
IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 1

AHAR: Adaptive CNN for Energy-efficient Human
Activity Recognition in Low-power Edge Devices

Nafiul Rashid, Student Member, IEEE, Berken Utku Demirel,
and Mohammad Abdullah Al Faruque, Senior Member, IEEE

Abstract—Human Activity Recognition (HAR) is one of the
key applications of health monitoring that requires continuous
use of wearable devices to track daily activities. This paper
proposes an Adaptive CNN for energy-efficient HAR (AHAR)
suitable for low-power edge devices. Unlike traditional adaptive
(early-exit) architecture that makes the early-exit decision based
on classification confidence, AHAR proposes a novel adaptive
architecture that uses an output block predictor to select a portion
of the baseline architecture to use during the inference phase.
Experimental results show that traditional adaptive architectures
suffer from performance loss whereas our adaptive architecture
provides similar or better performance as the baseline one while
being energy-efficient. We validate our methodology in classifying
locomotion activities from two datasets- Opportunity and w-
HAR. Compared to the fog/cloud computing approaches for
the Opportunity dataset, our baseline and adaptive architecture
shows a comparable weighted F1 score of 91.79%, and 91.57%,
respectively. For the w-HAR dataset, our baseline and adaptive ar-
chitecture outperforms the state-of-the-art works with a weighted
F1 score of 97.55%, and 97.64%, respectively. Evaluation on real
hardware shows that our baseline architecture is significantly
energy-efficient (422.38x less) and memory-efficient (14.29x less)
compared to the works on the Opportunity dataset. For the w-
HAR dataset, our baseline architecture requires 2.04x less energy
and 2.18x less memory compared to the state-of-the-art work.
Moreover, experimental results show that our adaptive archi-
tecture is 12.32% (Opportunity) and 11.14% (w-HAR) energy-
efficient than our baseline while providing similar (Opportunity)
or better (w-HAR) performance with no significant memory
overhead.

Index Terms—Human Activity Recognition, Wearable Devices,
Edge Computing, Low-power, Adaptive CNN

I. INTRODUCTION

Human Activity Recognition (HAR) applications are useful
tools for health monitoring, fitness tracking, and patient reha-
bilitation [1]–[3]. Since the HAR applications need continuous
sensor data to infer user activity, advances in sensor technology
[4] have enabled wide adoption of HAR applications in daily
life. Smartphones have been significantly used for HAR in the
past decade [5]–[7]. However, this kind of solution requires
the user to continuously carry the phone which causes incon-
venience. Moreover, the smartphone solutions consume higher
energy in the range of watts [8] which may hinder the primary

All the authors are with the Department of Electrical Engineering and
Computer Science, University of California, Irvine, CA 92697, USA, e-mail:
(nafiulr@uci.edu)

Copyright (c) 2022 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Raw Data

Analyzed
Result Analyzed

Result

Low Energy

Maximum Performance

Minimum Memory

Cloud Computing Architecture

Solution

Cloud AI

Cloud

User
Constraints

Fog Analyzed
Result

Analyzed
Result

(Source: RxFunction)
Physician

Edge AI

Cloud

User

Fog

Edge Computing Architecture

Problems

v Increased Energy Consumption

v Increased Latency

v Vulnerable to Breach of Privacy

(Source: RxFunction)
Physician

Fig. 1. Shift from cloud computing to edge computing architecture

use of the phones reducing the battery life. Therefore, wearable
devices have gained much popularity for HAR applications
[9]. Moreover, the use of wearable devices enable remote
monitoring of patients suffering from critical diseases like
movement disorders in Parkinson’s disease [3]. However, most
of the solutions [10]–[18] using wearable devices follow a
fog/cloud computing approach as shown in Figure 1. The
collected data from wearable devices are sent over Bluetooth
to a mobile phone (fog) [19] or remote server (cloud) where all
the processing and classification takes place. The daily use of
these devices generates vast amounts of raw data, and sending
them over Bluetooth entails higher energy consumption [9].
Additionally, it also introduces latency, which is unsuitable
for real-time monitoring. Moreover, passing the raw data to
a mobile phone makes the users’ data vulnerable to privacy
breaches. Many researchers [20] followed a hierarchical ap-
proach where some simple activities are classified on the device
where complex ones are transmitted over to the fog/cloud.
Although this kind of solution saves computational energy to
some extent, it still suffers from latency and privacy issues.
Consequently, researchers shifted to an alternative architecture
to overcome these limitations, which is called ‘edge computing’
[21], where all the processing is done on the device itself [22],
[23]. Therefore, it reduces the energy consumption, latency, and
vulnerability of privacy breaches. Figure 1 illustrates the shift
from cloud to edge computing architecture.

The small form factor of wearable devices imposes three
constraints on the processing algorithms as shown in Figure
1. The algorithms should consume low-energy, execute with
minimum-memory, and provide maximum performance within
the previous two constraints. State-of-the-art works on HAR are
mostly intended for fog/cloud platform where they use complex

ar
X

iv
:2

10
2.

01
87

5v
3

 [
cs

.L
G

]
 3

 J
an

 2
02

2

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 2

TABLE I
DIFFERENCE BETWEEN BASELINE AND ADAPTIVE ARCHITECTURE FOR HAR DATASET

Architecture Output Percentage of Number of Correct Total FLOP Total exec. Total
used block used total segments total segments classification(%) count time (ms) energy (µJ)

Baseline Second 100 4740 97.60 35,905,500 152,011.80 2,316,627.60

Adaptive
First 97.13 4604 95.06 26,606,516 121,361.44 1,849,564.92

Second 2.87 136 2.87 1,030,200 4,361.52 66,468.64
Overall 100 4740 97.93 27,636,716 125,722.96 1,916,033.56

Theoretical total saving due to adaptive architecture = Baseline - Adaptive 8,268,784 26,288.84 400,594.04
Theoretical average saving per segment due to adaptive architecture 1,744.47 5.55 84.51

