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Abstract

Agricultural landscapes are increasingly being managed with the aim of enhancing the provisioning of multiple ecosystem
services and sustainability of production systems. However, agricultural management that maximizes provisioning ecosystem
services can often reduce both regulating and maintenance services. We hypothesized that agroforestry reduces trade-offs
between provisioning and regulating/maintenance services. We conducted a quantitative synthesis of studies carried out in
sub-Saharan Africa focusing on crop yield (as an indicator of provisioning services), soil fertility, erosion control, and water
regulation (as indicators of regulating/maintenance services). A total of 1106 observations were extracted from 126 peer-
reviewed publications that fulfilled the selection criteria for meta-analysis of studies comparing agroforestry and non-
agroforestry practices (hereafter control) in sub-Saharan Africa. Across ecological conditions, agroforestry significantly in-
creased crop yield, total soil nitrogen, soil organic carbon, and available phosphorus compared to the control. Agroforestry
practices also reduced runoff and soil loss and improved infiltration rates and soil moisture content. No significant differences
were detected between the different ecological conditions, management regimes, and types of woody perennials for any of the
ecosystem services. Main trade-offs included low available phosphorus and low soil moisture against higher crop yield. This is
the first meta-analysis that shows that, on average, agroforestry systems in sub-Saharan Africa increase crop yield while
maintaining delivery of regulating/maintenance ecosystem services. We also demonstrate how woody perennials have been
managed in agricultural landscapes to provide multiple ecosystem services without sacrificing crop productivity. This is impor-
tant in rural livelihoods where the range of ecosystem services conveys benefits in terms of food security and resilience to
environmental shocks.
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1 Introduction

The smallholder agricultural sector in sub-Saharan Africa
(SSA) is heavily constrained by declining per capita land
holdings (Montpellier Panel 2013) and loss of soil fertility
and productivity (Sanchez 2015). Therefore, sustainable in-
tensification of smallholder agriculture has been recognized
as a crucial component of the strategy towards increasing food
production in the region (Snapp et al. 2010; Montpellier Panel
2013). Sustainable intensification is also now recognized as
one of the cornerstones of climate-smart agriculture, i.e., ag-
riculture that achieves the triple objectives of increasing pro-
ductivity, adaptation to climate change, and mitigating green-
house gas emissions (Campbell et al. 2014). It is apparent that
intensification of agriculture in SSA will continue to play a
role in feeding the growing population (Tully et al. 2015; van
Ittersum et al. 2016). This poses the challenge of creating
conditions for sustainable agriculture that can harness
regulating/maintenance services (Bommarco et al. 2013).
Agroforestry is considered as one of the sustainable intensifi-
cation practices, and now widely promoted in SSA as it pro-
vides low-input, resource-conserving farming approaches that
are socially relevant and relate well to livelihood and ecosys-
tem functions (Carsan et al. 2014).

Agroforestry can help to maintain food supplies in many
landscapes in SSA while at the same time increasing their
climate resilience (Mbow et al. 2014). The practice involves
deliberate growing of woody perennials in association with
food crops and pastures (Fig. 1). Agroforestry is viewed as a
sustainable alternative to monoculture systems because of its
ability to provide multiple ecosystem services (Asbjornsen
et al. 2013; Kuyah et al. 2016). In some areas, agroforestry

is preferred over monoculture systems, because it can com-
bine provisioning ecosystem services with environmental
benefits (Jose 2009). For example, agroforestry can raise car-
bon stocks in agricultural systems, maintain or improve soil
fertility, regulate soil moisture content, control erosion, en-
hance pollination, and supply food (e.g., fruits and nuts), fuel-
wood, fodder, medicines, and other products (Kuyah et al.
2016, 2017). Ecosystem services of agroforests are affected
by tree-crop-environment interactions. These interactions can
occur aboveground, for example through interception of radi-
ant energy and rainfall by foliage and moderation of temper-
atures by canopies (Kajembe et al. 2016; Luedeling et al.
2016) or belowground, e.g., in resource use (nutrient, water,
space) competition, or complementarity (Monteith et al. 1991;
Rao et al. 1998). Primarily, tree-crop-environment interactions
influence biomass production, nutrient uptake and availability,
storage and availability of water in the soil, water uptake by
trees and crops, loss by evapotranspiration, and crop yields
(Monteith et al. 1991). Despite the great number of studies
investigating the role of agroforestry practices in ecosystem
service provision, evidence is still inconclusive concerning the
overall effects of agroforestry and the influence of ecological
conditions, management, and type of woody perennials on
crop yield, soil fertility, erosion control, and water regulation.
This makes it difficult to assess the degree to which different
ecological conditions and agroforestry practices influence
ecosystem service provision, and to anticipate their respective
consequences on crop yield.

The extent to which different ecosystem services are deliv-
ered in agroforestry is context-specific, and can depend on the
environmental conditions, tree species and crops, and how the
components of agroforestry are managed in the landscape. A

Fig. 1 Agroforestry practices
common in sub-Saharan Africa. a
Homegarden (a mosaic landscape
with cassava, pawpaw,Mangifera

indica L. and Grevillea robusta

A.Cunn. ex R.Br. in Uganda). b
Dispersed intercropping
(M. indica in maize-bean
intercrop in Malawi). c
Intercropping with annual crops
between widely spaced rows of
trees (collard intercropped with
G. robusta). d Alley cropping
(climbing beans planted between
hedges of Gliricidia sepium

