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A number of factors that are known to influence genetic transformation were evaluated to optimize Agrobacte-
rium-mediated transformation of hypocotyl explants of cauliflower variety Pusa Snowball K-1. The binary vec-
tor p35SGUSINT mobilized into Agrobacterium strain GV2260 was used for transformation and transient GUS 
expression was used as the basis for identifying the most appropriate conditions for transformation. Explant age, 
preculture period, bacterial strain and density were found to be critical determinants of transformation effi-
ciency. Using the optimized protocol, the synthetic cryIA(b) gene was mobilized into cauliflower. Molecular 
analyses of transgenics established the integration and expression of the transgene. Insect bioassays indicated 
the effectiveness of the transgene against infestation by diamondback moth (Plutella xylostella) larvae. 

[Chakrabarty R, Viswakarma N, Bhat S R, Kirti P B, Singh B D and Chopra V L 2002 Agrobacterium-mediated transformation of cauli-
flower: optimization of protocol and development of Bt-transgenic cauliflower; J. Biosci. 27 495–502] 

1. Introduction 

Brassica oleracea var. botrytis (cauliflower) is an impor-
tant vegetable crop grown for its edible inflorescence 
(curd). It is highly vulnerable to insect-pests that cause 
about 20–30% yield loss (Estruch et al 1997). Massive 
quantities of insecticides are used especially in mid and 
late-season crop in the north Indian plains where inci-
dence of pests is high. Traditional breeding methods have 
significantly enhanced productivity and quality of the 
crop, but insect-pests, for which no source of resistance 
is available, continue to cause severe damage. Environ-
ment and health concerns associated with the use of pes-
ticides call for alternative methods of pest control. 
Genetic engineering of plants offers practical solutions 
by incorporating genes for resistance from unrelated 
sources. 
 Insecticidal crystal proteins (Cry) of Bacillus thurin-
giensis (Bt) have been used since long to control insect-
pests (Tabashnik 1997). In recent years transgenic culti-
vars expressing the cry gene have been shown to defend 

insect attack in a wide variety of crops (Cheng et al 
1998; Xiang et al 2000). Plutella xylostella (diamond-
back moth) larvae extensively feed on the leaves and 
curd of cauliflower, leading to reduced yield and poor 
quality of produce. Engineering cauliflower with the cry 
gene for resistance against the diamondback moth is an 
attractive proposition. 
 Genetic transformation of B. oleracea has been re-
ported both by direct DNA uptake by protoplasts (Muk-
hopadhyay et al 1991) and by Agrobacterium-mediated 
gene transfer (Henzi et al 2000; Pius and Achar 2000). 
Among B. oleracea, cauliflower is reported to be the 
least amenable to genetic transformation (Puddephat et al 
1996; Passelgue and Kerlan 1996). In an exercise aimed 
at developing Bt-transgenic cauliflower, we first opti-
mized transformation conditions by altering parameters 
such as bacterial strain, explant age and co-cultivation 
conditions for the selection and regeneration of trans-
formed cells. We employed Agrobacterium strains carrying 
the binary vector p35SGUSINT for transformation and 
identified optimal conditions based on transient GUS 
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expression. The standardized protocol was then used to 
mobilize cryIA(b) gene (Fujimoto et al 1993) into cauli-
flower cv. Pusa Snowball K-1 which is the main late-
season variety in northern India occupying nearly 40% of 
the area under this category. 

2. Materials and methods 

2.1 Plant material and culture conditions 

Seeds of cauliflower variety Pusa Snowball K-1 used for 
transformation were obtained from the National Seeds 
Corporation, New Delhi. Seeds, surface sterilized in 
0⋅1% HgCl2 and 0⋅1% SDS for 10 min, were placed on 
half-strength MS (Murashige and Skoog 1962) medium 
with 0⋅8% agar for germination. The incubation con-
ditions for in vitro culture, unless stated otherwise,  
were 25 ± 1ºC and 16 h photoperiod of approximately 
28 µEm–2 s–1. 
 