0% 25% 50% 75% 100%

16 (.33%) Segments
Correctly Classified

by First Output
Block Only

4490 (94.73%)
Segments Correctly
Classified by Both

Output Block

136 (2.87%)
Segments Correctly
Classified by Second
Output Block Only

98 (2.07%) Segments
Incorrectly

Classified by Both
Output Block

Fig. 2. Blockwise multi-output CNN architecture performance breakdown

machine learning [10]–[12] and deep learning algorithms [13]–
[18] to achieve high performance. They prioritize performance
over the other two constraints, hence are not wearable device
compatible. Machine learning algorithms perform classifica-
tion based on the extracted features from the data which is
often time and energy consuming, whereas, wearable device
solutions should be fast and energy-efficient. Deep learning
algorithms using Convolutional Neural Networks (CNN) [24],
[25] have an advantage in this regard as they automatically
extract features through convolution and do not require manual
feature engineering or extraction. However, such deep networks
require higher energy, memory, and execution time as they use a
large number of layers. Therefore, for wearable device solutions
CNN should be designed in such a way that satisfies the
energy and memory constraints while maintaining reasonable
performance. As CNN works in layers, it provides the flexibility
to design a network by adding or removing layers as necessary
in the training phase which is used to classify data during
the inference phase. However, the full architecture from the
training phase may not be needed at the inference phase as
many of the data may be correctly classified using only the
first few layers of the architecture. Therefore, if we use a
portion of the network as needed, it will help to avoid redundant
operations of the CNN architecture leading to energy efficiency
while maintaining the performance. This technique is called
adaptive (early-exit) or Conditional Deep Learning Network
(CDLN) architecture and was adopted by many researchers
[26], [27] for image classification or computer vision appli-
cations. The traditional adaptive architectures or CDLN makes
the early-exit decision based on the classification confidence
at each output (exit) layer. If the classification confidence of
an output layer for a particular class exceeds a threshold they
exit the network. However, such architectures may suffer from
performance loss than the baseline architecture when the earlier
layer misclassifies a segment with higher confidence which

85

88.75

92.5

96.25

100

Accuracy (%)

97.6
95.06

First Output Block (FOB) Second Output Block (Baseline)

0

137.5

275

412.5

550

Energy (𝜇J)

488.74
401.73

0

2125

4250

6375

8500

FLOP Count

7,575

5,779

0

9.25

18.5

27.75

37

Exec. Time (ms)

32.07
26.36

(a) (d)(b) (c)

Fig. 3. Blockwise statistics of multi-output CNN architecture

is demonstrated later in Table II. Therefore, implementing
adaptive architecture based on classification confidence does
not ensure similar performance as the baseline. This motivates
us to propose an adaptive architecture that uses an output block
predictor to make the early-exit decision which will ensure
similar or better performance as the baseline while providing
energy efficiency. Sections I-A and I-B provide a motivational
example along with the observation to support our proposed
adaptive architecture.

A. Motivational Example

To demonstrate the advantage of an adaptive architecture
we have conducted a small experiment. We have created a
multi-output CNN architecture with 2 convolution blocks and
2 output blocks. One output block is used after each of the
convolution blocks so that we can exit the architecture after any
convolution block at the inference phase. The first convolution
block consists of one convolution layer, one pooling layer,
and one batch normalization layer. The second convolution
block consists of one convolution and one batch normalization
layer only. The output blocks contain either one or two dense
layers which represents the output layer. The details of the
multi-output CNN architecture is provided in Section III-B1.
Throughout the rest of the paper, the first output block (FOB)
is used as the portion of the CNN model that uses the first
convolution block. The second output block is referred to as
the CNN architecture that uses two blocks of convolution
which is the baseline architecture. We performed a 5-fold cross-
validation of the multi-output CNN architecture with 4740
activity segments from the w-HAR dataset [28]. Figure 2
shows the Venn diagram for the multi-output CNN architecture
performance where 94.73% are correctly classified by both
the FOB and baseline architecture. Only 0.33% and 2.87% of
the segments are correctly classified by the FOB and baseline

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 3

architecture respectively. Rest 2.07% segments are incorrectly
classified by both of them. Figure 3a shows the blockwise
performance breakdown. We find that the accuracy of the
multi-output CNN architecture after the FOB, and baseline
architecture are 95.06%, and 97.60%, respectively. Figure 3b
shows the corresponding number of Floating Point Operations
(FLOP) necessary to classify one activity segment after the
FOB, and baseline architecture which are 5,799, and 7,575,
respectively. Figure 3c shows the amount of execution time
required to classify one activity segment on target wearable
platform after FOB, and baseline architecture which are 26.36
µJ, and 32.07 µJ, respectively. Figure 3d demonstrates the
amount of energy required to classify one activity segment on
target wearable platform after FOB, and baseline architecture
which are 401.73 µJ, and 488.74 µJ, respectively.

B. Observation and Problem Statement

Figure 3 demonstrates that the FLOP counts, execution
time, and energy increases as performance increases from the
first to second output block. To get a better performance,
one would choose the second output block as the baseline
architecture (as in our case) at the cost of increased energy.
However, Figure 2 shows that 94.73% (4490) segments that
are correctly classified by the baseline architecture are also
correctly classified by the FOB. Therefore, using the baseline
architecture for those segments would be redundant. If we can
avoid these redundant operations, we can easily save some
inference time and energy of the wearable devices. Therefore,
instead of using a fixed baseline architecture, it would be
energy-efficient if we could adaptively decide at the inference
phase up to which output block we should use. As shown in
Figure 2, if we could adaptively use the FOB to classify the
95.06% (4490+16=4506) segments and use the baseline only
for the 2.87% (136) segments, overall accuracy (97.93%) would
be greater than that of the baseline architecture (97.60%) at a
much lower energy consumption. Table I shows the theoret-
ical breakdown of the performance, FLOP counts, execution
time and energy of the adaptive architecture considering the
FOB is also used for the 2.07% (98) segments those are
misclassified by both output block. Table I demonstrates that
using adaptive architecture, theoretically we can save a total
of 8,268,784 FLOPs, 26,288.84 ms of execution time and
400,594.04 µJ of energy for 4740 segments. On average
for each segment, we can save 1,744.47 FLOPs, 5.55 ms of
execution time, and 84.51 µJ of energy using an adaptive
architecture compared to the baseline architecture. In summary,
an adaptive architecture would provide a much more energy-
efficient solution than a baseline architecture while providing
better or similar performance that is suitable for low-power
wearable edge devices. On the other hand, traditional adaptive
architectures or CDLN suffer from performance loss as the
earlier layer misclassifies a segment with higher confidence and
ends up exiting the network wrongly. As shown in Table II,
the performance of CDLN for various confidence thresholds at
FOB. The maximum performance of CDLN is achieved for the
confidence threshold of 0.9 which is still much less than our

