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Transcriptome profiling has become a routine tool in biology. For Arabidopsis (Arabidopsis thaliana), the Affymetrix ATH1
expression array is most commonly used, but it lacks about one-third of all annotated genes present in the reference strain. An
alternative are tiling arrays, but previous designs have not allowed the simultaneous analysis of both strands on a single array.
We introduce AGRONOMICS1, a new Affymetrix Arabidopsis microarray that contains the complete paths of both genome
strands, with on average one 25mer probe per 35-bp genome sequence window. In addition, the new AGRONOMICS1 array
contains all perfect match probes from the original ATH1 array, allowing for seamless integration of the very large existing
ATH1 knowledge base. The AGRONOMICS1 array can be used for diverse functional genomics applications such as reliable
expression profiling of more than 30,000 genes, detection of alternative splicing, and chromatin immunoprecipitation coupled
to microarrays (ChIP-chip). Here, we describe the design of the array and compare its performance with that of the ATH1
array. We find results from both microarrays to be of similar quality, but AGRONOMICS1 arrays yield robust expression
information for many more genes, as expected. Analysis of the ATH1 probes on AGRONOMICS1 arrays produces results that
closely mirror those of ATH1 arrays. Finally, the AGRONOMICS1 array is shown to be useful for ChIP-chip experiments. We
show that heterochromatic H3K9me2 is strongly confined to the gene body of target genes in euchromatic chromosome
regions, suggesting that spreading of heterochromatin is limited outside of pericentromeric regions.

Microarrays have revolutionized experimental biol-
ogy and are an essential source of data for systems
biology approaches. While the first microarrays for
plant research were developed only 10 years ago, they
already have become routine tools for model and crop
plants such as Arabidopsis (Arabidopsis thaliana), pop-
lar (Populus spp.), rice (Oryza sativa), and barley
(Hordeum vulgare; Hilson et al., 2004; Redman et al.,
2004; Ma et al., 2005; Galbraith, 2006; Busch and
Lohmann, 2007; Hennig, 2007). Initially, microarrays
were mainly used for profiling transcriptomes, but
now they support a large range of other applications as
well: from genome resequencing (Clark et al., 2007a),
transcript discovery and transcript mapping (Yamada

et al., 2003; Stolc et al., 2005; Li et al., 2007; Laubinger
et al., 2008), to identification of parental sequence
contributions to recombinant inbred lines, genetic
mapping and profiling of DNA methylation (DIP-
chip), histone modifications and transcription factor
binding sites (chromatin immunoprecipitation cou-
pled to microarrays [ChIP-chip]) flourish as well
(Borevitz et al., 2003; Gong et al., 2004; Lippman
et al., 2004; Hazen et al., 2005; Werner et al., 2005;
Singer et al., 2006; Thibaud-Nissen et al., 2006; Zhang
et al., 2006; Li et al., 2008). While dedicated micro-
arrays for transcript profiling contain probes directed
against transcribed sequences based on annotated
gene models, microarrays for molecular mapping or
DIP/ChIP-chip often contain probes for the entire
genome (tiling arrays). For Arabidopsis research, sev-
eral commercial and community microarray platforms
are available, and the Affymetrix, Agilent, Complete
Arabidopsis Transcriptome MicroArray (CATMA),
and NimbleGen arrays are most widely used. Affy-
metrix distributes arrays for transcript profiling
(ATH1) and tiling arrays (Arabidopsis Tiling 1.0R)
composed of 440k and 6.4M (35-bp spacing) 25mer
probes, respectively. Agilent distributes arrays for
transcript profiling and tiling arrays composed of
44k and 244k (212-bp spacing) 60mer probes, respec-
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tively. NimbleGen distributes arrays for transcript
profiling and tiling arrays composed of 135k 60mer
probes and 3 3 385k (90-bp spacing) 50mer probes.
The CATMA community project developed spotted
microarrays containing more than 30,000 gene-specific
sequence tags of 150 to 500 bp (Sclep et al., 2007). Al-
thoughmicroarray data can be noisy and have platform-
specific components, comparisons have shown that
results are mostly consistent across platforms (Hennig
et al., 2003; Allemeersch et al., 2005).

Among the various microarrays available for Arab-
idopsis transcriptome profiling, Affymetrix ATH1 ar-
rays are most widely used (Redman et al., 2004). The
online data warehouse Genevestigator, for instance,
has the results from more than 4,300 hybridizations to
ATH1 arrays (Zimmermann et al., 2005). However,
ATH1 as well as other microarrays for transcript
profiling probe only about two-thirds of the annotated
genes in the Arabidopsis reference genome. In addi-
tion, testing correlation between chromatin states and
expression often requires the use of two different
microarrays. We sought to develop a new tiling micro-
array for Arabidopsis research that enables the mea-
surement of transcript levels for most annotated genes
and for genes yet to be discovered and that can be used
for both gene expression and chromatin state profil-
ing. Because existing Arabidopsis tiling arrays cover
only one strand of the genome, this makes it impos-
sible to obtain strand-specific information on tran-
scription units with a single array per sample. Here,
we describe the AGRONOMICS1 Affymetrix tiling
array and provide benchmark comparisons with the
ATH1 array. We find that the AGRONOMICS1 array
yields very similar results to the ATH1 array in ex-
pression profiling experiments while providing infor-
mation for many more genes and being compatible
with ChIP-chip analysis.

RESULTS

Design of the New AGRONOMICS1 Array

The probes on the AGRONOMICS1 array cover the
whole nuclear Arabidopsis genome (The Arabidopsis
Information Resource [TAIR] 8), with the excep-
tion of the repetitive sequences likely to cause cross-
hybridization. Specifically, 25-nucleotide sequences that
occurred as exact copies more than once in the genome
as well as low-complexity sequences and simple re-
peats defined by RepeatMasker were excluded from
probe design. This led to the exclusion of a total of
13,942,532 nucleotides (11.7% of the informative ge-
nome sequence). Matches to known plant transposable
elements were not masked for the probe design. The
mitochondrial and chloroplast genomes are repre-
sented in their entirety on the AGRONOMICS1 array.
In the resulting tiling, the median distance between
probe centers is 32 nucleotides between probes on the
same genomic strand and 16 nucleotides between

probes on either genomic strand (Fig. 1). To guarantee
maximal backward compatibility with the original
ATH1 array, all ATH1 perfect match (PM) probes
were included on the AGRONOMICS1 array in addi-
tion to the tiling paths probes. More than 81% of the
known nuclear genome sequence and approximately
99% of the organelle genomes are covered by probes
on the AGRONOMICS1 array.