2.2 Bacterial strains and binary plasmid vectors 

The Agrobacterium strains were grown in minimal me-
dium (Chilton et al 1974) at 28°C with continuous shak-
ing under appropriate antibiotic selection. The disarmed 
A. tumefaciens strains, GV2260 (25 mg/l rifampicin, 
100 mg/l carbenicillin and 50 mg/l kanamycin), 
LBA4404 (25 mg/l rifampicin and 50 mg/l kanamycin), 
A208 (10 mg/l rifampicin and 50 mg/l kanamycin) and 
EHA105 (50 mg/l kanamycin), carrying the binary plas-
mid vector p35SGUSINT (Vancanneyt et al 1990) were 
used in the preliminary transformation experiments. The 
synthetic cryIA(b) gene containing the first intron of cas-

tor bean catalase-1 gene and ocs terminator (Fujimoto et 
al 1993) was sub-cloned in the binary plasmid vector 
pBinAR (Hofgen and Willmitzer 1990), designated as 
pBinAR-Bt (figure 1), and mobilized into the A. tume-
faciens strain GV2260. 

2.3 Plant transformation 

The transformation parameters were optimized for hypo-
cotyl explants using the bacterial strain GV2260 harbour-
ing the p35SGUSINT binary plasmid vector. Parameters 
were tested, one at a time, in a sequential order. The op-
timized conditions determined in earlier experiments 
were used in subsequent experiments. The following pa-
rameters (and treatments) were tested in the order stated; 
density of bacterial culture (0⋅5 OD600 and its dilutions 
1 : 10, 1 : 20), seedling age (4, 7 and 10 d), duration of pre-
culture (0, 1, 2 and 4 d), transformation enhancers (aceto-
syringone 0, 50 and 100 µM; 5-azacytidine 0, 100 µM), 
co-cultivation temperature (22°C and 26°C), co-
cultivation duration (2, 4 d), disarmed Agrobacterium 
strains (GV2260, LBA4404, A208 and EHA105). 
 For testing the first parameter, hypocotyl explants from 
7-day-old germinated seedlings were pre-cultured for a 
day on pre-culture (PI) medium (MS with 1 mg/l 2,4-
dichlorophenoxyacetic acid and 0⋅25% phytagel) and co-
cultivated at 26°C for 2 days. The explants were then 
transferred to MS medium with 2⋅0 mg/l BAP, 0⋅5 mg/l 
IAA, 250 mg/l cefotaxime (Hoechst) and 0⋅25% phytagel 
(MSI-C). After 2–3 days of growth in MSI-C medium, 
transformation was assessed using the GUS histochemi-
cal assay (Jefferson 1987). 
 Explant mortality, number of explants expressing GUS 
and GUS spots/explant were considered while stan-

Figure 1. Schematic representation of the binary plasmid vector pBinAR-Bt. 
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dardizing the transformation parameters. GUS expression 
results were statistically analysed. Further, the optimized 
protocol was used to evaluate efficiency of other A. tume-
faciens strains. Next, the Agrobacterium strains mobi-
lized with pBinAR-Bt binary plasmid construct were 
used to transform the hypocotyl explants. Putative shoots 
that regenerated in MSI-CK selection medium (MS with 
20 mg/l kanamycin) were further subjected to molecular 
analyses. 
 