TABLE II
PERFORMANCE OF CDLN FOR DIFFERENT FOB CONFIDENCE THRESHOLD

Method Weighted F1 Accuracy Precision Recall
CDLN (th = 0.5) 94.49 95.06 94.87 95.05
CDLN (th = 0.6) 94.71 95.25 95.09 95.24
CDLN (th = 0.7) 94.93 95.42 95.31 95.41
CDLN (th = 0.8) 95.01 95.48 95.37 95.47
CDLN (th = 0.9) 95.23 95.68 95.59 95.67
Baseline [Ours] 97.55 97.60 97.57 97.60
Adaptive [Ours] 97.64 97.70 97.69 97.70

baseline architecture. Therefore, our adaptive architecture uses
an output block predictor (instead of classification confidence)
to make the early-exit decision. Table II shows that our adaptive
architecture not only outperforms the traditional CDLN but also
the baseline architecture for all performance metrics. It shows
the efficacy of our adaptive architecture over traditional CDLN.

C. Novel Contributions

The novel contributions of this paper are as follows:
• A novel Adaptive CNN architecture for HAR (AHAR)

that uses an output block predictor to select a portion of
the baseline architecture as needed during the inference
phase. To the best of our knowledge, we are the first to
investigate such an adaptive CNN architecture for HAR
application.

• Evaluation of our methodology in classifying locomotion
activities from Opportunity [29] and w-HAR [28] dataset.
In comparison to the fog/cloud computing approaches on
the Opportunity dataset, both our baseline and adaptive
architecture shows a comparable weighted F1 score of
91.79%, 91.57% respectively. For the w-HAR dataset,
both our baseline and adaptive architecture outperforms
the state-of-art-work with a weighted F1 score of 97.55%
and 97.64%, respectively.

• Evaluation on real hardware shows that our baseline
architecture is significantly energy-efficient (422.38x less)
and memory-efficient (14.29x less) compared to the works
on Opportunity dataset. For w-HAR dataset, our baseline
architecture requires 2.04x less energy and 2.18x less
memory compared to the state-of-the-art work on wearable
devices.

• Experimental validation show that our adaptive archi-
tecture is 12.32% (Opportunity) and 11.14% (w-HAR)
energy-efficient than our baseline while providing similar
(Opportunity) or better (w-HAR) performance with no
significant memory overhead.

II. RELATED WORKS

A. Works on Human Activity Recognition

The main goal of our paper is to propose a wearable device
solution for classifying locomotion activities. Therefore, to
validate our proposed methodology, we have considered the
Opportunity [29] and w-HAR [28] datasets that has labeled
locomotion data from wearable devices. Accordingly, we will
discuss and compare against the works mentioned in Table III

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 4

TABLE III
SUMMARY OF RELATED WORKS

Work Data # of Classifier Adaptive Computing
used chan. used platform

[11] Opp. 117 RF (n=[40,95]) No Fog/Cloud
[16] Opp. 113 CNN, LSTM No Fog/Cloud
[17] Opp. 6 2-D CNN No Fog/Cloud
[18] Opp. 113 Deep CNN No Fog/Cloud
[22] w-HAR 4 SVM, DT, NN No Edge

Ours Both 7 DT, 1-D CNN Yes Edge
Opportunity (Opp.)

that have used either of these two datasets for classifying the
locomotion activities.

As shown in Table III, works [11], [16]–[18] have used
Opportunity dataset for classifying 4 locomotion activities -
Stand, Walk, Lie, Sit. In [11] the authors proposed an activity-
recognition algorithm based on the random forest classifier
by extracting 4086 features which are from both time and
frequency domain. They achieve a weighted F1 score of 90%.
Authors in [16] use deep CNN architecture composed of 4
convolutional and 2 LSTM recurrent layers and achieves a
weighted F1 score 93%. The work in [17] achieves an weighted
F1 score of 92.57% using a two dimensional CNN architecture.
Finally, the work in [18] used a CNN architecture that combines
temporal and spatial convolutions to extract appropriate features
to make it suitable for mobile devices. Their solution achieves
a weighted F1 score of 92.5%.

On the other hand, the work in [22] used w-HAR dataset
to propose a baseline and an activity-aware classifier for
classifying 8 locomotion activities in wearable devices. The
baseline and activity-aware classifier achieves an weighted
F1 score of 94.96% and 97.37% respectively. The baseline
architecture uses 120 statistical and frequency domain features
whereas the activity-aware classifier works in hierarchical order.
First, it classifies the activities as static (Lie down, Sit, Stand)
or dynamic (Jump, Walk, Stairs down, Stairs up, Transition)
by feeding 8 statistical features (mean, variance, minimum,
maximum) to a support vector machine (SVM) classifier. Then,
if the activity is classified as static, a decision tree is used to
classify it further with the same statistical features. Otherwise,
the other 112 frequency domain features (FFT) are extracted
and together 120 features are fed to a neural network (NN) to
classify dynamic activities. Table III shows a summary of the
related works.

B. Energy-efficient CNN Design Approaches

The deep architecture of CNN with hundreds of layers are
very computationally expensive and not suitable for energy
and memory constraint wearable devices. Therefore, different
approaches have been introduced in the literature to make
it energy and memory-efficient while maintaining similar or
competitive performance. Such approaches can be broadly
classified into two categories - 1) Software-based approach, 2)
Hardware-based approach.

The software-based approaches can be further classified into
2 phases - 1) Offline or training phase, 2) Online or inference

phase. The software-based approaches in the training phase can
be broadly divided into 3 types - a) Neural Architecture Search
(NAS), b) Network Pruning, c) Model Compression. NAS looks
for optimum network parameters from a search space using
reinforcement learning [30] or gradient-based methods [31] or
multi-objective bayesian optimization [32]–[34]. Network prun-
ing performs random pruning of a portion of the big network,
retraining it, and repeating the process until it achieves the
desired performance [35]. Finally, model compression involves
binarization [36] or quantization [37] of network weights to
reduce the model size to make it memory-efficient. Another
model compression technique is knowledge distillation where a
smaller network (student model) is taught, step by step, exactly
what to do using a bigger already trained network (teacher
model) [38]. Regardless of the methods used, the final model
from the training phase is considered as the baseline classifier
to be used at the inference phase.