(Jacq.) Kunth ex Walp. in
Rwanda)
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number of studies that summarize literature on ecosystem ser-
vices of agroforestry in SSA have been published (Bayala
et al. 2014; Félix et al. 2018; Sileshi et al. 2014; Sinare and
Gordon 2015; Kuyah et al. 2016). These studies have shown
that agroforestry has the capacity to enhance delivery of eco-
system services, but it can also, in certain circumstances, have
negative impacts. However, it is not clear whether and to what
extent changes in ecosystem services reported in the literature
are due to changes in ecological or management conditions
and which are due to other causes. Experimental studies on the
effect of agroforestry on soil fertility, erosion control, water
regulation, and crop production services offer varying conclu-
sions, most suggesting that the ecological contexts (e.g., cli-
matic conditions, edaphic factors), management factors (e.g.,
the type of agroforestry practice), and the preferred tree or
crop species are the most important factors (e.g., Angima
et al. 2000, 2002; Kinama et al. 2007; Lal 1989a; Ndoli
et al. 2017; Nyadzi et al. 2003; Nyamadzawo et al. 2003;
Nyamadzawo et al. 2008a). Many of these findings are con-
founded by external effects, for example, the effect of trees on
soil fertility and water regulation, and the consequent impact
on crop yield. These varying conclusions call for a greater
understanding of the conditions under which agroforestry fa-
vorably affects selected ecosystem services, and when the
effect is likely to be negative. By understanding the contexts
in which specific agroforestry practices are beneficial, and
when they are likely to have no or a negative effect, advisory
and policy recommendations can be improved.

We conducted a meta-analysis on studies which have in-
vestigated differences in crop yields, soil fertility, erosion con-
trol, and water regulation between agroforestry and non-
agroforestry systems in SSA. Compared to traditional narra-
tive reviews, meta-analytic methods are more objective, allow
computation of effect sizes, and have improved control of type
II errors (Harrison 2011; Koricheva et al. 2013). Meta-
analyses have been conducted on agroforestry practices, but
with a particular focus on regions such as semi-arid West
Africa (Bayala et al. 2014; Félix et al. 2018; Sinare and
Gordon 2015), or specific ecosystem services such as pest
regulation (Pumariño et al. 2015), or certain crops and func-
tional groups of woody perennials, such as the effect of woody
and herbaceous legumes on maize yield (Sileshi et al. 2008),
the impact of particular trees as organic nutrient sources on
maize yield (Chivenge et al. 2011), and on the effects of spe-
cific agroforestry systems such as coffee and cacao agrofor-
estry (De Beenhouwer et al. 2013). A meta-analysis has also
been conducted on the effect of agroforestry on ecosystem
services in the temperate region (Torralba et al. 2016).
However, the impacts of agroforestry on crop yield, soil fer-
tility, erosion control, and water regulation have not been
quantitatively compared for SSA. Therefore, this study aims
to determine the overall effect of agroforestry on these eco-
system services and tries to answer the following questions:

(1) What is the impact of agroforestry on crop yield, soil
fertility, erosion control, and water regulation? (2) Under
which ecological conditions (agro-ecological zone,
elevation, and soil type) does agroforestry have a positive or
a negative effect? (3) What is the impact of management (site
of trial and agroforestry practice) on agroforestry’s effect on
crop yield, soil fertility, erosion control, and water regulation?
(4) How do different shrub and tree species differ regarding
their potential to regulate these ecosystem services?

2 Materials and methods

2.1 Literature survey and criteria for inclusion

A literature search was conducted inWeb of Science to identify
published studies that provide data on the effect of agroforestry
on ecosystem services, covering all years from 1945 until
June 2018. The following search string was used: TS =
[(infiltrat* OR “soil water” OR “soil moisture” OR “water
regulation” OR “erosion” OR “available phosphorus” OR
“Olsen phosphorus” OR “soil fertility” OR “total phosphorus”
OR “total nitrogen”OR “soil organic carbon”OR “crop yield”)
AND (agroforest* OR “alley crop*” OR hedgerow OR park-
land OR “improved fallow” OR “planted fallow” OR “contour
planting” OR “boundary tree*” OR “shade tree” OR “live
fence” OR woodlot OR “fodder bank” OR “home$garden”
OR “wind$break” OR “shelter$belt” OR “dispersed
intercropping”) AND (Africa OR sub-Saharan Africa)]. Other
sources include a recent structured vote count review (Kuyah
et al. 2016), a meta-analysis by Sileshi et al. (2008) and a
narrative review by Sileshi et al. (2014). All studies and bibli-
ographies were screened for other relevant publications.

Potential studies were reviewed for inclusion in the analy-
sis according to the following criteria: (1) Paper published in a
peer-reviewed scientific journal; unpublished literature and
grey literature were excluded. (2) Study conducted on a re-
search station or farmer’s field in SSA. (3) Study investigated
the effect of trees on ecosystem services with a suitable con-
trol, i.e., a tree-based system compared with tree-less, or in-
vestigation beneath tree crowns compared with investigation
outside tree crowns. (3) Original field observation or experi-
mental studies, excluding laboratory studies, greenhouse ex-
periments, modeling studies, anecdotal observations, and re-
views. (4) Studies reporting quantitative information on the
sample size and the mean value of the response variable; the
standard deviation or variance of the mean value was extract-
ed when reported by the authors.

2.2 Data compilation and classification

Data on indicators of ecosystem services, including crop yield,
soil fertility (available P, total N and SOC), erosion control
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(runoff and soil loss), and water regulation (infiltration rate
and soil moisture content) were identified and extracted from
the studies. We followed the Common International
Classification of Ecosystem Services (Haines-Young and
Potschin 2018). Accordingly, crop yield was considered a
provisioning service, while soil fertility, erosion control, and
water regulation were considered regulation/maintenance ser-
vices. The publications that reported soil fertility, erosion con-
trol, andwater regulationwere screened to extract data on crop
yield. Thus, crop yield was considered only if one of the
regulating/maintenance services was also measured. Data that
were only reported in figures were extracted using
WebPlotDigitizer (Rohatgi 2016). The geographic coordi-
nates of the studies were used to gather information such as
the agro-ecological zone, elevation, soil type, and rainfall
from available government databases and Google Search,
where this information was not reported directly in the publi-
cation.Missing rainfall data (total precipitation) were obtained
through the SamSamWater Climate Tool (New et al. 2002).