2.4 Molecular analyses of transformants 

Total plant genomic DNA was isolated from leaves ac-
cording to the method described by Doyle and Doyle 
(1990). Gene-specific primers were used to amplify by 
PCR a 700 and a 1000 bp fragment of nptII and cryIA(b) 
gene, respectively. Amplification conditions were, 1 min 
at 94°C; 30 cycles of 30 s at 94°C, 30 s at 65°C, 2 min at 
72°C; and a final extension of 5 min at 72°C. PCR prod-
ucts were visualized after electrophoresis in a 1% agarose 
gel. 
 Total genomic DNA was digested with EcoRV (Pro-
mega) whose restriction site is absent in the T-DNA. The 
plasmid DNA (pBinAR-Bt) was linearized by digesting 
with BamHI (Promega) and used as the positive control. 
The restricted DNA was electrophoresed on 0⋅8% aga-
rose gel and transferred on to nylon N+ membrane (Amer-
sham) according to the manufacturer’s instructions. South-
ern hybridization was carried out with a [32P]dCTP-
labelled XbaI (2⋅39 kb) fragment of the cryIA(b) gene 
(figure 1) according to Church and Gilbert (1984). 
 Total RNA was isolated from young, well-expanded 
leaves (Chomcznski and Sacchi 1987). The RNAs were 
electrophoresed on 1⋅2% formaldehyde/MOPS (3-[N-
morpholino] propane sulphonic acid) gel and transferred 
on to nylon N+ membrane (Amersham) according to the 
manufacturer’s instructions. The membrane was then 
hybridized with [32P]dCTP-labelled XbaI (2⋅39 kb) frag-
ment of the cryIA(b) gene. All the solutions and glass-
ware were treated with 0⋅1% DEPC. RT-PCR was 
performed using gene specific primers that amplify a 
1000 bp fragment of the cryIA(b) coding region. The RT-
PCR reaction was set as per the technical bulletin pro-
vided with “Access RT-PCR” kit (Promega). Amplifi-
cation conditions were: 45 min at 48°C; 30 cycles of 
2 min 94°C, 30 s at 65°C, 2 min at 72°C and the final 
step of 5 min at 72°C. RT-PCR products were visualized 
by electrophoresis in a 1% agarose gel. 
 Total cellular protein (60 µg) from transformed and 
untransformed control plants and Bt protein (2 µg) as 
positive control were fractionated in SDS-PAGE (10% 
polyacrylamide) and transferred onto PVDF membrane 
(Amersham) using an electro-blotting apparatus (Atto, 

Japan) as per the method described by Ausubel et al 
(1994) and the manufacturer. The membrane was blocked 
for 2 h (37°C) using 2% BSA (fraction V) in Tris-
buffered saline (TBS), pH 7⋅0. Further, it was incubated 
with rabbit anti-CryIA(b) serum (1 : 10000 dilution) 
overnight at room temperature. Next the membrane was 
incubated in goat-rabbit IgG coupled to alkaline phos-
phatase (Sigma) for 2 h (37°C). Finally the membrane 
was developed in BCIP/NBT (Sigma) till the bands be-
came visible. The membrane was washed with washing 
solution containing 0⋅1% Tween-20 (ICN) in TBS for 
10 min after each stage. 

2.5 Leaf-disc bioassays 

Bt-transgenics confirmed for the integration and expression 
of the cryIA(b) sequence were subjected to insect bio-
assay to assess their tolerance to the diamondback moth 
(P. xylostella). The positive control for the experiment 
was prepared by surface coating leaf discs of untrans-
formed plants with the CryIA(b) protein obtained from 
the total cellular extract of E. coli (DH5α) harbouring the 
expression vector for cryIA(b) gene. The actual con-
centration of the toxin protein was not known. Leaves 
from untransformed plants served as negative control. 
Leaf discs of 25 mm diameter were excised from young 
leaves and placed on moistened filter paper in petri-
dishes. On each leaf disc, a total of 10 s instar (4–5 day-
old) larvae of P. xylostella were released. Three repli-
cates were maintained for each treatment. Larval mortality 
was recorded at 24 h and 48 h. Growth of larvae (length 
and weight) was recorded after 48 h of feeding. Rearing 
conditions of 26–28°C and 60% relative humidity were 
maintained. 
 Corrected percentage mortality was calculated accord-
ing to the formula: 

 
 
where, T = percent mortality in transgenics and C = per-
cent mortality in untransformed control plants. 