Software-based approach designed for the inference phase
is called adaptive (early-exit) or Conditional Deep Learning
Network (CDLN) architecture [26], [27]. If the input data is
classified with enough confidence after a convolutional layer
then it considers that as the final class without further pro-
ceeding to the next layers of convolution. However, they may
suffer from performance loss if the earlier layer misclassifies a
segment with higher confidence and exits the network wrongly.

It is to note that, the software-based approaches from the
training and inference phase are independent of each other and
they can be applied together as well. For example, during the
inference phase, one can apply the early-exit mechanism to
a baseline architecture that has been finalized at the training
phase by using any of the NAS, network pruning, or model
compression techniques.

Hardware-based approaches usually focus on the design of
custom hardware such as accelerators which are specifically
designed for CNN [39], [40]. The main goal is to make the
inference phase faster thereby making it more energy-efficient.

In this paper, we mainly focus on the inference phase of
the software-based approach which allows early-exit. However,
unlike the related works [26], [27], we propose a novel adaptive
CNN architecture that uses an output block predictor (instead
of classification confidence) to make the early-exit decision
without any performance loss. To the best of our knowledge, we
are the first to investigate such an adaptive CNN architecture
for HAR application.

III. PROPOSED METHODOLOGY

A. Pre-processing Steps

1) Filtering: As shown in Figure 4, the pre-processing starts
with the denoising and smoothing. Raw data is filtered using a
moving average filter with a window of 8 samples to smoothen
it. Then the filtered data is segmented.

2) Segmentation: As the data from different datasets varies,
we apply different segmentation technique for two datasets used
in our paper. For the Opportunity [29] dataset, the segmentation
of filtered data is done using a sliding window of 100 samples
with 70% overlap. As the data is collected at a sampling rate of

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 5

Fig. 4. Overview of our proposed AHAR methodology

30 Hz, each segment of data captures 3.33 seconds of data. For
the w-HAR [28] dataset, we follow the dynamic segmentation
technique based on five-point derivative on the stretch sensor
data as mentioned in [22]. The details of the datasets are given
in Section IV-A.

3) Downsampling: Once segmented, we downsample each
segment to 32 samples. Downsampling helps in two ways - 1)
Lower number of samples in a segment requires less computa-
tion for the CNN architecture which makes the solution energy-
efficient. 2) Downsampling to a fixed number of samples also
helps when we perform dynamic segmentation as CNN requires
a fixed size for the input segments.

4) Calculating Statistical Features: Next, we extract simple
statistical features for each segment to be used by our output
block predictor to implement our adaptive CNN architecture.
The details of the output block predictor is given in Section
III-B2. We have used a minimum number of features to ensure
minimal overhead for our adaptive architecture. For the seg-
ments in the Opportunity dataset, we extract 4 features (mean
acceleration along X and Z axis, minimum and maximum value
of angular velocity along Z axis). For the segments in w-HAR
dataset, we extract 6 features (mean acceleration along X and
Z axis, minimum and maximum of gyroscope value along Z
axis, minimum and maximum of Stretch sensor value). These
extracted features will be used by our output block predictor
to decide which output block to be used at the inference phase
to classify a particular segment.

5) Z-score Normalization: Before passing the downsampled
segments to our multi-output CNN architecture, we normalize
each segment using Z-score normalization (Eq. 1) to reduce the
effect of any outlier samples in the corresponding segments.

Zi =
Xi − X̄

S
(1)

For a particular segment, Zi is Z-score value of the ith sample
Xi whereas, X̄ and S are the mean and standard deviation of
the samples in that segment.

B. Adaptive CNN Architecture

Our designed adaptive CNN architecture consists of two
parts - 1) Multi-output CNN architecture that classifies the
segments of activity, 2) Output block predictor that decides

which output block of the multi-output CNN architecture is to
be used at inference phase based on some statistical features
of each segment.

1) Multi-output CNN Architecture: As our target platform
is the low-power edge devices, we design the multi-output
CNN architecture considering the resource constraints of the
wearable devices. Our multi-output CNN architecture consists
of 2 convolution blocks and 2 output blocks. Each convolution
block is followed by one output block. Figure 5 shows the
architecture layout of our multi-output CNN architecture. The
first convolution block consists of one convolution layer which
is passed through Leaky-ReLU activation, one average-pooling
layer, and one batch normalization layer whereas the second
convolution block has one convolution layer which is passed
through Leaky-ReLU activation, and one batch normalization
layer. The first output block consists of one flattening layer,
and one dense layer which is passed through Softmax activation.
The second output block consists of one flattening layer, and
2 dense layers which are followed by the Softmax activation
as well. The details of the architecture parameters for each of
the layers are given in Table IV. As shown in Table IV, the
total number of parameters required to classify a segment after
first output block (FOB) and second output block (baseline
architecture) is 240+(31*nc), and 744+(17*nc), respectively
where nc is the number of output classes. For the Opportunity
dataset, we have 4 output classes and for the w-HAR dataset,
we have 8 output classes.

2) Output Block Predictor (OBP): The output block predic-
tor (OBP) is very crucial for our adaptive CNN architecture as
the performance of the adaptive architecture greatly depends on
the OBP. The better the performance of the OBP is, the better
the performance of our adaptive architecture will be. We use a
decision tree as our OBP to decide which output block to be
used at the inference phase based on the statistical features
for each segment. Therefore, instead of using the baseline
architecture (second output block) to classify all the segments,
we will adaptively use FOB or baseline based on the decision
of output block predictor. This will help to avoid unnecessary
computation up to the second output block of baseline archi-
tecture as some of the segments might be correctly classified
just after FOB. As the goal of our adaptive architecture is to
ensure energy efficiency compared to the baseline architecture,
the OBP should be designed in such a way that satisfies the

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 6

Fig. 5. Multi-output CNN architecture layout

TABLE IV
MULTI-OUTPUT CNN ARCHITECTURE DETAILS

Layer Kernel Stride Act. Output # of
name size size func. shape param.
Input - - - 32x7 0

Conv 1 5 3 LR 10x6 216
Pool 1 2 2 - 5x6 0
BN 1 - - - 5x6 24
Flat 1 - - - 30 0

Dense 1 - - SM nc 31*nc

Conv 2 4 1 LR 2x8 200
BN 2 - - - 2x8 32
Flat 2 - - - 16 0

Dense 2 - - LR 16 272
Dense 3 - - SM nc 17*nc

Number of parameters after FOB 240+(31*nc)
Number of parameters after baseline architecture 744+(17*nc)

Batch Normalization (BN), Leaky-ReLU (LR), Softmax (SM)

following constraint:

[N × Epred +N1 × E1 +N2 × E2] < [N × E2] (2)

Where Epred, E1, E2 is the amount of energy - for the OBP
and the FOB, and baseline architecture respectively. N1, and
N2 are the number of segments that are classified by the FOB,
and baseline architecture, respectively where, N1 + N2 = N .
Equations 2 ensures that the total amount of energy needed to
classify N segments using adaptive architecture should be less
than that of the baseline one.