Data were categorized into a range of subgroups covering
ecological conditions (agro-ecological zones, elevation, and
soil type), and management (site of trial and agroforestry prac-
tice) and types of woody perennials (growth form and nitrogen
fixation). Agro-ecological zones were classified as humid or
semi-arid as described in HarvestChoice (2010). Elevation
was classified as highland (above 1200 m) and lowland (below
1200 m), corresponding to cool and warm thermal zones
(HarvestChoice 2010). Thermal zones were included to ac-
count for the effect that changes in elevationmay have on crops
(HarvestChoice 2010). The soil types were strictly based on the
Harmonized Soil Atlas of Africa following the World
Reference Base for Soil Resources classification and correla-
tion system (Dewitte et al. 2013). Woody perennials were clas-
sified as (1) shrubs or trees based on growth form and their
management within crop fields, and (2) nitrogen fixing or non-
fixing based on their ability to fix atmospheric nitrogen. Shrubs
denote short woody plants, often with multiple stems arising at
or near the ground (Orwa et al. 2009). Shrubs can be coppicing
or non-coppicing, and are normally planted in hedgerows, al-
leys, or fallows to provide fodder, green manure, wood, or
stakes (Orwa et al. 2009). Trees denote tall woody plants with
a single stem that supports the canopy upward (Orwa et al.
2009). Trees are normally dispersed in crop fields or parklands,
and are often pruned or pollarded to provide wood, or cut for
timber (Orwa et al. 2009).

Agroforestry practices were categorized based on descrip-
tions provided by the studies reviewed. The following agro-
forestry practices and technologies were identified from the
studies. Eight categories referred directly to the structure of
the agroforestry system:

1. Alley cropping, where crops are grown between rows of
trees or shrubs.

2. Hedgerows, where shrubs are planted in closely spaced
rows aimed at forming a barrier, enclosing or separating
fields.

3. Dispersed intercropping, where trees are scattered in crop
fields.

4. Multistrata agroforests, where perennial tree crops such as
coffee, cocoa, or tea are intercropped with shade trees.

5. Parklands, where multipurpose trees are scattered on
farmlands; crops are grown beneath the crowns of trees
such asFaidherbia albida, Parkia biglobosa, orVitellaria
paradoxa.

6. Windbreaks, where trees are planted in one or more rows
to provide shelter or protection from wind.

7. Boundary planting, where trees are planted to demarcate
farms or farm enterprises.

8. Planted fallows (improved fallows), where land is rested
from cultivation, during which fast-growing species are
planted, e.g., to replenish soil fertility and provide prod-
ucts such as wood.

Boundary plantings and windbreaks were not included in
the analysis because we did not find enough studies for sys-
tematic analysis. Only one study (with two data points)
reporting on boundary planting and two studies (with four
data points) reporting on windbreaks met the selection criteria.
Multistrata agroforests involving plantations of coffee, tea and
cocoa, and homegardens were not in the analysis.

The literature also revealed two important categories of
management that referred to the use of agroforestry products
for soil amendments and protection:

1. Biomass transfer where harvested leaves and twigs, or
material pruned from trees outside the field, are incorpo-
rated into the soil prior to planting to improve soil fertility.
Trees inside the fields can also be rejuvenated by pruning
and prunings incorporated in the soil for crop production.

2. Mulch, where pruning materials are used as protective
covering on the surface to suppress weeds, conserve soil
moisture, prevent soil erosion, and enrich the soil.

Subgroup analyses were conducted on soil types (Acrisols,
Andosols, Arenosols, Cambisols, Ferralsols, Lixisols,
Luvisols, and Nitisols) and agroforestry practices (alley
cropping, dispersed intercropping, hedgerow, planted fallow,
and crops planted under tree canopies in parkland agroforestry
systems) and agroforestry technologies (biomass transfer and
mulching) that had a minimum of fifteen observations from at
least three studies. We did not compare effects of specific tree
and shrub species, or responses of different crops to agrofor-
estry because of a small number of observations in each cat-
egory and the need to avoid the small sample size problem
caused by fragmentation of data. Comparison of small sample
sizes is known to result in Simpson’s Paradox, a statistical
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problem in which a trend that appears in several small sets of
data disappears when these sets are combined (Pearl 2014).

2.3 Independence of data points

Meta-analytic techniques require independence of data points
being analyzed (Borenstein et al. 2009; Koricheva et al. 2013).
However, some publications report multiple results from a
single study, for example, when various experiments are un-
dertaken within a study. Including multiple observations in
such analyses can inflate sample sizes, increase the signifi-
cance levels, and increase the probability of type I errors
(Sileshi et al. 2008), while leaving out results from multiple
observations in each study can lead to loss of information
(Gurevitch and Hedges 1999). We countered the problem of
non-independence of data points in several ways: (1)
Observations from the same study were considered indepen-
dent records and included separately in the analysis if they
were measured for different locations, seasons, tree species,
or crop species. Treating multiple results in this way may not
strictly meet the assumption that each observation is indepen-
dent of all others (Gurevitch and Hedges 1999), but it allowed
full examination of the different aspects of agroforestry that
affect ecosystem service provision. (2) When a study reported
data frommultiple fertilizer rates, row spacings or tillage prac-
tices, measurements for treatments with recommended rates or
common farmer practices were selected for analysis. (3)When
a study reported repeated measurements at different times
within the experimental period separately (e.g., sampling
date), we selected the observation where the measurement
was highest in the control group. (4) When a study reported
results of experiments with groups of trees during different
years, measurement from the final year, which exhibits the
maximum effect/benefits on ecosystem services, was selected.
(5) Studies reporting on SOC measurements between 0 and
100 cm depth were selected for analysis.