3. Results 

3.1 Optimization of plant transformation conditions 

Exposure of hypocotyl explants to an undiluted culture of 
Agrobacterium (OD600 = 0⋅5) resulted in severe necro- 
sis of the explants. Diluted culture (1 : 10 and 1 : 20 dilu-
tion) reduced necrosis to a great extent (table 1). Only 7–
11⋅6% of the explants showed 1–2 GUS spots per ex-
plant. The GUS response varied significantly among the 

 
 T – C  
Percent mortality (corrected) =   × 100 
 100 – C  
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treatments. The maximum GUS response was obtained 
with 1 : 20 dilution for 30 min. While standardizing the 
seedling age, it was observed that explants from 7-day-
old seedlings performed better than 10-day-old seedling 
explants. Necrotic reaction on explants from 4-day-old 
seedlings was so high that none could survive the treat-
ment. The maximum GUS response was obser- 

ved with 7-day-old seedlings (11⋅3%). Therefore, sub-
sequent experiments were carried out with 7-day-old 
seedlings. 
 Hypocotyls were hypersensitive to the bacterial culture 
when no pre-culture was allowed. A short pre-culture 
period (1–2 days) lowered explant mortality and im-
proved GUS expression. Extending pre-culture beyond 2 

Table 1. Effect of transformation conditions on mortality and GUS expression in hypocotyl explants  
exposed to GV2260 with p35SGUSINT. 

     
     
 
 
Transformation parameters 

Explant 
mortality 

(%) 

 
GUS spots per 

explant 

Explants showing 
GUS response 

(%) 

 
 

Remarks 
          
Bacterial inoculum density 
undiluted culture (OD600 0⋅5) 

    

 30 min 89⋅7 Nil Nil Tissue necrosis and mortality 
 1 : 10 dilution, 10 min 60⋅3 1–2 7⋅6 Reduced necrosis 
 1 : 10 dilution, 30 min 57⋅0 1–2 10⋅3 Bacterial overgrowth visible 
 1 : 20 dilution, 30 min* 24⋅0 1–3 11⋅6 No bacterial over growth 
 SEM± – – 0⋅29  
 CD at 5% – – 0⋅95  
     
Seedling age     
 4 days 100⋅0 Nil Nil Hypersensitive response, necrosis 
 7 days* 25⋅0 1–2 11⋅3 Healthy growth at the cut ends 
 10 days 14⋅3 1–2 8⋅6  
 SEM± – – 0⋅28  
 CD at 5% – – 0⋅96  
     
Pre incubation period     
 0 day 97⋅6 Nil Nil Hypersensitive response, necrosis 
 1 day 35⋅6 1–2 12⋅0 Reduced hypersensitive reaction 
 2 days* 28⋅3 1–2 12⋅0 Reduced hypersensitive reaction 
 4 days 6⋅3 1 8⋅3 Poor Agrobacterium infection 
 SEM ± – – 0⋅16  
 CD at 5% – – 0⋅53  
     
Transformation enhancers  
at the time of infection 

  

 50 µM acetosyringone* 29⋅0 1–4 15⋅3 Improved GUS expression 
 100 µM acetosyringone 43⋅3 1-multiple 15⋅0 Tissue browning at cut ends 
 50 µM acetosyringone + 27⋅0 1-multiple 14⋅6  
 5-azacytidine (100 µM)     
 SEM ± – – 0⋅43  
 CD at 5% – – 1⋅49  
     
Co-cultivation     
 Temperature     
  26°C for 2 days 31⋅6 1–3 14 Necrosis, bacterial overgrowth 
  22°C for 2 days* 15 1–3 17⋅3 Low explant mortality 
 Duration     
  2 days at 22°C 16⋅6 1–3 17 Good explant vigor 
  3 days at 22°C* 22 1-multiple 19⋅6 Low necrosis 
  4 days at 22°C 96⋅3 Nil Nil Explants failed to survive 
     
