2 66.67 0.63 1.89 0.47 0.67

Total 91 77          

Average 7.00 5.92 82.55 0.75 1.58 0.34 0.50

Effective number of alleles (ne), gene diversity (h), Shannon information index (I), and polymorphism
information content (PIC)
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Table 3
Number of total bands, polymorphic bands, and some genetic diversity parameters of the ISSR primers

used in this study.
Primer Amplified bands % Polymorphism PIC ne h I

Total Polymorphic

1 12 10 83.33 0.84 1.55 0.32 0.49

4 9 6 66.67 0.87 1.49 0.30 0.46

6 12 5 41.67 0.75 1.26 0.18 0.30

7 14 7 50.00 0.92 1.62 0.36 0.53

11 7 5 71.43 0.62 1.40 0.28 0.45

3f 11 7 63.64 0.79 1.47 0.29 0.45

5f 4 3 75.00 0.23 1.23 0.18 0.32

7f 13 9 69.23 0.92 1.54 0.31 0.47

8f 11 11 100.00 0.92 1.39 0.26 0.43

10f 5 4 80.00 0.69 1.63 0.35 0.52

11f 11 10 90.91 0.90 1.50 0.30 0.47

13f 11 10 90.91 0.84 1.59 0.35 0.52

808 10 5 50.00 0.56 1.26 0.19 0.33

810 6 5 83.33 0.67 1.42 0.25 0.39

812 4 2 50.00 0.46 1.60 0.37 0.56

816 6 4 66.67 0.80 1.70 0.39 0.57

825 5 3 60.00 0.74 1.71 0.41 0.60

826 11 7 63.64 0.85 1.50 0.30 0.46

834 10 6 60.00 0.87 1.57 0.35 0.52

B2 5 4 80.00 0.54 1.30 0.22 0.38

B10 10 4 40.00 0.24 1.17 0.15 0.27

I12 12 11 91.67 0.93 1.52 0.30 0.46

ISSR-6 8 4 50.00 0.44 1.27 0.21 0.36

LOL-7 12 9 75.00 0.76 1.47 0.31 0.49

Effective number of alleles (ne), gene diversity (h), Shannon information index (I), and polymorphism
information content (PIC)
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Primer Amplified bands % Polymorphism PIC ne h I

Total Polymorphic

LOL-8 11 10 90.91 0.93 1.60 0.35 0.53

PHV-6 9 3 33.33 0.70 1.52 0.31 0.48

PHV-7 10 6 60.00 0.81 1.40 0.25 0.40

Sola-2 14 11 78.57 0.89 1.44 0.28 0.44

Sola-4 9 4 44.44 0.91 1.89 0.47 0.66

Sola-5 13 13 100.00 0.81 1.36 0.22 0.36

Sola-7 11 6 54.55 0.86 1.54 0.33 0.50

Sola-9 7 3 42.86 0.52 1.39 0.25 0.41

Sola-11 6 5 83.33 0.70 1.75 0.42 0.60

Total 309 212          

Average 9.36 6.42 67.91 0.73 1.49 0.30 0.46

Effective number of alleles (ne), gene diversity (h), Shannon information index (I), and polymorphism
information content (PIC)
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Table 4
Distribution of flax (Linum usitatissimum L) genotypes to subpopulations according to

membership coefficient obtained from structure analysis of iPBS-retrotransposon markers.
Genotypes Subpopulations