2.4 Data analysis

The response ratio (RR) was used as the index of effect size as
it is a common metric for assessing ecosystem services in
agricultural landscapes (Sileshi et al. 2008; Chivenge et al.
2011; De Beenhouwer et al. 2013; Pumariño et al. 2015;
Torralba et al. 2016). RR was calculated as the ratio of mea-
sured response variable in agroforestry to that in non-
agroforestry using the following formula:

RR ¼ XAF

� �

= XNA

� �

where X̅ is the mean for the indicator of the ecosystem service,
and the subscripts AF and NA indicate agroforestry and non-
agroforestry groups. Non-agroforestry includes sole cropping,
continuous cropping without trees, and plots outside tree

crowns in the case of parklands. RR were calculated for all
pairs (agroforestry and non-agroforestry) of independent data
points, hereafter referred to as observations.

Bootstrapping methods were used to estimate 95% confi-
dence intervals around weighted means of RR for different
categorical variables through the application of 10,000 itera-
tions using the boot package in the R programming language
3.4.2 (R Core Team 2018). Non-parametric weighting of the
RR ensured that studies with larger sample sizes carried more
weight than those with smaller sample sizes (Adams et al.
1997). Typically, effect sizes of individual studies are weight-
ed by the inverse of their sampling variance (Gurevitch and
Hedges 1999). However, a major limitation to conducting a
meta-analysis is lack of variance estimates presented in prima-
ry studies (Gurevitch and Hedges 1999). Leaving out studies
that lack variance estimates disadvantages the analysis and
may lead to bias in the results (Wiebe et al. 2006). In this
review, standard deviations were missing in most studies,
but the sample sizes were available. Weights for RR were
therefore calculated using sample sizes as described by
Adams et al. (1997) using the following formula:

Weights ¼ NAF � NNAð Þ= NAF þ NNAð Þ

where N is the sample size and the subscripts AF and NA
indicate agroforestry and non-agroforestry.

Meta-analyses can be affected by underreporting of statisti-
cally non-significant results and/or those that are inconsistent
with the current theory (Koricheva et al. 2013). This means that
a meta-analysis can overestimate effect sizes if studies finding
significant effects are more likely to be published than studies
finding no effect (Borenstein et al. 2009). Publication bias was
checked using the rank correlation test. A rank correlation test is
based on correlating the standardized treatment effect with the
variance of the treatment effect using Kendall’s tau as the mea-
sure of association (Begg and Mazumdar 1994). Accordingly,
significant correlation indicates that larger effect sizes in one
direction are more likely to be published than smaller effect
sizes (Begg and Mazumdar 1994; Sterne et al. 2000).

Analyses of trade-offs were performed on studies that re-
corded both yield and soil fertility or water regulation. The
number of observations that showed, for example, increase in
both yield and soil fertility (win-win), an increase in yield with
a corresponding decline in soil fertility (trade-offs), or a de-
crease in both yield and soil fertility (lose-lose) were identi-
fied. A similar approach was applied to associations among
total N, available P, SOC, and soil moisture content. The per-
centage of observations belonging to win-win, trade-offs, and
lose-lose situations was calculated and the data were plotted in
a Cartesian plane to facilitate visualization. Spearman’s rank
correlation tests were performed between effect sizes of dif-
ferent ecosystem service indicators to determine whether they
co-varied positively.
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The effect of agroforestry on a given ecosystem service
was considered to be statistically significant if the 95% CI of
the mean effect did not overlap with RR = 1. For crop yield,
soil fertility, and water regulation, RR values significantly
larger than 1 were interpreted as evidence for beneficial effects
of agroforestry, while RR values significantly smaller than 1
were interpreted as negative effects. This was inverted for soil
loss and runoff; RR values significantly smaller than 1 were
interpreted as indications of beneficial effects of agroforestry.
The sign of RR for the effects of agroforestry on erosion
control was changed, so that all beneficial effects of agrofor-
estry were reflected in positive values. Violin plots were pro-
duced using packages “plyr” (Wickham 2016), “dplyr”
(Wickham et al. 2018b), “reshape” (Wickham 2017), and
‘ggplot2’ (Wickham et al. 2018a) in the R programming lan-
guage 3.4.2 (Core Team 2018). Violin plots reveal the full
distribution of the data. The proportion (%) of observations
with response ratio below or above one (RR < 1, RR > 1) was
calculated to determine the share of observations below or
above the null hypothesis value.

3 Results and discussion

Kendall’s rank correlation did not show presence of bias for
crop yield (tau = 0.050, N = 389, P = 0.200), total N (tau = −
0.093, N = 389, P = 0.109), SOC (tau = − 0.054, N = 389, P =
0.329), and available P (tau = − 0.138, N = 502, P = 0.018),
but showed presence of bias for water regulation (tau = -0.234,
N = 96, P < 0.001), and erosion control (tau = − 0.107,N = 72,
P < 0.001). The significant correlations found for water regu-
lation and erosion control indicate that studies with non-
significant effects were less likely to have been published. It
is also possible that the bias emerges due to the fact that some
studies could have been deemed “failures” because the trees
did not establish properly. For example, in an earlier meta-
analysis Sileshi et al. (2008) noted that out of 93 sites where
improved fallow trials were established in southern Africa,
maize was harvested from only 72 sites as a result of poor
establishment of the legumes. The difficulty to capture such
studies is one of the limitations of this analysis, and indeed any
other similar meta-analysis (Sileshi et al. 2008).

Despite the publication bias revealed above, overall the anal-
ysis showed that agroforestry can increase crop yield, and im-
prove soil fertility, erosion control, and water regulation com-
pared to the control (Fig. 2). Average crop yield was almost
twice as high in agroforestry as in non-agroforestry systems;
soil fertility was improved by a factor of 1.2, control of runoff
and soil loss was five and nine times better with agroforestry,
and infiltrationwas three times higher in agroforestry compared
to the control. These are important insights into agroforestry,
which is a land use option that is very common in SSA, where
smallholder farms constitute ~ 80% of all farms, and roughly

70% of the population depend on agriculture for their liveli-
hoods (Alliance for a Green Revolution 2014). At a farm scale,
farmers are likely to invest in trees that provide food (fruits and
nuts), fodder, fiber, or fuel while at the same time improving
soil fertility, erosion control, and water regulation for sustain-
able production. On a larger geographic scale, agroforestry
trees accrue benefits for many people and the environment,
and farmers providing the services receive them as co-benefits.