The Affymetrix Arabidopsis genome tiling array
1.0R contains PM and mismatch probes. Because
oligonucleotide microarray data can be analyzed
robustly based on PM probes only (Irizarry et al.,
2003), mismatch probes were not included in the
AGRONOMICS1 array design. This made space avail-
able to tile both genome strands. In total, the new array
contains 152,065 control probes (528 Arabidopsis,
1,665 bacterial, 115,612 human, and 34,260 technical
probes), 5,894,089 Arabidopsis tiling probes (2,947,412
on the plus strand and 2,946,677 on the minus strand),
and 250,103 PM probes from ATH1 arrays.

Custom CDF Files for Quantitative
Transcriptome Profiling

For expression analyses, we first determined the
unambiguous genome location and strand of 5,518,300
oligonucleotide probes, excluding those with more
than one PM of length 19 nucleotides or greater or
imperfect match (1-bp mismatch or insertion/dele-
tion) of length 23 nucleotides or greater with the
reference genome. After mapping the remaining
probes onto gene models annotated in TAIR 8, we
retained 923,491 probes that were entirely contained in
annotated exons and matched the genomic strand of
the corresponding gene. Furthermore, 401,066 probes
from the ATH1 array matched the genomic strand in
annotated exons on the AGRONOMICS1 array. To-
gether, 1,324,557 AGRONOMICS1 probes could be
used for transcription analysis of 31,084 annotated
genes. Although the analyses in this work were done
with TAIR 8-based CDF files (agronomics1_TAIR8_
ATH1.cdf and agronomics1_TAIR8_gene.cdf), we also
assembled CDF files based on the latest TAIR 9
Arabidopsis genome annotation (Table I).

After the first hybridizations on the AGRO-
NOMICS1 arrays (see below), we observed that some

Figure 1. Design features of the AGRONOMICS1 array. Tiled probes
form two paths, one for each strand. The average distance between
adjacent probes on the same strand is 32 nucleotides (nt). Because most
probes are 25 oligomers, the average gap between probes per path is
seven nucleotides. The average distance between adjacent probes on
opposite strands is 16 nucleotides.
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probes performed very poorly (Supplemental Fig.
S1A). Such probes had very low signal or indicated
no expression change, even if all other probes for that
gene or exon had reliable and covarying signals. This
is not unexpected, because the probes on the tiling
array are restricted to fixed windows along the chro-
mosome, the sequences of which may not contain a
25mer oligonucleotide with optimal hybridization
properties. Location restriction is typically less con-
straining for dedicated gene expression arrays; con-
sequently, there were no ATH1-derived poorly
performing probes.
When computing Robust Multichip Average (RMA)

probe set summaries, poorly performing probes were
excluded. Flagging of poorly performing probes was
done with the following algorithm. (1) Flag all probes
with a signal below 32 (=25) in all samples. (2) If there
are fewer than three probes per probe set left, repeat-
edly unflag the flagged probe with the highest mean
signal until there are three unflagged probes. (3)
Remove the flagged probes from the probe sets.
Technically, flagged probes were removed in mem-

ory from the loaded CDF. When this algorithm was
applied to our data set of 12 hybridizations of dark-
grown and light-treated seedling, leaf, and flower
samples (TSU_2 data set), 101,533 (7.7%) of the 1.32
Mio probes were flagged. Note that this data-driven
algorithm will exclude different probes in other data
sets. An implementation of the algorithm in R is
available as Supplemental Data S1.
The distribution of the number of probes per probe

set of the TSU_2 data set before and after filtering is
shown in Supplemental Figure S2. Probe filtering
reduced the median probe number per probe set
from 39 to 36; thus, even after filtering, the majority

of probe sets contained many more probes than the 11
PM probes per probe set on the ATH1 array.

To estimate background hybridization, a control
CDF file was generated using probes that were ran-
domly selected from the human control probes, which
do not have any matches in the Arabidopsis genome.
RMA signals based on this control CDF were used to
construct null distributions of RMA signals for each
sample, and detection P values were calculated for
each Arabidopsis gene probe set. Signals were consid-
ered as “detected” (i.e. above background) at P# 0.05.
With this definition, the detection call indicates
whether a transcript was detected above background
on the array; note that a detection call “not detected”
does not imply that the gene was not transcribed. We
tested the presence of transcripts corresponding to 10
probe sets with detection P values between 0.04 and
0.05 (i.e. at the border of the used threshold for the
detection call) by reverse transcription-PCR (Supple-
mental Fig. S3). Transcripts were identified for all 10
genes, suggesting that most of the probe sets with
significant detection calls correspond to transcribed
genes. It is likely that many probe sets with nonsig-
nificant detection calls correspond to transcribed
genes as well but that these transcripts escaped detec-
tion by the microarray due to limits in sensitivity.

In summary, 31,084 TAIR 8 genes (29,920 TAIR 9
genes) are represented on the AGRONOMICS1 array
by at least three probes (more than 90% of the anno-
tated genes). Similarly, the Affymetrix Arabidopsis
genome tiling array 1.0R was used to measure expres-
sion of 30,228 TAIR 8 genes (Laubinger et al., 2008).
Thus, the AGRONOMICS1 array measured gene ex-
pression of an additional 7,646 TAIR9 genes not cov-
ered by the ATH1 platform.

Table I. Properties of custom-made CDF files for AGRONOMICS1 arrays

CDF File
Genome

Version

No. of Probes

(atha + Control Probes)

No. of Probe Sets

(ath + Control Probe Sets)

No. of Genes

(Transcripts)
Description

agronomics1_ath1 TIGR2b (2001) 286,999 (250,103 +
36,896)

22,911 (22,746 + 165) 22,746 (n.a.c) Gene-specific
probe sets of PM
probes from ATH1

agronomics1_ ath1probes TAIR 8 (2008) 401,066 (248,398 +
152,668)

22,962 (22,591 + 371) 22,591 (n.a.) Gene-specific probe
sets of PM probes
from ATH1

agronomics1_ allprobes TAIR 8 (2008) 1,477,225 (1,324,557 +
152,668)

31,455 (31,084 + 371) 31,084 (n.a.) Gene-specific probe
sets of all suitable
probes

agronomics1_ TAIR9_gene TAIR 9 (2009) 1,246,484 (1,093,816 +
152,668)

30,608 (30,237 + 371) 29,920 (30,237) Gene-specific probe
sets of all suitable
probes, but only
probes common to
all annotated
transcripts

agronomics1_ TAIR9_exon TAIR 9 (2009) 1,562,358 (1,409,690 +
152,668)

116,199 (115,828 + 371) 29,510 (35,528) Exon-specific probe
sets of all suitable
probes

aath probes are probes against Arabidopsis sequences. bTIGR, The Institute for Genomic Research. cn.a., Not applicable.
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Labeling and Hybridization Protocols

To establish robust wet-lab procedures for process-
ing the AGRONOMICS1 arrays, we compared three
different commercial labeling protocols: the WT Ova-
tion Pico System (NuGEN), the GeneChip One-Cycle
cDNA Synthesis kit, and the GeneChip 3# IVT Express
kit (Affymetrix). We used RNA samples from leaves
and flowers, respectively. Labeling and hybridiza-
tion were performed as technical triplicates (TSU_1
data set). The standard Affymetrix hybridization and
washing protocol FS450_0004 proved to work well
with the AGRONOMICS1 arrays (see “Materials and
Methods”).