IV. EXPERIMENTAL SETUP

A. Datasets

1) Opportunity Dataset [29]: Opportunity dataset contains
multimodal data from different wearable, object, and ambient
sensors to benchmark the works on human activity recognition.

The dataset contains a total of 6 hours of recording from
4 subjects. Each subject performs five sessions of Activities
of Daily Living (ADL) and a drill session. The dataset is
labeled for different gesture and locomotion activities. In our
work, we use the locomotion activities (Stand, Walk, Sit, Lie
down) as our goal is to propose a wearable device solution
that can classify the locomotion activities on the device itself.
Therefore, we use only 7 channels of data in total where 3
channels (accX, accY, accZ) are from accelerometer on the
upper right knee and the other 4 channels (AngVelBodyFrameX,
AngVelBodyFrameY, AngVelBodyFrameZ, Compass) are from
the Inertial Measurement Unit (IMU) on the right shoe. The
channels are selected as they are suitable for designing a
wearable device where the sensors are in close proximity while
collecting maximum information with minimum channels. All
the data are collected at 30 Hz from all the sensors.

2) w-HAR Dataset [28]: w-HAR dataset contains wearable
sensor data using IMU and stretch sensors from 22 subjects
while performing 7 different locomotion activities (Jump, Lie
down, Sit, Stairs down, Stairs up, Stand, Walk). Additionally,
they also labeled the Transition between the activities. The
dataset has 7 channels of data where 6 channels (Ax, Ay, Az,
Gx, Gy, Gz) are from the IMU on the right ankle and 1 channel
(Stretch value) is from the stretch sensor on the right knee. We
use all 7 channels from this dataset as it is targeted towards
wearable device design for locomotion activities. The IMU data
is collected at 250 Hz and the stretch sensor data is collected
at 25 Hz.

B. Training Multi-output CNN Classifier

As mentioned above, we train and test our multi-output CNN
classifier on two different datasets. To ensure a fair comparison
with the related works on locomotion activity recognition from
the Opportunity dataset, we use similar distribution of training,
testing and validation data as provided in the Opportunity
challenge. Therefore, for training data we use - ADL1, ADL2,
ADL3, ADL4, ADL5, DRILL data from subject 1; ADL1,
ADL2, DRILL data from subject 2 and 3. The ADL3 data from
subject 2 and 3 is used for validation. Finally, the classifier is
tested on the ADL4 and ADL5 data from the subject 2 and 3.
The classifier is trained for 100 epochs with Sparse Categorical
Cross Entropy as the loss function. Adam optimizer is used to
train the models with a learning rate of .007.

For the w-HAR dataset, we perform a stratified 5-fold cross-
validation as there is no specific distribution of train test data.
Therefore, 80% of the data is used for training, and the rest 20%
is used for testing. Moreover, 20% of the training data is used
for validation during training. For this dataset, the classifier is
trained for 300 epochs with Sparse Categorical Cross Entropy
as the loss function. Adam optimizer is used to train the models
with a learning rate of 0.01.

C. Training Output Block Predictor

To train the output block predictor (OBP), we first generate a
dataset based on the performance of the best multi-output CNN

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 7

TABLE V
DATA LABELING MECHANISM FOR OUTPUT BLOCK PREDICTOR

Cases FOB Baseline Assigned label
Both X X 1

FOB only X × 1
Baseline only × X 2

None × × 1

model for each of the Opportunity and w-HAR datasets. Then
for each of the segments in the dataset, we determine which
output block of the multi-output classifier can correctly classify
them. For an activity segment, there are 4 different possible
cases in our multi-output classifier as shown in Table V. If the
segment is correctly classified by both output blocks we would
want to use the FOB to save energy hence it is labeled as 1. If
it is correctly classified by either FOB or baseline architecture
only, it will be labeled as either 1 or 2 respectively. Finally, if
it is misclassified by both FOB and baseline architecture that
should also be labeled as 1 to avoid unnecessary computation
by second output block to classify that segment. Thus, the
activity segments of each dataset are labeled which is used
as the true label to train and test the OBP (decision tree).

And the input to the OBP is the statistical features for
each activity segment as calculated in Section III-A4. For the
Opportunity dataset, we use 4 features whereas for the w-
HAR dataset we use 6 features. To train and test the OBP
for Opportunity dataset, we use the same training and testing
segments as used in training and testing the multi-output CNN
architecture as mentioned in Section IV-B. For OBP of the w-
HAR dataset, we use stratified 5-fold cross-validation where
80% data is used for training and 20% data is used for testing.

D. Wearable Platform

Our proposed methodology is designed for low-power, low-
memory wearable edge devices. Therefore, we evaluate our
classifier on an ultra-low-power 32-bit microcontroller EFM32
Giant Gecko (EFM32GG-STK3700A) [41] which has an ARM
Cortex–M3 processor with a maximum clock rate of 48 MHz.
It has 128 KB of RAM, 1 MB of Flash.

V. EXPERIMENTAL RESULTS AND ANALYSIS

As the number of segments for different activities in both the
datasets are highly imbalanced, only classification accuracy is
not appropriate to measure performance. Therefore, to ensure
proper performance evaluation, we use precision, recall, and
weighted F1 score in addition to accuracy. The metrics used
for evaluation are given below:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

93

94.75

96.5

98.25

100

Opportunity w-HAR

99.32

97.47

99.3

97.44

99.34

97.51

99.3

97.44

Accuracy Precision Recall WF1

Fig. 6. Performance of Output Block Predictor (OBP)

WF1 =

nc∑
i

2 ∗ wi
Precisioni.Recalli
Precisioni +Recalli

(6)

Where TP, TN, FP, FN represents True Positives, True
Negatives, False Positives, and False Negatives respectively.
The activity classes are indexed by i, and wi=ni/N . ni is the
number of activity segments in each class, and N is the total
number of activity segments.