Significant positive effects of agroforestry on ecosystem
services were found across ecological and management con-
ditions (Table 1). Exceptions were detected for some agrofor-
estry practices (e.g., hedgerows) and some soil types where
agroforestry had negative effects. This suggests that
agroforestry’s potential for ecosystem service delivery cuts
across the different ecological and management conditions
involved. The 126 publications we reviewed present a mix
of ecological, management, and biological characteristics that
typify smallholder farming systems in SSA. The overall pos-
itive effects across contexts can be attributed to advances in
the knowledge and practice of agroforestry. With decades of
research and centuries of practice, agroforestry practitioners
can now match some tree species to ecological conditions,
select the right combinations of trees and crops, and produc-
tively manage trees on farms.

3.1 Crop yield

Crop yield was analyzed for 397 observations from 61 publi-
cations for studies conducted in 17 countries (Fig. 3). Close to
half of the observations were from studies conducted in Kenya
(10 studies, 108 observations) and Nigeria (10 studies, 77
observations). Other than agroforestry practice and soil type,
there were no differences between any of the categories of
agro-ecological zone, elevation, type of trial, growth form,
or nitrogen fixation. Crop yield was higher in both humid
and semi-arid situations compared to the control (Table 1).
A similar pattern was observed for elevation, where agrofor-
estry increased crop yield for trials at lowland and highland
locations compared to the control. With regard to soil types,
yields were two times higher under agroforestry with Acrisols,
Cambisols, Lixisols, Luvisols, and Nitisols compared to con-
trols (Fig. 3). These soils also had the highest number of cases
with RR > 1. On the contrary, Arenosols and Andosols had
some occurrences where the RR was less than 1 (Fig 3). Low
crop yield associated with Arenosols and Andosols could be
attributed to differences in soil quality. Arenosols have low
nutrient and water storage capacity because of their course
texture, which presents a limitation on crop growth
(Hartemink and Huting 2008; IUSS 2014). Moreover,
Arenosols generally occur in regions that are characterized
by arid and semi-arid climates, where rainfall is erratic
(Hartemink and Huting 2008). Andosols have high P retention
capacity that makes applied P fertilizer unavailable for crop

4 Page 6  of 18 Agron. Sustain. Dev. (2019) 39: 477



Table 1 The effects of agroforestry on crop yield, total nitrogen,
available phosphorus, soil organic carbon (SOC), and water regulation
(infiltration and soil moisture). Table values are the weighted mean

response ratio (RR) and the 95% confidence interval (CI). Effects are
significantly different from 0, if the 95% CI does not include 1. NA not
available

Context Category Crop yield Total N Available P SOC Water regulation

RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95%CI

Agro-ecological zone Humid 2.0 1.8–2.2 1.2 1.1–1.3 1.2 1.2–1.3 1.2 1.2–1.3 1.2 1.1–1.3

Semi-arid 1.9 1.6–2.2 1.1 1.1–1.2 1.1 1.0–1.2 1.2 1.2–1.3 1.7 1.5–2.1

Elevation Highland 2.0 1.7–2.4 1.1 1.1–1.2 1.2 1.1–1.3 1.2 1.2–1.3 1.7 1.4–2.1

Lowland 1.9 1.7–2.1 1.2 1.1–1.3 1.2 1.1–1.3 1.2 1.2–1.3 1.4 1.2–1.8

Soil type Acrisols 2.4 2.0–3.2 1.1 1.0–1.3 1.1 1.0–1.4 NA NA NA NA

Andosols 1.2 1.0–1.4 NA NA 1.3 1.1–1.7 1.1 1.0–1.1 NA NA

Arenosols 1.5 0.9–2.5 NA NA NA NA NA NA NA NA

Ferralsols NA NA 1.2 1.1–1.3 NA NA 1.2 1.2–1.3 NA NA

Cambisols 2.0 1.5–2.9 NA NA NA NA NA NA NA NA

Lixisols 1.8 1.3–2.4 NA NA NA NA 1.3 1.2–1.4 3.9 2.8–5.2

Luvisols 2.0 1.6–2.6 1.1 1.0–1.2 1.1 1.0–1.2 1.2 1.2–1.4 1.3 1.1–1.4

Nitisols 2.1 1.9–2.4 1.3 1.2–1.4 1.4 1.3–1.6 1.2 1.2–1.3 1.2 1.0–1.3

Type of trial On-farm 2.0 1.8–2.2 1.1 1.1–1.2 1.1 1.1–1.2 1.2 1.2–1.3 1.4 1.2–1.8

On-station 1.9 1.7–2.2 1.2 1.2–1.3 1.2 1.1–1.4 1.3 1.2–1.3 1.8 1.5–2.2

Agroforestry practice Alley cropping 2.1 1.8–2.5 1.3 1.1–1.5 1.1 0.9–1.3 1.1 1.0–1.2 NA NA