First, we compared the reproducibility of probe
signals from technical replicates. Although the pair-
wise Pearson correlation coefficient is commonly used
for such comparisons, an alternative correlation mea-
sure, index.R, has been shown to be more sensitive for
the detection of differences in microarray data corre-
lation (Kim et al., 2004). Replicate correlation was
highest for theWTOvation Pico System and lowest for
the GeneChip 3# IVT Express kit (Fig. 2A).

Next, we tested which labeling procedure would
maximize strand-specific results. Probes in similar
regions on sense and antisense strands gave strongly
correlated signals for the WT Ovation Pico System
(Fig. 2B), making it impossible to reliably identify the

transcribed strand. In contrast, no or only very weak
correlation was found for the GeneChip One-Cycle
cDNA Synthesis and GeneChip 3# IVT Express kits
(Fig. 2, C and D). It has been proposed that inclusion of
actinomycin D in the reverse transcription reaction
could increase strand specificity in microarray exper-
iments (Perocchi et al., 2007), but under our settings,
actinomycin D had no effect on strand specificity (data
not shown). We conclude that both GeneChip One-
Cycle cDNA Synthesis and GeneChip 3# IVT Express
kits provide acceptable strand specificity.

Finally, we compared the sensitivity of the three
labeling kits for transcript detection. We used custom
CDF files and RMA (Irizarry et al., 2003) to calculate
probe set summaries and detection calls (see above).
The WT Ovation Pico System resulted in more signif-
icant detection calls than the One-Cycle cDNA Syn-
thesis and the 3# IVT Express kits (Table II). Although
the One-Cycle cDNA Synthesis kit requires 1 mg of
RNA and the 3# IVT Express kit requires only 50 ng of
RNA, both labeling procedures gave very similar
numbers of detected transcripts. In addition to detec-
tion calls, we compared RMA-derived probe set sig-
nals between technical replicates (Table II), again with
index.R and pair-wise Pearson correlation. The latter
measure did not reveal noticeable differences in rep-
licate correlation. In contrast, index.R values showed

Figure 2. Comparison of RNA amplification
and labeling methods. A, Two batches of RNA
(flower and leaf) were used for amplification
and labeling as technical replicates with the
WT Ovation Pico System, the GeneChip
One-Cycle cDNA Synthesis kit, and the
GeneChip 3# IVT Express kit. Pair-wise corre-
lation of background-corrected and quantile-
normalized probe signals was calculated
within each set of triplicates. Correlation
was expressed as index.R value (Kim et al.,
2004). F and L represent data from flower and
leaf RNA, respectively. WP, OC, and IE rep-
resent WT Ovation Pico System, One-Cycle
cDNA Synthesis kit, and 3# IVT Express kit,
respectively. B to D, Correlation of signals
from probes on the match strand and corre-
sponding probes from the reverse strand for
chromosome IV and flower RNA using WT
Ovation Pico System (B), One-Cycle cDNA
Synthesis kit (C), and 3# IVT Express kit (D).
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that the One-Cycle cDNA Synthesis kit resulted in
slightly less variability (i.e. higher correlation) of probe
set signals than the other two kits, most likely ex-
plained by the high amount of starting material used
in this labeling method.
The One-Cycle cDNA Synthesis and 3# IVT Express

kits are oligo(dT) primed and could result in a 3#:5#
bias. Although the expression signals had some 3# bias
(Supplemental Fig. S4, A and B), this affected the fold
changes of only a minor set of genes (Supplemental
Fig. S4C). Thus, for comparative analyses, oligo(dT)-
primed amplification and labeling methods can be
used with AGRONOMICS1 arrays. Nevertheless,
other labeling kits can probably be used with AGRO-
NOMICS1 arrays as well. In summary, the three tested
labeling procedures each had their specific strengths
and weaknesses. Because strand specificity is crucial
for transcript profiling, we concluded that both the
One-Cycle cDNA Synthesis and 3# IVT Express kits
are most appropriate for transcript profiling with
AGRONOMICS1 arrays.

AGRONOMICS1 and ATH1 Arrays Yield Very Similar
Expression Signals Present on Both Platforms

Becausemany available expression profiles have been
generated with the ATH1 platform (Zimmermann et al.,
2005; Brady and Provart, 2009), we tested signal con-
cordance between AGRONOMICS1 and ATH1 arrays
hybridized with identical samples. RNA from dark-
grown controls and light-treated seedlings, from ro-
sette leaves, and from flowers was labeled with the
GeneChip One-Cycle cDNA Synthesis kit and hybrid-
ized in parallel to both array types (TSU_2 data set).
Samples consisted of three independent biological
replicates. On the AGRONOMICS1 (ATH1) arrays,
an average of 15,742 (13,710), 16,608 (13,797), 14,258
(13,861), and 18,566 (14,392) probe sets gave signals
above background for dark-grown and light-treated
seedlings, leaves, and flowers, respectively. These
numbers correspond to 45% to 59% (60%–63%) of all
transcripts that could be detected, reflecting the fact
that the ATH1 array is biased toward more highly ex-

pressed genes represented in EST collections (Redman
et al., 2004; Laubinger et al., 2008). Note that about 5%
fewer probe sets yielded signals above background
with a CDF file containing all probes matching an-
notated gene models instead of the optimized CDF.
Patterns of genes detected in only one or in several
samples were similar for ATH1 and AGRONOMICS1,
but AGRONOMICS1 arrays usually detected 10% to
20% more expressed genes (Fig. 3).

We also compared pair-wise correlation of probe set
summary signals for transcripts represented in both
arrays. Generally, correlation coefficients between rep-
licates of the same array type (ATH1, AGRONOMICS1-
ATH1, and AGRONOMICS1) were similar (Fig. 4A).
AGRONOMICS1-ATH1 refers to results obtained only
with the ATH1 PM probes present on the AGRO-

Table II. Number of detected transcripts and correlation of probe set summary signals

Mean and SD are listed for three technical replicates. Correlation was expressed as index.R value (Kim
et al., 2004) and as pair-wise Pearson correlation coefficient. n.a., Not applicable.