A. Performance Evaluation of Multi-output CNN Classifier

The performance for each output block of our multi-output
CNN classifier is given in Tables VII and VIII. As shown in
Table VII for the Opportunity dataset, the FOB has overall
accuracy, precision, recall, and weighted F1 score of 87.86%,
88.54%, 87.86% and 87.24% respectively, whereas; the base-
line architecture shows higher overall accuracy, precision, re-
call, and weighted F1 score of 91.79%, 91.80%, 91.79%, and
91.79% respectively. The confusion matrices of the output
blocks are presented in Table VI. It shows that the FOB
performs poorly in classifying lying activity (63), whereas
baseline architecture shows an improved performance (184).
Similarly, for the w-HAR dataset, the baseline architecture
achieves higher performance than the FOB. As shown in Table
VIII, the FOB achieves an overall accuracy, precision, recall,
and weighted F1 score of 95.06%, 94.87%, 95.06% and 94.45%
respectively, whereas; the baseline architecture achieves better
accuracy, precision, recall, and weighted F1 score of 97.60%,
97.57%, 97.60%, and 97.55% respectively. Table IX shows that
the FOB can classify only 114 transition segments correctly,
whereas the baseline architecture shows a better performance
while classifying 222 segments correctly as shown in Table X.

B. Performance Evaluation of Output Block Predictor

To ensure a better performance of our adaptive architecture,
our OBP has to perform better as well. As shown in Figure 6
for the Opportunity dataset, the OBP has an accuracy, precision,
recall, weighted F1 score of 97.44%, 97.51%, 97.44%, 97.47%
respectively. Table XI shows the corresponding confusion ma-
trix of the OBP in deciding which output block to use for the
3131 test segments of the Opportunity dataset. Similarly, for
the w-HAR dataset, the OBP achieves an accuracy, precision,

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 8

TABLE VI
CONFUSION MATRIX OF DIFFERENT OUTPUT BLOCKS ON OPPORTUNITY DATASET

True label FOB Baseline Adaptive
Stand Walk Lie Sit Stand Walk Lie Sit Stand Walk Lie Sit

Stand 1090 108 1 13 1103 98 1 10 1091 107 1 13
Walk 103 813 0 7 107 807 1 8 103 813 0 7
Lie 0 117 63 5 0 0 184 1 0 1 181 3
Sit 18 6 2 785 21 1 9 780 18 3 8 782

TABLE VII
PERFORMANCE COMPARISON OF RELATED WORKS ON OPPORTUNITY

DATASET FOR LOCOMOTION (4 ACTIVITIES)

Works Weighted F1 Accuracy Precision Recall
RF [11] 90.00 - - -

CNN,RNN [16] 93.00 - - -
2-D CNN [17] 92.57 - - -
1-D CNN [18] 92.50 - - -
FOB [Ours] 87.24 87.86 88.54 87.86

Baseline [Ours] 91.79 91.79 91.80 91.79
Adaptive [Ours] 91.57 91.57 91.57 91.57

TABLE VIII
PERFORMANCE COMPARISON OF RELATED WORKS ON W-HAR DATASET

FOR LOCOMOTION (8 ACTIVITIES)

Works Weighted F1 Accuracy Precision Recall
Baseline [22] 94.96 94.87 95.14 94.87

Activity-aware [22] 97.37 97.34 97.45 97.34
FOB [Ours] 94.45 95.06 94.87 95.06

Baseline [Ours] 97.55 97.60 97.57 97.60
Adaptive [Ours] 97.64 97.70 97.69 97.70

recall, weighted F1 score of 99.30%, 99.34%, 99.30%, and
99.32% respectively, as shown in Figure 6. The corresponding
confusion matrix for the w-HAR dataset is shown in Table XI.
Both confusion matrix shows that our OBP performs quite well
in deciding the required output block to classify the activity
segments.

C. Performance Evaluation of Adaptive Architecture

The performance of the adaptive architecture depends on the
decision of OBP. We use the FOB to classify the segments
that are predicted as 1 by the OBP. Similarly, the baseline
architecture is used to classify the segments that are predicted
as 2. The performance of adaptive architecture is determined by
the combined performance of the FOB and baseline architecture
in classifying the corresponding segments decided by the OBP.
As shown in Table VII for Opportunity dataset, our adaptive
architecture achieves 91.57% performance for all four metrics-
accuracy, precision, recall, and weighted F1 score. It shows that
our adaptive architecture achieves very close performance as
our baseline architecture while classifying most of the segments
(2968) using the FOB. Table VI shows how the adaptive
architecture takes the advantage of both the output blocks. For
example, 63 out of 185 lying activity segment is correctly clas-
sified by FOB whereas the baseline architecture can correctly
classify 184 of them. And our adaptive architecture can classify
181 of them which is close to the baseline one. Moreover, both

TABLE IX
CONFUSION MATRIX OF FIRST OUTPUT BLOCK ON W-HAR DATASET

True label First Output Block (FOB)
J L S SD SU ST W T

J 445 0 0 2 0 3 2 6
L 0 474 0 0 0 0 0 0
S 0 0 687 0 0 9 0 0

SD 0 0 0 93 0 0 6 0
SU 0 0 0 0 106 0 3 0
ST 1 1 5 0 0 604 6 3
W 3 2 0 3 2 6 1983 8
T 7 11 70 2 1 24 48 114

TABLE X
CONFUSION MATRIX OF BASELINE ARCHITECTURE ON W-HAR DATASET

True label Second Output Block (Baseline architecture)
J L S SD SU ST W T

J 450 0 0 1 0 1 2 4
L 0 474 0 0 0 0 0 0
S 0 0 688 0 0 8 0 0

SD 0 0 0 94 0 0 5 0
SU 0 0 0 1 105 0 3 0
ST 0 1 3 0 0 607 6 3
W 5 1 0 0 1 6 1986 8
T 4 3 14 0 0 16 18 222

our baseline and adaptive architecture outperforms the work
[11] and achieves a comparable performance with respect to
[16]–[18] as shown in Table VIII. It is to note that the works
[11], [16]–[18] are designed for fog/cloud platform whereas our
solution is designed for wearable platform.