Anti-ethylene agent     
 3⋅5 mg/l AgNO3* 5⋅6 1-multiple 20 Visible improvement in explant condition 
 SEM ±  – – 0⋅45  
 CD at 5% – – 1⋅39  
          
*Chosen condition for subsequent experiments. The mortality percentage and GUS expression are averages of three replicates, each 
with 50 explants. 
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days was not beneficial. Substantial improvement in GUS 
expression was achieved with the addition of aceto-
syringone. Treatment at 50 µM concentration gave GUS 
expression in 15⋅3% explants with 1–4 GUS spots per 
explant. Though more GUS spots were observed when 
100 µM acetosyringone was used, this treatment was 
found unsuitable due to a high degree of tissue browning 
and mortality. No visible difference in GUS expression 
was observed when 5-azacytidine (100 µM) was used in 
conjunction with acetosyringone. While evaluating the 
co-cultivation temperature and duration, it was found that 
22°C was better than 26°C because explant mortality was 
low (15%) and percent of explants showing GUS exp-
ression was higher (17⋅3%). At 5% level of critical dif-
ference, the treatment difference was significant. The 
experiment failed completely when duration of co-
cultivation (at 22°C) was increased to 4 days. A 3-day 
co-cultivation period was a better option over 2 or 4 days. 
The bacterial growth around explants could be controlled 
with 250 mg/l cefotaxime. The addition of 3⋅5 mg/l anti-
ethylene agent (AgNO3), from the pre-culture stage on-
wards, substantially improved explant health and reduced 
the mortality to 5⋅6%, though no statistical significance 
was observed between the treatments. Employing combi-
nations of the above-optimized parameters gave GUS 
expression in about 20% explants (figure 2). 
 The results of transformation with four A. tumefaciens 
strains (table 2) clearly indicated the superiority of 
GV2260 over LBA4404, A208 or EHA105. Transfor-
mation frequency as evidenced by GUS staining ranged 
from 2⋅5 to 22⋅6%. 

3.2 Plant transformation with pBin-AR-Bt 

Shoot bud differentiation was drastically reduced in ex-
plants that were subjected to Agrobacterium treatment. 
Most of the shoots that regenerated turned white/violet 
under kanamycin selection. Following co-cultivation, 

explants were cultured in a medium lacking a selection 
agent for varying periods (delay period), before transfer 
to a medium containing kanamycin. When a short delay 
period was given, no green shoots could be recovered. 
Therefore a 7–10 day delay period was employed. Under 
these conditions, a few green calli regenerated and gave 
rise to hyperhydric shoots during the initial stages. Upon 
subculture, normal shoots were recovered. Maximum re-
generation frequency of 25% was recovered with 
GV2260 whereas with LBA4404, A208 and EHA105 
only 8⋅3, 0⋅7 and 0⋅7% respectively of explants gave rise 
to green shoots. Further, only about 4⋅8% of the green 
shoots established roots when sub-cultured in root initia-
tion (RI) medium [MS medium, 0⋅1 mg/l BAP and 
1⋅0 mg/l IAA and 0⋅8% (w/v) agar] containing kanamy-
cin (20 mg/l). This indicated that the delay period had 
allowed differentiation of shoot buds from both trans-
formed and non-transformed cells. 

3.3 Molecular analyses of Bt-transgenics 

A total of five well established Bt-transformants isolated 
through the described selection regime were subjected to 
molecular analyses. PCR with nptII and cryIA(b) gene-
specific primers (figure 3A, B) amplified 0⋅7 and 1⋅0 kb 
fragments respectively, from genomic DNA of kana-
mycin resistant shoots, thereby indicating the presence of 
the transgenes in the regenerated plants. Southern  
analysis revealed integration of the transgene at one to 
three loci in independent transgenic plants (figure 3C). 
This is the minimal estimate of transgene copy number 
because in the absence of EcoRV site in the T-DNA, 
Southern hybridization cannot detect closely linked or 
tandemly repeated insertions, if any. All five transgenics 
showed the expected 1 kb amplified fragment in RT-PCR 
(figure 3D) demonstrating transcriptionally active 
cryIA(b) gene in the plant genome. The 2⋅2 kb (figure 3F) 
mRNA transcript (in the RNA blot) obtained after splic-
ing of a 0⋅19 kb intron from the Bt-gene further sup-