Variable
WT Ovation

Pico System

One-Cycle cDNA

Synthesis 3# IVT Express

One-Cycle cDNA

Synthesis Versus 3# IVT

Express

Transcript no.
Leaves 18,042 6 263 13,619 6 598 13,472 6 373 n.a.
Flowers 22,138 6 433 16,457 6 225 17,592 6 400 n.a.

index.R
Leaves 0.882 6 0.005 0.914 6 0.006 0.870 6 0.004 0.860 6 0.006
Flowers 0.919 6 0.002 0.935 6 0.004 0.906 6 0.004 0.886 6 0.002

Pearson correlation
Leaves 0.988 6 0.001 0.993 6 0.001 0.986 6 0.001 0.982 6 0.002
Flowers 0.993 6 0.001 0.996 6 0.001 0.991 6 0.001 0.987 6 0.001

Figure 3. Comparison of transcript detection with ATH1 and AGRO-
NOMICS1 arrays. Transcripts were counted if they were detected in all
three biological replicates of a tissue. Tissues were dark-grown seed-
lings (gray), light-treated seedlings (light green), leaves (dark green), and
flowers (yellow). Note that the numbers given in the text relate to
overlaps between all four tissues and thus differ from the numbers here.
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NOMICS1 arrays. In addition, correlation coefficients
betweenATH1 andAGRONOMICS1-ATH1 arrayswere
similar to those within ATH1 or AGRONOMICS1-ATH1
arrays.

Together, detection calls and probe set summary
signals on ATH1 and AGRONOMICS1 arrays were
very similar for the transcripts represented on both
platforms, and signals were most similar when only
the ATH1 probes on the AGRONOMICS1 array were
used.

AGRONOMICS1 and ATH1 Arrays Yield Nearly
Identical Expression Fold Changes for the Commonly
Probed Genes

To test whether signal log ratios (SLR) were also
consistent between ATH1 and AGRONOMICS1 ar-
rays, we calculated SLR values based on mean signals
from the triplicate measurements. Because index.R
cannot capture negative correlation, which is relevant
when comparing fold changes, correlation was mea-
sured with pair-wise Pearson correlation coefficients.
Correlation between SLR values derived from ATH1,
AGRONOMICS1-ATH1, and AGRONOMICS1 arrays
was very high (0.96 6 0.03 for ATH1 versus AGRO-
NOMICS1-ATH1 and ATH1 versus AGRONOMICS1,
0.98 6 0.01 for AGRONOMICS1-ATH1 versus AGRO-
NOMICS1; Fig. 4B). In addition, correlation between
ATH1 and AGRONOMICS1-ATH1 arrays was similar
to correlation within ATH1 or AGRONOMICS1-ATH1
arrays. Similarly, scatterplots of SLR values revealed
good concordance between fold changes generated
with the different array types (Supplemental Fig. S5).
Finally, applying the Limma algorithm (Smyth, 2004)
to all tested array types identified a very similar set of

differentially expressed genes (Fig. 5). The particularly
high concordance for the flowers-leaves comparison
could be caused by the consistently low signal vari-
ability among hybridizations of flower RNA (visible
for the technical replicates of all labeling methods in
Table II and for the biological replicates in Fig. 4A).

In summary, fold changes based on signals from
ATH1 and AGRONOMICS1 arrays and sets of differ-
entially expressed genes were comparable for the
commonly probed transcripts. Our results indicate
that differential expression can be compared between
the new AGRONOMICS1 and the older ATH1 arrays.

AGRONOMICS1 Arrays Generate Novel Hypotheses for
Functional Genomics Studies

Data analysis including all useful probes provided
information about the transcription of many annotated
genes not represented in the ATH1 array. Seventy, 36,
35, and 430 of these genes had expression signals
that were at least 4-fold higher in the dark-grown
seedlings, light-treated seedlings, leaves, and flowers,
respectively, than in any of the other tissues (Supple-
mental Tables S1–S4). The genes specific to dark-
grown seedlings include, among others, a set of four
ROTUNDIFOLIA-like genes, sevenDNA-binding protein/
transcription factor genes (e.g. PHYTOCHROME-
INTERACTING FACTOR3-LIKE1, which previously
has been reported to be rapidly light repressed;
Khanna et al., 2006; Roig-Villanova et al., 2006), 29
unknown genes (41%), and, notably, six transposable
element-like genes. The latter are of potential interest
because proteins with similarity to Mutator family
transposase were described to function in the deetio-
lation response and to be repressed by light (Hudson

Figure 4. Correlation of probe set summary values (A) and fold changes (B). A, RMA-based probe set summaries for the gene
probes on ATH1 (AT) and AGRONOMICS1 (AG_AT and AG) arrays were used, and pair-wise correlations (index.R) were
calculated. For AGRONOMICS1 arrays, either only the ATH1 probes (AG_AT) or all probes (AG) were used. B, Log-transformed
ratios of the means over the three replicates were used to calculate correlation coefficients. S(D), S(L), F, and L represent dark-
grown and light-treated seedlings, flowers, and leaves, respectively. S(D)-F represents the comparison of dark-grown seedlings
and flowers.
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et al., 2003). In addition, a pyruvate decarboxylase
gene is specifically expressed in dark-grown seedlings.
Pyruvate decarboxylase is required for pollen tube
elongation growth in Petunia, possibly in a novel
metabolic pathway that bypasses pyruvate dehydro-
genase for high rates of lipid generation under certain
conditions (Gass et al., 2005). Although this pathway
was previously suggested to be specific to pollen
tubes, it is possible that rapid hypocotyl elongation
growth of dark-grown seedlings relies on the same
pathway to generate lipids for cell membranes. The
genes specific to light-treated seedlings, to leaves, and
to flowers include, among others, 17 (46%), 10 (29%),
and 17 (40%) unknown genes, respectively. In addi-
tion, the genes specific to flowers encode several
potential extracellular peptide/protein signals, such
as 16 low-molecular-weight Cys-rich proteins and
six rapid alkalinization factor-like proteins. Flower-
specific expression of potential peptide signaling com-
ponents was observed before (Hennig et al., 2004), and
peptide signaling appears to be important during
plant reproductive development (Kachroo et al.,
2001; Takayama et al., 2001; Okuda et al., 2009).
These observations demonstrate the power of

AGRONOMICS1 arrays to yield specific genome-
wide transcription profiles and to generate novel hy-
potheses for functional genomics studies.

Detection of Exon-Specific Expression and
Alternative Splicing

To measure exon-specific expression and detect
alternative splicing events, exon-specific probe sets
were defined. After mapping all probes to the TAIR 9
genome release, an exon-specific CDF file was con-
structed that contains probe sets of at least three
probes for 108,215 of the 164,379 exons annotated in
TAIR 9. The exon probe sets cover 20,019 genes with
more than one exon-specific probe set per gene.