Biomass transfer 2.3 2.0–2.5 1.1 1.1–1.2 1.4 1.2–1.6 1.2 1.1–1.2 NA NA

Hedgerow 0.9 0.9–1.0 NA NA 1.5 1.3–1.9 NA NA NA NA

Intercrop 1.3 1.1–1.7 1.1 0.9–1.2 1.1 1.0–1.1 1.2 1.1–1.3 1.1 1.0–1.2

Mulch 1.6 1.3–2.5 NA NA NA NA NA NA NA NA

Planted fallow 2.6 2.2–3.3 1.2 1.1–1.3 1.3 1.2–1.6 1.4 1.3–1.5 2.3 1.9–2.9

Under canopy NA NA 1.1 1.1–1.2 1.1 1.0–1.2 1.2 1.2–1.4 1.2 1.1–1.3

Growth form Tree 1.8 1.6–2.2 1.2 1.1–1.2 1.2 1.1–1.3 1.2 1.2–1.3 1.4 1.2–1.9

Shrub 2.0 1.8–2.3 1.2 1.1–1.2 1.2 1.1–1.3 1.2 1.2–1.3 1.8 1.5–2.3

Nitrogen fixation N-fixing 2.0 1.8–2.2 1.2 1.1–1.2 1.2 1.1–1.3 1.2 1.2–1.3 1.7 1.5–2.1

Non-fixing 1.8 1.6–2.5 1.2 1.1–1.2 1.1 1.1–1.2 1.2 1.2–1.3 1.1 1.0–1.2

Crop yield

SOC

Soil moisture

Infiltration rate

Available P

Total N

Weighted mean response ratio

1.0 3.0 4.0
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Category Service Distribution  Fig. 2 Results of meta-analysis of
agroforestry vs. non-agroforestry
effects on provision of ecosystem
services across sub-Saharan
Africa. Violin plots represent
bootstrapped t0 values of
agroforestry minus non-
agroforestry effects. RR < 1 and
RR > 1 represent the proportion
(%) of observations with response
ratio below or above 1
respectively. Values in brackets
indicate the number of studies
reviewed (N) and the number of
observations (NO)
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uptake (Batjes 2011). In addition, Andosols are nutrient-rich,
and the risk of non-response to applied nutrients on fertile soil
is known to be high due to a phenomenon termed “saturated
fertility” effect (Sileshi et al. 2010).

Agroforestry increased crop yield for trials conducted on both
farms and research stations in 77 and 68% of all cases (Fig. 3 and
Table 1). Among agroforestry practices, crop yield was higher
than controls when alley cropping, biomass transfer, and planted
fallows were used, but not for hedgerows (Table 1). Alley
cropping, biomass transfer, and planted fallows increased crop
yield in 77, 93, and 85% of all cases, while hedgerows increased
crop yield in 54%. Agroforestry increased crop yield when either
trees or shrubs were grown compared to controls. Similarly, crop
yield was enhanced when both nitrogen-fixing or non-fixing
species were grown compared to controls.

The findings provide evidence that agroforestry can signifi-
cantly increase crop yield. The studies reviewed suggest a com-
bination of causes for increased crop yield, for example improved
soil fertility due to nitrogen input from biological nitrogen fixa-
tion and nutrient cycling in organic inputs from trees (Bayala
et al. 2002; Sileshi and Mafongoya 2003), improved water reg-
ulation through increased infiltration and higher soil moisture
content (Chirwa et al. 2003; Makumba et al. 2006), ,improved
microclimate (Rhoades 1995), and better soil physical properties
(Chirwa et al. 2004). In most of the studies, yield was increased

sufficiently to offset reduction caused by the presence of trees.
However, a few studies reported a yield reduction due to com-
petition for water and nutrients when the trees were not pruned
(Bayala et al. 2002; Muthuri et al. 2005; Ndoli et al. 2017).
Reductions in crop yield were also attributed to effects of shading
(Rao et al. 1998; Bayala et al. 2002). Further meta-analyses can
test if pruning and shade levels are indeed factors that lead to
reduced crop yield.

3.2 Total nitrogen, available phosphorus, and soil
organic carbon

A total of 515 observations were identified from 92 publications
that fulfilled the selection criteria for studies investigating the
effects of agroforestry on soil fertility. Among these, 61 publica-
tions reported total N, 68 reported available P, and 73 reported
SOC for studies conducted in 19 countries (Fig. 2). Agroforestry
improved total N (RR 1.2; 95% CI 1.1–1.2), SOC (RR 1.2; 95%
CI 1.2–1.3) and available P (RR 1.2; 95% CI 1.1–1.2) compared
to the control. Agroforestry also improved total N, available P,
and SOC for all categories of agro-ecological zones and elevation
compared to controls (Table 1). Compared to controls, agrofor-
estry improved total N, available P, and SOC for all soil types
except on Acrisols and Luvisols in the case of total N, and
Andosols in the case of SOC (Table 1). The lower effect of
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agroforestry on Acrisols could be attributed to their chemical and
physical limitations, which also constrain tree growth. Acrisols
suffer from soil acidity, aluminum toxicity, low nutrient reserves,
nutrient imbalance, and multiple nutrient deficiencies (IUSS
2014). Although Luvisols are inherently fertile, they are suscep-
tible to crusting, compaction, and low moisture-retention (IUSS
2014). These constraints could have limited tree growth thereby
reducing litter inputs to the soil on both soils. On the other hand,
the low response on Andosols could be attributed to the “satu-
rated fertility” effect described under crop yield.

There were no significant differences among agro-ecological
zones, elevation, and type of trial. Over 80% of the cases in
humid and semi-arid environments, as well as lowland and high-
land sites hadRR> 1 for studies investigating total N (Fig. 4) and
SOC (Fig. 5); a smaller proportion was found for available P
(Fig. 6). All observations for total N and SOC in agroforestry
under Ferralsols had RR > 1 (Figs. 4 and 5). Agroforestry in-
creased total N, SOC, and available P for trials conducted on
farms as well as on stations compared to controls (Figs. 4, 5,
and 6). A lower proportion of cases were determined for avail-
able P (about 60%) compared to over 80% for total N and SOC
for trials conducted on farms and on stations. Other than
intercropping (RR < 1 = 35%) in the case of total N (Fig. 4),
and alley cropping (RR < 1 = 62) in the case of available P (Fig.
6), soil fertility improved with agroforestry for all practices tested

compared to controls. Agroforestry with all types of woody veg-
etation had a significant effect on total N, SOC, and available P
compared to controls, although the proportion of observations
with RR > 1 was low for available P, ranging between 58 and
68% for the different variables (Fig. 6). The differences among
agroforestry practices and woody perennials used were not sta-
tistically significant.