For the w-HAR dataset, our adaptive architecture outper-
forms our baseline architecture with an accuracy, precision,
recall, and weighted F1 score of 97.70%, 97.69%, 97.70%,
97.64% respectively as shown in Table VIII. Moreover, both
our baseline and adaptive architecture outperforms both the
baseline and activity-aware classifier used in [22]. As shown in
Table XII, the adaptive architecture can classify 455 out of 458
jump activity whereas the FOB and baseline architecture can
classify 445 and 450 of them respectively. This is because there
were jump activities that were being classified either by FOB
or baseline architecture only. The adaptive architecture uses
the best of the two which results in improved performance.
Therefore, it proves that the adaptive architecture achieves
similar (Opportunity) or better performance (w-HAR) with
respect to our baseline architecture while using the FOB to
classify most of the segments.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 9

TABLE XI
CONFUSION MATRIX OF THE OUTPUT BLOCK PREDICTOR (OBP)

True label Opportunity w-HAR
FOB Baseline FOB Baseline

FOB 2932 44 4582 22
Baseline 36 119 11 125

TABLE XII
CONFUSION MATRIX OF ADAPTIVE ARCHITECTURE ON W-HAR DATASET

True label Adaptive architecture
J L S SD SU ST W T

J 455 0 0 0 0 1 1 1
L 0 474 0 0 0 0 0 0
S 0 0 688 0 0 8 0 0

SD 0 0 0 97 0 0 2 0
SU 0 0 0 0 106 0 3 0
ST 1 1 4 0 0 606 6 2
W 3 2 0 1 2 6 1986 7
T 3 3 17 0 0 17 18 219

D. Energy and Memory Evaluation on Real Hardware

We evaluate the energy and memory consumption of our
proposed architecture including the related works using the
EFM32 Giant Gecko microcontroller as mentioned in Section
IV-D. For the works [11], [22] that uses machine learning
approaches, the reported execution time, power, energy, and
RAM are for the feature extraction and classification together.
For the works using CNN, we evaluate the classification as
they automatically extract features during classification. The
execution time, power, and energy values presented in the Table
XIII and XIV are for one activity segment of data using the 14
MHz clock speed of the microcontroller.

As shown in Table XIII, for Opportunity dataset the works
[16]–[18] using deep CNN encountered RAM overflow and
could not be executed on the target hardware. It shows that
this kind of solution is only suitable for fog/cloud platforms
with higher computational resources. Although the work [11]
is designed for fog/cloud platform, it executes on the target
hardware with around 60KB of RAM. It takes around 11.72
seconds to extract features and classify an activity segment with
194.47 µJ of energy consumption. On the other hand, our FOB
executes with only 2.62 KB of RAM. It takes only 24.57 ms
with an energy consumption of 374.69 µJ to classify an activity
segment. Our baseline architecture requires higher resources
than the FOB as expected. As shown in Table XIII, the OBP
takes only 1.09 KB of RAM to execute. It takes only 1.61 ms
to extract 4 statistical features from each segment and classify
it with an energy consumption of 24.56 µJ. It shows that the
OBP is very lightweight and does not add much overhead to
implement our adaptive architecture. To evaluate the execution
time and energy of our adaptive architecture, we calculate the
average time and energy to classify 3131 test segments either
by FOB or baseline architecture based on the decision of our
OBP as presented in the confusion matrix of Table XI. Table
XIII shows that the adaptive architecture takes only 26.48 ms
with an energy consumption of 403.71 µJ which is less than
our baseline architecture while providing similar performance.

TABLE XIII
ENERGY AND MEMORY CONSUMPTION EVALUATION OF THE WORKS ON

OPPORTUNITY DATASET

Works Classifier RAM Exe. Avg. pwr. Energy
level (Bytes) time (ms) (mW) (µJ)

[11] - 60932 11722.14 16.59 194470.31
[16] - Not compatible: RAM overflowed
[17] - Not compatible: RAM overflowed
[18] - Not compatible: RAM overflowed

[Ours]

OBP 1120 1.61 15.26 24.56
FOB 2688 24.57 15.25 374.69

Baseline 4264 30.25 15.22 460.41
Adaptive 4264 26.48 15.25 403.71

TABLE XIV
ENERGY AND MEMORY CONSUMPTION EVALUATION OF THE WORKS ON

W-HAR DATASET

Works Classifier RAM Exe. Avg. pwr. Energy
level (Bytes) time (ms) (mW) (µJ)

[22]

Baseline 9988 63.85 15.30 976.91
Static 2164 31.93 15.31 488.84

Dynamic 9988 85.55 15.30 1308.92
A. aware 9988 65.07 15.3 995.77

[Ours]

OBP 1128 1.96 15.23 29.86
FOB 3216 26.36 15.24 401.73

Baseline 4568 32.07 15.24 488.74
Adaptive 4568 28.50 15.24 434.29

For the w-HAR dataset, first, we evaluate the baseline clas-
sifier of the work in [22]. As shown in Table XIV, the baseline
classifier takes 63.85 ms to classify a segment with 976.91 µJ
of energy. It takes 9.75 KB of RAM to execute. The baseline
classifier in [22] involves extracting 120 statistical features
from the activity segment and then classify it with a neural
network. The activity-aware classifier uses different classifier
for static - Sit (S), Lie (L), Stand (ST) and dynamic - Stairs
up (SU), Stairs down (SD), Jump (J), Walk (W), Transition (T)
activities. For classifying a static activity, it takes 31.93 ms
with 488.84 µJ energy. For the dynamic activities, it consumes
higher energy of 1308.92 µJ with a longer execution time
of 85.55 ms. The execution time and energy for the activity-
aware classifier reported in Table XIV is the average time and
energy to classify 4740 segments either by the static or dynamic
classifier. Out of 4740 segments, the SVM classifier classifies
1810 segments as static and 2930 segments as dynamic as
mentioned in [22]. Therefore, the total time and energy for
classifying 1810 segments by the static classifier and 2930
segments by dynamic classifier is calculated and summed up.
Next, the summation is averaged by 4740 which gives us the
average time of 65.07 ms and energy of 995.77 µJ required by
the activity-aware classifier. The activity-aware classifier also
requires the 9.75 KB of RAM same as the baseline. This RAM
is required for calculating the 120 features which is done in
both baseline and activity-aware classifier.