The CDF file was used to screen for alternative
splicing events between flowers and dark-grown seed-
lings. After computing the splicing index (Clark et al.,
2007b), 623 genes with a splicing index above 1 or
below21 were found. For example, five exons of gene
AT1G31120 had higher signals in seedlings than in
flowers, but the remaining exon (exon 2) had lower
signals in seedlings than in flowers (Supplemental Fig.
S6). This suggests that an exon-skipping event occurs
in seedlings. In gene AT1G32120, the exons showed an
inconsistent behavior: the first two exons had higher
signals in flowers, while the last two exons had higher
signals in seedlings. Additional experiments will be
required to establish the biological relevance of these
findings.

In summary, the high density of tiling probes makes
AGRONOMICS1 arrays useful for the detection of
alternative splicing and differential transcripts.

ChIP-Chip Analysis with AGRONOMICS1

Finally, we tested the AGRONOMICS1 array for
ChIP-chip with 3-d-old light-treated seedlings. Chro-
matin was immunoprecipitated with anti-H3, anti-
H3K9me2, and unspecific IgG antibodies, amplified,
labeled, and hybridized to AGRONOMICS1 arrays
(TSU_3 data set). As expected, anti-H3K9me2 resulted
in strongly localized signals in contrast to the anti-H3
and unspecific control antibodies (Fig. 6). In agreement
with previous reports (Soppe et al., 2002; Fransz et al.,
2003; Naumann et al., 2005; Bernatavichute et al.,
2008), H3K9me2 clustered mainly in centromeric and
pericentromeric regions, which are gene poor and
transposon rich (Supplemental Fig. S7). We identified
6,313 regions strongly enriched in H3K9me2 (Supple-
mental Table S5). The size of the H3K9me2-enriched
regions ranged from 112 to 28,352 bp (median, 864 bp;
Fig. 7A), and together they covered 9.4% of the ge-
nome length, in agreement with estimated hetero-
chromatin content in Arabidopsis (Soppe et al., 2002;
Fransz et al., 2003; Schönrock et al., 2006).

To identify H3K9me2-marked genes, we calculated
an average H3K9me2 enrichment score for each gene
with the Model-based Analysis of Tiling-arrays (MAT)
algorithm (Johnson et al., 2006). Using a null distribu-
tion based on randomization of probe assignments to
genes, we identified 3,490 H3K9me2-marked genes
(i.e. 10.9% of all genes) at a false discovery rate of 5%
(Supplemental Table S6). The H3K9me2-marked genes
included 2,454 (70%) transposable element genes, 811
(23%) protein-coding genes, and 225 (6.5%) pseudo-
genes. Thus, H3K9me2-marked genes are strongly
enriched with transposable element genes and pseu-
dogenes, which account only for 12% and 2.6%, re-
spectively, of all annotated genes.

H3K9me2 is believed to be a strong silencing mark
in Arabidopsis (Fuchs et al., 2006), and because tran-
scriptome data and ChIP-chip data were generated
from identical samples (3 d-old light-treated seed-
lings), we could directly compare the relation between

Figure 5. Comparison of detection of differentially expressed genes on
ATH1 and AGRONOMICS1 arrays. Transcripts were counted if dif-
ferences were significant at the 0.05 level and fold changes were at
least 1.5.
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H3K9me2 and RNA signals (Fig. 7B). Generally, genes
marked by H3K9me2 were only very weakly or even
not at all expressed.

The vast majority of the H3K9me2-marked genes
(3,145 genes, 90%) were located in the centromeric
and pericentromeric heterochromatin as defined by
Bernatavichute et al. (2008). However, there were 345
(10%) H3K9me2-marked genes in the euchromatic
chromosome arms. We investigated whether the
neighborhood of heterochromatic and euchromatic
H3K9me2-marked genes differed. The H3K9me2-
marked genes in a heterochromatin neighborhood
were characterized by an average MATscore of about
10 in the gene body and 8 in the neighborhood (Fig.
7C). The H3K9me2-marked genes in a euchromatic
neighborhood were characterized by an averageMAT
score of about 8 in the gene body and 1 in the
neighborhood (Fig. 7D). In contrast, genes not
marked by H3K9me2 were characterized by an aver-
age MAT score of about 21 in the gene body and in
the neighborhood. Thus, the H3K9me2 signal from
the gene body was only slightly elevated over the
signal in the neighborhood in heterochromatic re-
gions, whereas the H3K9me2 signal from the gene
body was strongly elevated over the signal in the
neighborhood in euchromatic regions. Therefore, it
appears that targeting of H3K9me2 is tightly linked to
information residing in the gene body and that

spreading of H3K9me2 in euchromatic chromosome
arms is limited.

This study demonstrates that the AGRONOMICS1
array can be used not only for transcriptomics but also
for ChIP-chip experiments.

DISCUSSION

During the past decade, microarrays have become
the “working horses” for gene expression studies.
However, many existing arrays are limited to a par-
ticular version of genome annotation and become
decreasingly useful with their incremental updates.
Even though probes can be remapped to newer ge-
nome annotations (e.g. via modified CDF files for
oligonucleotide-based microarrays manufactured by
Affymetrix; Dai et al., 2005), this approach is restricted
to the sequences included in the original array design.
Here, we present a new microarray for Arabidopsis.
Because the AGRONOMICS1 array is based on a tiling
design, it can be matched to past, current, and future
genome annotations. In contrast to previously de-
scribed Arabidopsis tiling arrays, the AGRONOMICS1
array tiles both strands of the genome, enabling strand-
specific detection of transcripts.