 
 
Figure 2. GUS expression at a cut end of a hypocotyl explant 
subjected to Agrobacterium transformation (left), while no 
staining is seen in the control (right). 
 

Table 2. GUS expression in hypocotyl explants transformed 
with different A. tumefaciens strains. 

      
Agrobacterium  
strains 

GUS spots/ 
explant 

Percentage response* 
mean ± SD 

      
GV2260 1-multiple 22⋅6 ± 0⋅21 
LBA4404 1–3 13⋅6 ± 0⋅08 
A208  1  2⋅5 ± 0⋅22 
EHA105 1–2  7⋅3 ± 0⋅19 
SEM ± –  0⋅13 
CD at 5% –  0⋅41 
   
   
*The data derived from three replicate experiments with 50 
explants per treatment. 
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ported the RT-PCR results. All the transformants showed 
the presence of 81⋅3 kDa Bt toxin protein in the Western 
blot (figure 3E). 

3.4 Leaf-disc bioassays 

The Bt-transgenic plants showing detectable levels of 
Cry protein in the Western blot analysis were assessed 
for their tolerance to the second instar larvae of P. xylos-

tella. The larvae showed different feeding patterns and 
growth on control and transgenic leaf discs. The length 
and weight of the larvae fed on leaf discs of transgenic 
plants were significantly less than those fed on untrans-
formed (control) plants (table 3). Among the transgenics, 
plant number 4 supported the least growth of the larvae 
(3⋅4 ± 1⋅02 mm) and plant 1 recorded the maximum 
(4⋅60 ± 0⋅49 mm). No significant difference in larval 
growth was observed between plant 3 (having single lo-

 
Figure 3. (A, B) PCR of Bt-transgenic showing amplified fragments with nptII and cryIA(b)
gene specific primers. (C) Southern hybridization pattern of the Bt-transgenic plants with 
cryIA(b) probe. (D) The 1⋅0 kb RT-PCR amplicon obtained with cryIA(b) gene specific prim-
ers. (E) Western blot showing Bt-protein (81⋅3 kDa) in transgenic plants. (F) RNA blot 
probed with cryIA(b) sequence. M1, λHindIII/EcoRI; M2, λHindIII; B, blank; +, positive 
control; –, negative control; 1 to 5, independent Bt-transformants. 
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cus insertion of the transgene) and plant 4 (having at least 
1 copy of the transgene). The maximum corrected 
mortality of P. xylostella larvae when fed on leaf discs of 
transgenic cauliflower was 85⋅7% after 48 h. It was ob-
served that the Bt-transformants (plant 1, 2 and 5) with 
the transgene inserted at two loci demonstrated varied 
average mortality percentage, ranging from 66⋅6% to 
80⋅0% at 48 h. 

4. Discussion 

Agrobacterium-mediated transformation involves inter-
action between two biological systems and is affected by 
various physiological conditions (Bhalla and Smith 1998). 
Considering the large number of factors involved, it is 
not possible to conduct a factorial experiment and hence 
interaction effects, if any, cannot be assessed from our 
experiments. In general, our results confirmed earlier 
observations that lowering bacterial density (Srivastava 
et al 1988; Henzi et al 2000) and preculture of explant on 
callus inducing medium (Sangwan et al 1992; Ovesna  
et al 1993) help to improve transformation frequency. 
The phenolic compound acetosyringone has been known 
to induce vir gene (Shimoda et al 1990) and increase 
transformation frequency. Although addition of aceto-
syringone to bacterial culture medium was not beneficial, 
its presence during co-culture stage was found to improve 
transformation efficiency (Henzi et al 2000). Similarly, 
the demethylating agent, 5-azacytidine has been reported 
to improve transformation and transgene expression 
(Palmgren et al 1993). However, we did not observe any 
improvement in transformation frequency upon addition 
of 5-azacytidine. Results of our experiments on co-culti-
vation temperature and duration are also in agreement 
with the earlier report of Metz et al (1995). 
 The results of transformation with a Bt-gene construct 
have validated our contention that the transient GUS assay 