The analysis has demonstrated that soil was more fertile in
agroforestry than in controls. SOC showed a stronger increase in
agroforestry than other indicators of soil fertility. Trees increase
SOC by photosynthetic fixation of carbon from the atmosphere,
and by transferring this carbon to the soil via litter and root decay.
We infer that trees were the main source of nitrogen and soil
organic carbon, since crop residues are usually removed with
the harvest. Some studies reported a strong correlation between
total N and SOC (Jonsson et al. Jonsson et al. 1999a; Bayala et al.
2002). Trees improve nitrogen primarily through inputs from
biological nitrogen fixation (Sileshi and Mafongoya 2003), and
recycling of nitrogen from above (litter) and belowground (roots)
organic inputs (Rhoades 1995; Jonsson et al. 1999a). A few cases
of decline in total N were attributed to uptake by trees (Teklay
et al. 2006; Isaac et al. 2007; Ndoli et al. 2017).

Available P was the least improved indicator of soil fertil-
ity. Unlike nitrogen and carbon, trees do not provide phospho-
rus but improve its availability and uptake by recycling the
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nutrient from organic inputs. This occurs when tree roots re-
trieve nutrients that have leached to soil layers not accessed by
crop roots and recycle them to the topsoil as litter (Sileshi et al.
2014). However, trees may fail to improve phosphorus avail-
ability when the nutrient is not recycled and released in acces-
sible form. This may explain some of the situations where
available P was lower in tree-based compared to tree-less sys-
tems (Kho et al. 2001; Bayala et al. 2002; Isaac et al. 2007).

3.3 Erosion control

Out of seven studies conducted on erosion control, 49 observa-
tions were identified for runoff and 49 for soil loss. The studies
were conducted in Kenya, Nigeria, and Zimbabwe. Our findings
show that agroforestry performed best in terms of erosion reduc-
tion ecosystem services, five and ten times better than controls
for runoff (RR: 5.0; 95%CI: 3.3-7.9) and soil loss (RR: 9.7; 95%
CI: 5.9-17.3). However, these very large effect sizes could also
be due to publication bias as demonstrated by the high Kendall’s
rank correlation coefficients. If we had found more published
studies (larger sample sizes), we expect the effect sizes to bemore
modest than the figures we reported here. Erosion control with

agroforestry was more effective in both humid (RR 7.2; 95% CI
4.8 to 13.9) and semi-arid zones (RR 8.0; 95% CI 4.8 to 16.7)
compared to controls. Similarly, erosion control with agroforestry
was more effective when either shrubs (RR 6.9; 95% CI 4.6 to
11.4) or trees (RR 11.1; 95% CI 6.1 to 24.7) were planted. There
were no significant differences in the effects between humid and
semi-arid sites, or between trees and shrubs. Comparisons for soil
erosion were not performed for elevation, soil type, site of trial,
agroforestry practice, and growth form due to a low number of
studies in those categories.

Trees have been shown to reduce soil loss by forming bar-
riers that slow runoff and capture sediments (Angima et al.
2000, 2002), protecting soil aggregates from direct raindrops
(Lal 1989a; Omoro and Nair 1993; Nyamadzawo et al. 2003),
and improving soil structure (Lal 1989a). Without soil cover,
direct raindrops on bare soils increase detachment of soil par-
ticles, which lowers infiltration and can stimulate runoff and
soil loss. Carbon inputs from decomposing litter and decaying
tree roots can be increased to stabilize soil structure (Salako
et al. 2001). Runoff rates were low on plots with trees because
of reduced overland flow (Omoro and Nair 1993) and in-
creased infiltration (Nyamadzawo et al. 2003). A study at
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Domboshawa in Zimbabwe showed that vegetation reduces
the amount of rainfall transformed into runoff by increasing
the time to ponding and runoff (Nyamadzawo et al. 2003).

3.4 Water regulation

Studies on water regulation were conducted in 12 countries. In
total, 96 observations were identified from 38 studies that ful-
filled the selection criteria. Out of the 38 studies, 11 had 34
observations reporting on infiltration rates, while 27 studies with
62 observations reported on soil moisture content (Fig. 2).
Agroforestry improved infiltration and soil moisture content
compared to the control (Fig. 2). However, the effect of agrofor-
estry on infiltration (RR 2.7, 95%CI 2.1–.5) was greater than that
on soil moisture (RR 1.6; 95% CI 1.1–1.2). Over 90% of all the
observations had RR > 1 compared to 70% for soil moisture.
However, the large effect sizes found for infiltration rates could
be due to publication bias.

The effect of agroforestry on water regulation was greater
across agro-ecological zones, elevations, soil types, type of trials,
agroforestry practices, and woody species compared to controls
(Table 1). Water regulation was more strongly improved under
agroforestry in semi-arid than in humid locations (Table 1). There

were no significant differences among elevations and types of
trial. The effects of agroforestry on water regulation were signif-
icantly greater on Lixisols (RR > 1 = 100%) compared to
Luvisols and Nitisols. This is probably due to smaller effects of
agroforestry inmore fertile, free-drainingNitisols and Luvisols in
humid and subhumid areas. Lixisols weremainly associatedwith
experiments in semi-arid areas, e.g., in Machakos in eastern
Kenya (Jackson and Wallace 1999) and Domboshawa in
Zimbabwe (Nyamadzawo et al. 2008a), where trees have been
shown to improve water infiltration and soil moisture; while
Nitisols were associated with experiments in humid areas, e.g.,
Ibadan in Nigeria (Adejuyigbe et al. 1999; Salako et al. 2001),
Embu in Kenya (Angima et al. 2002), and Ginchi in Ethiopia
(Kidanu et al. 2004), where the effect of agroforestry on water
regulation was low. Water regulation by agroforestry was higher
in planted fallows than in intercropping situations or in experi-
ments under a canopy. No differences were detected for the ef-
fects of agroforestry when trees or shrubs were planted. The
effect of agroforestry was greater when nitrogen-fixing species
were used than when non-nitrogen-fixing species were planted.