Direct sequencing of transcripts with novel high-
throughput sequencing technologies (RNA-Seq) has

Figure 6. ChIP-chip profile over chromosome IV. Traces show results from anti-H3K9me2, anti-H3, and unspecific IgG anti-
bodies. Gene models are at the bottom in yellow. Note the two large heterochromatic regions, the centromeric/pericentromeric
region (red bar) and the heterochromatic “knob” (yellow bar), that are gene poor and have high H3K9me2 signals.
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recently become a powerful alternative for transcrip-
tome profiling (Wang et al., 2009). Despite the great
power of RNA-Seq, microarrays and RNA-Seq will
likely coexist for a while, because they offer comple-
mentary advantages. RNA-Seq is the preferred ap-
proach for transcript and splice-variant discovery as
well as for nonmodel species. However, major chal-
lenges remain to be solved with RNA-Seq: cost per
sample is higher for comparable sensitivity; more ro-
bust protocols for strand-specific library generation are
needed; efficient methods to store, retrieve, and process
large amounts of data must be improved; robust statis-
tical algorithms to combine read counts into transcript
abundance estimates are still perfectible (Coppee, 2008;
Wang et al., 2009). In addition, RNA-Seq data can suffer
from specific biases based on transcript lengths that
could confound data interpretation if not corrected for
appropriately (Oshlack and Wakefield, 2009). Thus, for
routine transcriptome profiling experiments, in partic-
ular involving large numbers of samples, microarrays
are often the preferred choice.
We have established an analysis work flow based

on custom-generated CDF files and Bioconductor/R
packages, in particular the Aroma package (Bengtsson
et al., 2008). This work flow is designed for the analysis
of raw data for an arbitrary number of samples by any
researcher on any personal computer. Background
correction, normalization, and calculation of probe
set summaries are based on the popular RMA method
(Irizarry et al., 2003).
When comparing the new AGRONOMICS1 array

with the older ATH1 array, we found consistent tran-

script level estimates and fold change values for the
commonly probed transcripts. However, the AGRO-
NOMICS1 array probed an additional 7,646 TAIR 9
genes. Similar toprevious studies (Laubingeret al., 2008;
Naouar et al., 2008), we observed that many of these
genes that are probed by AGRONOMICS1 but not by
ATH1 were not or only weakly expressed in our sam-
ples, possibly because many of them are expressed in
specific cell types and/or under specific conditions.
Nevertheless, we detected transcripts for a considerable
fraction of genes that were not tested with ATH1 arrays,
and these were often tissue specific. Together, we found
that theAGRONOMICS1 arrays can beused for efficient
transcriptome profiling, and we have used this array in
the context of a large multilaboratory experiment.

AGRONOMICS1 arrays also proved appropriate for
ChIP-chip experiments. Recently, high-throughput se-
quencing coupled to ChIP (ChIP-Seq) was introduced
as a powerful alternative to ChIP-chip (Park, 2009).
However, results were found to usually agree well
between ChIP-chip and ChIP-Seq (Kaufmann et al.,
2009), and practical considerations, such as access to
equipment and bioinformatic support as well as costs,
will strongly influence the choice of method for a given
experiment. Advantages of the AGRONOMICS1 arrays
for ChIP-chip applications include an established work
flow based on Affymetrix TAS software or on an
implementation of the MAT algorithm (Johnson et al.,
2006) in the AromaR package. Parallel analysis of ChIP-
chip and RNA-chip data generated on the same type of
microarray facilitates the direct correlation between
chromatin composition or protein-DNA binding and

Figure 7. Characterization of H3K9me2-
enriched regions. A, Size distribution
of H3K9me2-enriched regions. B, Dis-
tribution of transcript signals for all genes
(black broken line) and H3K9me2-
marked genes (red solid line). C and
D, Average H3K9me2 profiles (red
lines) at H3K9me2-marked genes in
the pericentromeric heterochromatin
(C) and the euchromatic chromosome
arms (D). The black lines represent the
H3K9me2 profiles of genes not marked
by H3K9me2; the gray lines indicate
95% confidence intervals. The light
blue bars represent the annotated
gene body from transcription start
(left) to transcription end (right). Pro-
files are shown around annotated start
(23 kb…+1 kb) and end (21 kb…+3 kb)
positions.
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transcriptional activity. In addition, AGRONOMICS1
arrays have a considerably higher probe density than
other available Arabidopsis tiling arrays. Thus, resolu-
tion is mostly limited by wet-lab procedures. For stan-
dard ChIP protocols (Gendrel et al., 2002; Haring et al.,
2007), the extent of sonication (usually 500–1,000 bp)
sets the lower limit of the resolution. For native ChIP
protocols, where fragmentation is achieved by micro-
coccal nuclease (Bernatavichute et al., 2008), the reso-
lution can approach mononucleosome level.

In conclusion, we introduce a new oligonucleotide-
based tiling array for Arabidopsis that has been
proven to support a wide range of applications.

MATERIALS AND METHODS

Plant Material

All experiments usedArabidopsis (Arabidopsis thaliana) accession Columbia-0

plants. Plants were grown on soil at 23�C in a photoperiod of 16 h of light and 8 h

of darkness. Leaves (no. 4 from 10–15 plants per sample) and flowers were

harvested after 10 and 25 d, respectively, at Zeitgeber 6 (i.e. 6 h after start of the

photoperiod), and frozen in liquid nitrogen. Flowers (stage 15; 20–25 per sample)

were collected from the main inflorescence. For the analysis of dark-grown and

light-treated seedlings, seedlings were grown on half-strength Murashige and

Skoog medium for 4 d at 23�C in complete darkness and then transferred for 4 h

to constant cool-white light (light-treated seedlings) or kept in darkness (dark-

grown seedlings) before whole seedlings (approximately 50 per sample) were

harvested.

Array Design

For array design, Arabidopsis Columbia genome sequences (TAIR 8) were

masked at positions identified as low-complexity sequences, and simple

repeats were defined by RepeatMasker (version open 3.2.7). Regions matching

known Arabidopsis transposable elements were left unmasked for probe

design. Additionally, nucleotides for which the surrounding 25mer occurred

multiple times as exact copies on either strand of the nuclear genome were

also masked. Based on this masked nuclear genome and the mitochondrial

and chloroplast genomes, tiling probes, varying in length between 17 and 25

nucleotides, were designed on alternating strands to equally cover both

genomic strands. In addition to that, all 250,103 PM probes contained on the

ATH1 expression array as well as 152,065 control probes (528 Arabidopsis,

1,665 bacterial, 115,612 human, and 34,260 technical control probes) were

included on the AGRONOMICS1 tiling array. Based on the masked genome,

Affymetrix designed the probes as they would be produced on the chip.

Careful checking has been done of all the proposed probes: their distribution

over the chromosomes, whether the masking was correctly taken into account,

strandness, and correct coordinates. Managing the masked sequence for probe

design by Affymetrix was done by skipping probes that had their central

coordinates within the indicated masked region. Files with the probes

mapped back onto the genome are available.

Total RNA Extraction and Quality Control

Total RNAwas isolated using the Qiagen Plant RNeasy MiniKit according

to the manufacturer’s instructions. The quality of the isolated RNA was

determined with a NanoDrop ND 1000 (NanoDrop Technologies) and a

Bioanalyzer 2100 (Agilent). Only samples with a 260-nm:280-nm ratio be-

tween 1.8 and 2.1 and a 28S:18S ratio within 1.5 to 2 were processed further.