I II II IV V VI VII VIII

Van-1 0.166 0.242 0.038 0.138 0.129 0.004 0.201 0.083

Mersin-1 0.003 0.004 0.003 0.004 0.004 0.977 0.003 0.002

Afyon-1 0.012 0.011 0.011 0.012 0.012 0.004 0.011 0.927

Afyon-2 0.025 0.025 0.021 0.026 0.028 0.845 0.027 0.004

Muş 0.174 0.221 0.060 0.142 0.141 0.009 0.247 0.008

Ankara-Çankaya 0.185 0.259 0.037 0.150 0.127 0.021 0.219 0.002

İzmir-Kemeraltı 0.022 0.024 0.020 0.023 0.021 0.004 0.025 0.861

İzmir-Karşıyaka 0.042 0.033 0.132 0.062 0.094 0.166 0.043 0.428

İzmir-Tepecik 0.006 0.006 0.007 0.007 0.008 0.956 0.006 0.003

Iğdır 0.021 0.020 0.102 0.034 0.051 0.003 0.014 0.756

Bitlis 0.005 0.004 0.006 0.005 0.006 0.004 0.005 0.964

Sinop 0.046 0.036 0.253 0.061 0.054 0.369 0.030 0.151

Diyarbakır 0.034 0.024 0.041 0.027 0.033 0.713 0.029 0.099

Siirt 0.009 0.009 0.021 0.018 0.021 0.909 0.009 0.004

Konya-1 0.041 0.037 0.026 0.041 0.033 0.064 0.038 0.720

Samsun-1 0.062 0.035 0.397 0.138 0.241 0.064 0.049 0.015

Mardin 0.019 0.023 0.014 0.020 0.020 0.011 0.020 0.871

Kilis 0.070 0.075 0.025 0.065 0.049 0.647 0.066 0.003

Bursa 0.033 0.019 0.557 0.117 0.183 0.031 0.024 0.036

Rolin 0.043 0.051 0.225 0.062 0.061 0.383 0.044 0.130

Antares 0.084 0.067 0.056 0.086 0.082 0.552 0.065 0.008

Dakota 0.057 0.052 0.232 0.090 0.079 0.020 0.044 0.426

Sarı-85 0.187 0.151 0.097 0.158 0.133 0.009 0.158 0.107
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Table 5
Distribution of flax (Linum

usitatissimum L) genotypes to
subpopulations according to

membership coefficient obtained from
structure analysis of ISSR markers.
Genotypes Subpopulations

I II

Van-1 0.988 0.012

Mersin-1 0.011 0.989

Afyon-1 0.984 0.016

Afyon-2 0.021 0.979

Muş 0.660 0.340

Ankara-Çankaya 0.572 0.428

İzmir-Kemeralti 0.984 0.016

İzmir-Karşıyaka 0.160 0.840

İzmir-Tepecik 0.148 0.852

Iğdır 0.469 0.531

Bitlis 0.593 0.407

Sinop 0.089 0.911

Diyarbakır 0.240 0.760

Siirt 0.047 0.953

Konya-1 0.920 0.080

Samsun-1 0.048 0.952

Mardin 0.352 0.648

Kilis 0.169 0.831

Bursa 0.193 0.807

Rolin 0.277 0.723

Antares 0.275 0.725

Dakota 0.701 0.299

Sarı-85 0.950 0.050
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Table 6
Distribution of flax (Linum

usitatissimum L) genotypes to
subpopulations according to

membership coefficient obtained from
structure analysis of combined

molecular data
Genotypes Subpopulations

I II

Van-1 0.991 0.009

Mersin-1 0.007 0.993

Afyon-1 0.991 0.009

Afyon-2 0.028 0.972

Mus 0.714 0.286

Ankara-Cankaya 0.634 0.366

Izmir-Kemeralti 0.991 0.009

Izmir-Karsiyaka 0.323 0.677

Izmir-Tepecik 0.103 0.897

Igdir 0.804 0.196

Bitlis 0.801 0.199

Sinop 0.198 0.802

Diyarbakir 0.259 0.741

Siirt 0.034 0.966

Konya-1 0.967 0.033

Samsun-1 0.197 0.803

Mardin 0.644 0.356

Kilis 0.207 0.793

Bursa 0.321 0.679

Rolin 0.337 0.663

Antares 0.293 0.707

Dakota 0.817 0.183

Sari-85 0.957 0.043
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Table 7
The origin and source of flax (Linum usitatissimum L.) genotypes

Genotypes Origin Obtained

Van-1 Turkey Van (commercial seed)

Mersin-1 Turkey Mersin (commercial seed)

Afyon-1 Turkey Afyon (commercial seed)