Productivity of agricultural lands can be constrained by
water availability in the soil, which largely depends on infil-
tration and retention. The effects of agroforestry were stronger
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for infiltration than for soil moisture, suggesting that the pri-
mary mechanism through which trees improve water regula-
tion is improved infiltration, since effects of trees on soil mois-
ture content are subject to uptake and transpiration by trees.
Empirical studies attributed high infiltration rates in agrofor-
estry to improved hydraulic conductivity of the soil and better
porosity (Nyamadzawo et al. 2003, 2007). On the contrary,
lower infiltration in controls was attributed to soil compaction
due to degradation of soil structure (Salako et al. 2001; Chirwa
et al. 2003; Sanou et al. 2010). For example, soils in planted
fallows had more macropores and large pore sizes because of
improved aggregation (Chirwa et al. 2004; Nyamadzawo et al.
2008a) and presence of channels formed when roots die and
decompose (Chirwa et al. 2003). Agroforestry has been
shown to improve soil moisture compared to control by re-
ducing loss of water from the soil through evaporation and
transpiration by crops (Rhoades 1995; Siriri et al. 2013), in-
creasing water infiltration, and improving water storage ca-
pacity (Makumba et al. 2006; Nyamadzawo et al. 2012a).
Trees with a dense canopy and intense litter fall can reduce
evaporation from the soil surface by modifying microclimate
(Rhoades 1995; Siriri et al. 2013).

3.5 Win-wins and trade-offs

Our findings suggest possibilities of both win-wins and trade-
offs in agroforestry production. This confirms the proposition
that win-win scenarios are possible between agricultural pro-
duction and ecosystem services, and that trade-offs can also
occur and may have the potential to be managed (Foley et al.
2009; Power 2010). Agroforestry improved both yield and
soil fertility indicators leading to a win-win situation in 72,
76, and 53% of the pairwise observations for crop yield and
total N, crop yield and SOC, and crop yield and available P,
respectively (Fig. 7a–c). Win-win outcomes also dominated
studies reporting both total N and SOC (80%), but were less
common for total N and available P (55%) as well as SOC and
available P (59%). Win-win scenarios occur in situations
where trees improve soil fertility, and soil moisture is not
limiting or trees are managed to minimize competition.

A small number of studies showed trade-offs and lose-lose
outcomes between crop yield and total N (28%) and crop yield
and SOC (24%). Close to half of the studies (47%) revealed
trade-offs and lose-lose outcomes between yield and available P,
while a third of the studies showed trade-offs between available
P and total N (32%), and available P and SOC (31%). Trade-
offs occur when competition for nutrients or water (or light)
outweighs the benefits of improved yield or enhanced provision
of an ecosystem service. For example, transpiration in agrofor-
estry can exceed that of tree-less plots if trees are not pruned to
reduce water demand (Jonsson et al. 1999a; Bayala et al. 2002;
Muthuri et al. 2005; Ndoli et al. 2017). In this case, the benefits
of modified microclimate and improved soil structure are

negated by high transpiration and uptake by trees, leading to
low soil moisture. Trade-offs involving available P and soil
moisture indicate that improved yield does not necessarily
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a service. The percentages indicate the proportions of studies in each
category
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signify that all other ecosystem services are provided at higher
levels.

Spearman's rank correlation did not show a significant re-
lationship between crop yield and total N (rs = 0.222, N = 29,
P = <0.247) or crop yield and SOC (rs = 0.196, N = 38, P =
239). On the other hand, positive and significant correlations
were found between crop yield and available P (rs = 0.360, N
= 34, P < 0.05), suggesting that soil nutrient availability was a
main driver of crop yield in this meta-analysis. Correlation
between SOC and total N (rs 0.433, N = 45, P < 0.05), and
SOC and available P (rs = 0.277, N = 49, P < 0.05) were
positive and significant. However, the correlation between
total N and available P was positive but not significant (rs =
0.277,N = 47, P < 0.060). The relationship between crop yield
and soil moisture was negative but not significant (rs = −

0.294,N = 12, P = 0.354). The lack of significant relationships
between crop yield and total N or crop yield and SOC indi-
cates that yield may not consistently covary with soil fertility.
This suggests that beneficial effects of agroforestry on yield
do not primarily stem from improved total soil nitrogen and
SOC, but from a set of complex interdependent relationships
among resources (light, water, and nutrients). Holding other
factors of production constant, soil fertility is known to im-
prove yield. Therefore, the lack of significant correlation be-
tween crop yield and some indicators of soil fertility can be
attributed to differences in ecological conditions, manage-
ment, tree and shrub species, and crops included in the studies
reviewed. Correlations between crop yield and runoff, soil
loss, or infiltration were not tested because of an insufficient
number of studies that did not allow pairwise comparison.

4 Conclusions

We have shown that agroforestry can be a means to increase
crop yield without compromising provision of regulating/
maintenance ecosystem services. This is critical in SSAwhere
some soils have lost their productive capacity due to low soil
organic matter and nutrient mining, and where smallholder
farmers may not be able to increase production through inputs
such as fertilizer or irrigation. Trade-offs involving low avail-
able P and soil moisture content reflect possibilities for compe-
tition for water and nutrient resources. Selection of the right tree
for the right place, optimal tree-crop combination, and manage-
ment of tree canopies can be used to minimize the trade-offs
that result from competition and shading. Agroforestry was
effective at enhancing the ecosystem services studied in most
situations. It is important to determine the resilience of these
ecosystem services under the changing conditions in SSA.
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