Microarray Target Preparation

Method 1. GeneChip One-Cycle cDNA Synthesis Kit

Total RNA samples (2 mg) were reverse transcribed into double-stranded

cDNAwith the One-Cycle cDNA Synthesis kit (Affymetrix; 900431) including

poly(A) controls as recommended by the manufacturer. Samples prepared in

the presence of actinomycin Dwere treated the same, except that the drug was

added after the initial denaturing step at 70�C to a final concentration of 6 mg

mL21. The double-stranded cDNA was purified using a Sample Cleanup

Module (Affymetrix). The purified double-stranded cDNA was in vitro

transcribed in the presence of biotin-labeled nucleotides using the IVT

Labeling kit (Affymetrix; 900449). The biotinylated copy RNA (cRNA) was

purified using a Sample Cleanup Module (Affymetrix), and its quality and

quantity were determined using NanoDrop ND 1000 and Bioanalyzer 2100.

Biotin-labeled cRNA samples (15 mg) were fragmented randomly to 35 to 200

bp at 94�C in Fragmentation buffer (Affymetrix).

Method 2. WT Ovation Pico System

The cDNAwas prepared from total RNA using a primer mix and reverse

transcriptase (WT Ovation Pico System; NuGEN). Samples prepared in the

presence of actinomycin D were treated the same, except that the drug was

added after the initial denaturing step at 70�C to a final concentration of 6 mg

mL21. The primers have a DNA portion that hybridizes either to the 5# portion

of the poly(A) sequence or randomly across the transcript. SPIA amplification,

a linear isothermal DNA amplification process, was used to prepare single-

stranded cDNA in the antisense direction of the mRNA starting material.

Single-stranded cDNA quality and quantity were determined using Nano-

Drop ND 1000 and Bioanalyzer 2100. Fragmented and biotin-labeled single-

stranded cDNA targets were generated with the FL-Ovation cDNA Biotin

Module V2 (NuGEN). Biotin-labeled cRNA samples (15 mg) were fragmented

randomly to 35 to 200 bp at 94�C in Fragmentation buffer (Affymetrix).

Method 3. GeneChip 3# IVT Express Kit

Total RNA samples (50 ng) were reverse transcribed into double-stranded

cDNA and then in vitro transcribed in the presence of biotin-labeled nucle-

otides using the GeneChip 3# IVT Express kit (Affymetrix; 901229) including

poly(A) controls as recommended by the manufacturer. The quality and

quantity of the biotinylated cRNAwere determined using NanoDropND 1000

and Bioanalyzer 2100. Biotin-labeled cRNA samples (15 mg) were fragmented

randomly to 35 to 200 bp at 94�C in Fragmentation buffer (Affymetrix).

Array Hybridization

Biotin-labeled cRNA samples were mixed in 300 mL of Hybridization Mix

(Affymetrix; 900720) containing Hybridization Controls and Control Oligo-

nucleotide B2 (Affymetrix; 900454). Samples were hybridized onto Affymetrix

AGRONOMICS1 Arabidopsis tiling arrays and ATH1 arrays for 16 h at 45�C.

Arrays were then washed using an Affymetrix Fluidics Station 450 using the

FS450_0004 protocol. An Affymetrix GeneChip Scanner 3000 was used to

measure the fluorescence intensity emitted by the labeled target.

ChIP and Analysis on Microarrays

ChIP was performed as described previously (Exner et al., 2009), with

some modifications, using 100 mg of 4-d-old light-treated seedlings. After

cross-linking the material with 1% formaldehyde under vacuum for 10 min,

the reaction was quenched with excessive Gly under vacuum for 5 min. Cross-

linked seedlings were washed twice with deionized water, blotted on filter

paper to dry, and flash frozen using liquid nitrogen. Frozen plant material was

ground to a fine powder. Ground plant material was then suspended with

freshly prepared MEB buffer (1.0 M hexylene glycol, 20 mM PIPES-KOH [pH

7.4], 10 mM MgCl2, 1 mM EGTA, 15 mM NaCl, 0.5 mM spermidine, 0.15 mM

spermine, 10 mM 2-mercaptoethanol, and 13 protease inhibitor cocktail) at

4�C for 10 min. The homogenate was filtered through four layers of Miracloth.

An equal volume of MEB/0.6% Triton X-100 was mixed with the filtrate, and

the mixture was incubated on ice for 15 min before centrifugation at 1,500g at

4�C for 5 min. The pellet (i.e. the crude nuclear extract) was used for ChIP

using the LowCell# ChIP kit (Diagenode). Briefly, the nuclear extract was

suspended in 130 mL of buffer B and sonicated for eight cycles of 30 s on/30 s

off using a Bioruptor sonicator (Diagenode) to reach an average fragment size

of 300 bp. The chromatin preparation was diluted with 870 mL of buffer A and

centrifuged at 14,000g for 30 s. The supernatant was collected and precleared

with 20 mL of protein A paramagnetic beads (Diagenode) at 4�C for 2 h. For
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each immunoprecipitation, 300 mL of precleared chromatin was used, and

50 mL was kept as input control. For each immunoprecipitation, appropriate

antibodies were added (anti-H3, CT, pan, Millipore 07-690; anti-H3K9me2,

Diagenode pAb-060–050; IgG, Sigma I50006), and immunoprecipitation mix-

tures were rotated overnight at 4�C. Immunocomplexes were collected with

30 mL of protein A paramagnetic beads at 4�C for 1 h. Beads were then washed

and DNAwas recovered according to the LowCell# ChIP kit instructions.

DNA recovered from ChIP (200 mL) was used for quantitative PCR (10 mL)

and for amplification (190 mL). Amplification was done with the WGA2 kit

(Sigma) according to the manufacturer’s instructions with minor modification

(the fragmentation step before library preparation was skipped and 100 mM

dUTP was included in the PCR amplification step). Amplified DNA was

purified with the MinElute PCR Purification kit (Qiagen) and eluted with

25 mL of Elution buffer. DNA concentration was measured using a NanoDrop

1000. Amplified DNA (2 mL) was kept for quantitative PCR. Preservation of

ChIP enrichment after amplification was confirmed by quantitative PCR.

Amplified ChIP DNA was fragmented and labeled with the GeneChip WT

Terminal Labeling kit (Affymetrix) according to the manufacturer’s instruc-

tions. Fragmentation was confirmed using an RNA Nano 1000 kit on a 2100

Bioanalyzer lab-on-chip platform (Agilent), revealing an average fragment

size of 88 nucleotides.