Afyon-2 Turkey Afyon (commercial seed)

Muş Turkey Muş (commercial seed)

Ankara-Çankaya Turkey Ankara-Çankaya(commercial seed)

İzmir-Kemeraltı Turkey İzmir-Kemeraltı(commercial seed)

İzmir-Karşıyaka Turkey İzmir-Karşıyaka(commercial seed)

İzmir-Tepecik Turkey İzmir-Tepecik(commercial seed)

Iğdır Turkey Iğdır (commercial seed)

Bitlis Turkey Bitlis (commercial seed)

Sinop Turkey Sinop (commercial seed)

Diyarbakır Turkey Diyarbakır (commercial seed)

Siirt Turkey Siirt (commercial seed)

Konya-1 Turkey Konya (commercial seed)

Eskişehir Turkey Eskişehir (commercial seed)

Samsun-1 Turkey Samsun (commercial seed)

Mardin Turkey Mardin (commercial seed)

Kilis Turkey Kilis (commercial seed)

Bursa Turkey Bursa (commercial seed)

Hermes France Trakya Agricultural Research Institute

Rolin Romania Trakya Agricultural Research Institute

Antares France Karadeniz Agricultural Research Institute

Royal Canada Trakya Agricultural Research Institute

Dakota ABD Trakya Agricultural Research Institute

Eckendorfi Hungary Trakya Agricultural Research Institute

Sarı-85 Turkey Karadeniz Agricultural Research Institute
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Genotypes Origin Obtained

Beyaz Gelin Turkey Trakya Agricultural Research Institute

Karakız Turkey Trakya Agricultural Research Institute

Figures

Figure 1

Heatmap clustering of morphological characteristics of flax (Linum usitatissimum L.) genotypes
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Figure 2

Principal Component Analysis (PCA) of morphological characteristics of flax (Linum usitatissimum L)
genotypes
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Figure 3

Correlation analysis of morphological characteristics of flax (Linum usitatissimum L) genotypes
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Figure 4

UPGMA based genetic clustering of 23 flax (Linum usitatissimum L) genotypes obtained from
morphologic characters using Euclidean similarity coefficient



Page 35/46

Figure 5

Phenotypic clustering of 23 flax (Linum usitatissimum L) genotypes based on Principal Coordinate
Analysis (PCoA)
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Figure 6

UPGMA based genetic clustering of 23 flax (Linum usitatissimum L) genotypes obtained from iPBS-
retrotansposon markers
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Figure 7

Genetic clustering of 23 flax (Linum usitatissimum L) genotypes based on Principal Coordinate Analysis
(PCoA) using iPBS-retrotransposon markers
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Figure 8

UPGMA based genetic clustering of 23 flax (Linum usitatissimum L) genotypes obtained from ISSR
markers
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Figure 9

Genetic clustering of 23 flax (Linum usitatissimum L) genotypes based on Principal Coordinate Analysis
(PCoA) using ISSR markers
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Figure 10

UPGMA based genetic clustering of 23 flax (Linum usitatissimum L) genotypes obtained from combined
molecular data
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Figure 11

Genetic clustering of 23 flax (Linum usitatissimum L)genotypes based on Principal Coordinate Analysis
(PCoA) using combined molecular data



Page 42/46

Figure 12

Correlation of mantel test between ISSR and iPBS (r=0.78, p=0.01), ISSR and morphologic markers
(r=0.15, p=0.04), iPBS and morphologic markers (r=0.07, p=0.94)
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Figure 13

Delta K values for different numbers of populations expected (K) in the STRUCTURE analysis for iPBS-
retrotransposon markers (a) and ISSR markers (b) and combined molecular data (iPBS+ISSR).
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Figure 14

Population structure analysis of flax (Linum usitatissimum L) genotypes using iPBS-retrotransposon
markers
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Figure 15

Population structure analysis of flax (Linum usitatissimum L) genotypes using ISSR markers
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Figure 16

Population structure analysis of flax (Linum usitatissimum L) genotypes using combined molecular data