approach is a reliable method to optimize conditions of 
transformation. However, the selection regime had to be 
worked out separately. While delayed application of the  
selective agent leads to excessive escapes (Metz et al 
1995), too early selection pressure adversely affects shoot 
regeneration (Van Wordragen and Dons 1992) even from 
transformed calli (Ding et al 1998). We found that a delay 
period of 7 days was necessary to recover transgenics. 
 Molecular analyses established the transgenic status  
of the shoots recovered in selection medium. Only one 
plant was found to carry single site integration of the 
transgene. There was, however, no clear relation between 
number of transgene insertions and transgene expression. 
Multiple site integrations of transgenes were widely re-
ported in most species including Brassica (Berthomieu et 
al 1994; Metz et al 1995). Bioassays with diamondback 
moth larvae confirmed the effectiveness of the Bt crystal 
proteins against insect feeding. 

5. Conclusion 

Our results show that by fine-tuning conditions of trans-
formation, even a recalcitrant crop like B. oleracea can 
be transformed. The transient GUS assay approach was 
found to be an easy and reliable way of establishing op-
timal conditions for transformation. Optimal conditions for 
transformation of hypocotyl explants were 2-days of pre-
culture, 2-days of co-cultivation, 7–10 days delay period 
followed by culture in regeneration medium containing 
20 mg/l kanamycin. Although the frequency of transfor-
mation was still low as compared to model species, the 
protocol is repeatable and can be used to mobilize genes 
of agronomic importance into elite cultivars. The trans-
genic cauliflower of the popular variety Pusa Snowball 
K-1 generated from the present exercise shows promise 
of practical utility in pest management. 

Table 3. Growth and mortality of P. xylostella larvae (II instar) fed on leaf disc of cauliflower. 
              
 Growth    Mortality  
              
 Length mean ± SD Weight mean ± SD  Average mortality Corrected mortality Transgene 
Plants (mm) (mg)  (%) (%) copy number 
              
Control (+) 2⋅4 ± 0⋅49 0⋅52 ± 0⋅07  100⋅0 ± 0⋅00 –  – 
Control (–) 6⋅0 ± 0⋅63 3⋅50 ± 0⋅16   6⋅6 ± 0⋅47  0⋅0  0 
Plant 1 4⋅6 ± 0⋅49 1⋅46 ± 0⋅14  70⋅0 ± 0⋅82 67⋅8  2 
Plant 2 4⋅0 ± 0⋅63 1⋅42 ± 0⋅13  66⋅6 ± 0⋅47 64⋅2  2 
Plant 3 3⋅8 ± 0⋅75 1⋅30 ± 0⋅09  76⋅6 ± 1⋅24 74⋅9  1 
Plant 4 3⋅4 ± 1⋅02 1⋅30 ± 0⋅06  86⋅6 ± 0⋅94 85⋅7  3 
Plant 5 3⋅6 ± 0⋅49 1⋅34 ± 0⋅12  80⋅0 ± 1⋅41 78⋅6  2 
SEM ± 0⋅33 0⋅15  0⋅63 –  
CD at 5% 0⋅96 0⋅45  1⋅91 –  
       
       
The growth data recorded are the average of five replicates (larvae) randomly selected from a total of ten larvae 
and the mortality data are the average of three replicates with ten 2nd instar larvae in each set. 
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