Labeled samples were mixed in 300 mL of Hybridization Mix (Affymetrix;

900720) containing Hybridization Controls and Control Oligonucleotide B2

(Affymetrix; 900454). Samples (input, anti-H3, anti-H3K9me2, and unspecific

IgG antibodies) were hybridized onto Affymetrix AGRONOMICS1 Arabi-

dopsis tiling arrays for 16 h at 45�C. Arrays were then washed using an

Affymetrix Fluidics Station 450 using the FS450_0004 protocol. An Affymetrix

GeneChip Scanner 3000 was used to measure the fluorescence intensity

emitted by the labeled target. Test hybridizations revealed that 2 and 5 mg of

labeled anti-H3K9me2 sample gave very similar results (data not shown),

suggesting that 2 mg of labeled sample is sufficient for marks of this

abundance (approximately 15% of the genome). Lower amounts of labeled

sample will be sufficient when probing less abundant epitopes such as

transcription factors.

Normalization and Generation of Probe Set Summaries

Prior to expression analysis, we masked repetitive probes on the AGRO-

NOMICS1 array if they had more than one PM of length 19 nucleotides or

greater or imperfect match (1-bp mismatch or insertion/deletion) of length 23

nucleotides or greater. These were identified using Vmatch (Abouelhoda et al.,

2004) by calculating direct and reverse complementary matches of length

17 bp or greater with edit distance 1 bp or less between the five nuclear

chromosomes and the mitochondrial and chloroplast genome sequences

(TAIR 8). For the remaining probes, the unique genome location and strand

were retained for the subsequent mapping to gene models annotated in TAIR

8. For each annotated gene, probe sets were constructed that contained all

probes that were mapped to constitutive exons and did not span splice sites or

transcript isoforms differing in the region complementary to the probe. Only

genes with at least three probes were considered during expression profiling.

Genes with a small number of probes are usually very short, have very long

introns, or have many introns.

To construct CDF files based on TAIR 9, probes with more than one match

after mapping to the TAIR 9 genome sequence were excluded. Because

untranslated regions frequently had low signals even for genes with high

average signals, probes that match in untranslated regions were not included

in the probe sets. For the exon-specific CDF file (agronomics1_TAIR9_exon.

cdf), all probes that entirely mapped onto exons were selected and a probe

set was defined when there were at least three probes per exon. Note that

exons can overlap in TAIR 9, for instance when there is more than one

transcript per locus, and that probe sets for overlapping exons will have some

probes in common. The probe set names were defined as ,gene_model..

,chromosome..,strand..,exon_start_position..,exon_end_position. (e.g.

AT1G01010.1.Chr1.plus.3631.3913).

A second CDF file (agronomics1_TAIR9_gene.cdf) was constructed with

the aim to have exactly one probe set representing each gene. For 208 genes

with multiple transcripts with little overlap, more than one probe set per gene

was generated per gene. The CDF file contains three types of probe sets, which

can be discriminated by their names. The naming scheme is ,locus name..

,variant..,chromosome..,strand..,mRNA_start..,mRNA_end. (e.g.

AT1G01010.0.Chr1.plus.3631.5899). The meaning of the variant component is

as follows: 0, there is only one transcript annotated for the gene, and the probe

set matches this transcript (25,387 probe sets); X, there are multiple transcripts

with a large overlap annotated for the gene, and the probe set matches the

intersection of all these transcripts (4,325 probe sets); 1-N, there are multiple

transcripts with little overlap annotated for the gene, and each probe set

contains all probes that match the corresponding transcript (208 loci, 525

probe sets).

Background correction, normalization, and calculation of probe set sum-

maries were based on the custom-made CDF files and RMA (Irizarry et al.,

2003) implemented in the Aroma.Affymetrix package (Bengtsson et al., 2008).

Nonperforming probes were dynamically masked during the analysis (see

“Results”).

Bioinformatic Analysis

All analysis was performed in R 2.9.1 (R Development Core Team, 2009). To

estimate background hybridization, a control CDF file was generated. This

CDF file has the same number of probe sets and probes per probe set as the

AGRONOMICS1 custom CDF, but the probes were randomly selected from

the human control probes, which do not have any matches in the Arabidopsis

genome. RMA signals based on this control CDF were used to construct null

distributions of RMA signals for each sample. Differentially expressed genes

were identified using the Limma package (Smyth, 2004) with multiple testing

correction according to Storey and Tibshirani (2003). Genes were considered

as differentially expressed at P , 0.05 and abs(fold change) . 1.5.

ChIP-chip data were normalized with MAT (Johnson et al., 2006) imple-

mented in the Aroma.Affymetrix package (Bengtsson et al., 2008) with the

window size parameter set to 500. Enriched regions were defined as contin-

uous runs of probes with a MATscore of at least 4 and were selected using the

package BAC (Gottardo et al., 2008) with minRun and maxGap parameters set

to 100 and 200, respectively. To identify H3K9me2-marked genes, a gene-

specific MAT score was defined as the 75th percentile of all probe-specific

MAT scores for the probes located entirely within the transcribed region of a

gene. A null distribution of gene-specific MAT scores, which was based on

randomization of probe assignments to genes, was used to select H3K9me2-

marked genes at a false discovery rate of 5%. Visualization of tiling array data

was done using the Integrated Genome Browser at http://igb.bioviz.org/

download.shtml (Nicol et al., 2009).

The AGRONOMICS1 array is commercially available through Affymetrix.

Library files and scripts are freely available as Supplemental Data S2 and at

http://www.agron-omics.eu/index.php/resource_center/tiling-array. The array

design has been registered at ArrayExpress (accession no. A-AFFY-155). Micro-

array raw data are available at ArrayExpress (accession nos. E-MEXP-2472,

E-MEXP-2480, and E-TABM-870). Processed microarray data will be visual-

ized in Genevestigator (www.genevestigator.com; Zimmermann et al., 2005).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Examples of poorly performing probes.

Supplemental Figure S2. Distribution of number of probes per probe set

before and after filtering.

Supplemental Figure S3. Relation between detection calls and transcript

presence.

Supplemental Figure S4. Signal ratios do not show considerable 3# bias.

Supplemental Figure S5. Comparison of fold change values based on data

from different array types.

Supplemental Figure S6. Examples of differential transcript expression

and alternative splicing.

Supplemental Figure S7. Averaged H3K9me2 signals (MAT scores) along

Arabidopsis chromosomes.

Supplemental Table S1. Genes with specific expression in dark-grown

seedlings.

Supplemental Table S2. Genes with specific expression in light-treated

seedlings.

Supplemental Table S3. Genes with specific expression in leaves.
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Supplemental Table S4. Genes with specific expression in flowers.

Supplemental Table S5. Chromosomal regions enriched in H3K9me2.

Supplemental Table S6. H3K9me2-marked genes.

Supplemental Data S1. R-script for RMA-type analysis including dynamic

probe filtering.

Supplemental Data S2. Archive of CDF files for RMA-type analysis.
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