On the other hand, our FOB executes with only 3.14 KB of
RAM and takes only 26.36 ms with an energy consumption
of 401.73 µJ to classify an activity segment of the w-HAR
dataset. As expected, our baseline architecture requires higher
resources - 4.46 KB of RAM and 32.07 ms to classify a

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 10

85

87.5

90

92.5

95

WF1(%)

91.79
92.592.5793

CNN, RNN [16] 2-D CNN [17] 1-D CNN [18] Baseline [Ours]

100

10000

1000000

of Parameters

812

412,356
845,924997,316 1052.86x Less
1228.22x Less

507.83x L
ess

Fig. 7. Benchmarking of the deep CNN works on Opportunity dataset

85

87

89

91

93

WF1(%)

91.5791.79

87.24

90

RF [11] FOB [Ours] Baseline [Ours] Adaptive [Ours]

100

10000

1000000

Energy (𝜇J)

403.71460.41374.69

194,470.31

1000

10000

100000

RAM (B)

4,2644,264
2,688

60,932

422.38x
 Less

12.32%
 Less

14.29x
 Less

Same

Fig. 8. Benchmarking on Opportunity dataset

segment with 488.74 µJ of energy. The OBP takes only 1.10
KB of RAM to execute which takes only 1.96 ms to extract
6 statistical features from each segment and classify it with
an energy consumption of 29.86 µJ. Therefore, the OBP takes
very minimum resources which ensures minimal overhead to
implement our adaptive architecture. To evaluate the execution
time and energy of our adaptive architecture, we follow the
same procedure as the Opportunity dataset and do it for 4740
segments of the w-HAR dataset. As shown in Table XI, the
OBP decides 4593 and 147 segments to be classified by the
FOB and the baseline architecture respectively. Therefore, the
summation of total time and energy taken by the OBP, FOB,
and baseline architecture is averaged by 4740 which gives us
the average time and energy to classify a particular segment by
our adaptive architecture. Table XIV shows that the adaptive
architecture takes only 28.50 ms with an energy consumption
of 434.29 µJ which is less than our baseline architecture while
providing better performance.

E. Final Benchmarking

Finally, we make an overall comparison among the per-
formance of different works along with the computational
resources they require. As the deep CNN works [16]–[18] on
Opportunity dataset are designed for the fog/cloud platform
and do not fit into our target wearable platform, we compare
their performance with the network parameter size to give
a perspective. As shown in Figure 7, they achieve higher
weighted F1 score of 93%, 92.57%, and 92.50%, whereas;
our baseline architecture achieves a comparable weighted F1
score of 91.79% with 1228.22x, 1052.86x, and 507.83x less
parameter size compared to [16]–[18] respectively. Besides,
our baseline architecture outperforms the work [11] while
consuming 422.38x less energy and 14.29x less RAM as
shown in Figure 8. Moreover, our adaptive architecture achieves

85

88.75

92.5

96.25

100

WF1(%)

97.6497.55

94.45

97.37

94.96

Baseline [22] Activity-aware [22] FOB [Ours] Baseline [Ours] Adaptive [Ours]

0

275

550

825

1100

Energy (𝜇J)

434.29
488.74

401.73

995.77976.91

0

2675

5350

8025

10700

RAM (B)

4,5684,568

3,216

9,9889,988

2.04x
 Less 11.14%

 Less

2.18x
 Less Same

Fig. 9. Benchmarking on w-HAR dataset

similar performance as the baseline while being 12.32% energy-
efficient.

As shown in Figure 9 for the w-HAR dataset, our baseline ar-
chitecture outperforms both the baseline (94.96%) and activity-
aware (97.37%) classifier in [22] with a weighted F1 score
of 97.55% while being 2.04x and 2.18x energy and memory-
efficient compared to the activity-aware classifier. Moreover,
our adaptive architecture outperforms our baseline while being
11.14% energy-efficient.

It is to note that, the 12.32% or 11.14% energy efficiency
achieved by our adaptive architecture over the baseline one
is only for 2 layers of convolution. The energy efficiency
would be even more if we had deeper CNN architecture with
multiple convolution layers. Therefore, our future plan is to
investigate the potential of our adaptive CNN architecture for
other applications that require multiple convolution layers.

VI. CONCLUSION

This paper proposes an Adaptive CNN for HAR (AHAR)
to develop an energy-efficient solution for low-power edge
devices. AHAR uses a novel adaptive architecture that decides
which portion of the baseline architecture to be used during the
inference phase based on the simple statistical features of the
activity segments. Our proposed methodology is validated for
classifying locomotion activities from Opportunity and w-HAR
datasets. Compared to the fog/cloud computing approaches that
use the Opportunity dataset, both our baseline and adaptive
architecture shows a comparable weighted F1 score of 91.79%,
91.57% respectively. For the w-HAR dataset, both our baseline
and adaptive architecture outperforms the state-of-art-work with
a weighted F1 score of 97.55% and 97.64% respectively. Eval-
uation on real hardware shows that our baseline architecture
is significantly energy-efficient (422.38x less) and memory-
efficient (14.29x less) compared to the works on the Opportu-
nity dataset. For the w-HAR dataset, our baseline architecture
requires 2.04x less energy and 2.18x less memory compared to
the state-of-the-art work. Moreover, experimental results show
that our adaptive architecture is 12.32% (Opportunity) and
11.14% (w-HAR) energy-efficient than our baseline while pro-
viding similar (Opportunity) or better (w-HAR) performance
with no significant memory overhead. To the best of our
knowledge, we are the first to propose such adaptive CNN
architecture for HAR in wearable devices that provides energy
efficiency while maintaining performance.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2022 11

VII. ACKNOWLEDGEMENT

This work is partially supported by the Graduate Assistance
in Areas of National Need (GAANN) award from the United
States Department of Education. This paper reflects the views
of the authors, not the funding agency.

REFERENCES

[1] J. Bort-Roig, N. D. Gilson, A. Puig-Ribera, R. S. Contreras, and S. G.
Trost, “Measuring and influencing physical activity with smartphone
technology: a systematic review,” Sports medicine, vol. 44, no. 5, pp.
671–686, 2014.

[2] A. K. Bourke and G. M. Lyons, “A threshold-based fall-detection algo-
rithm using a bi-axial gyroscope sensor,” Medical engineering & physics,
vol. 30, no. 1, pp. 84–90, 2008.

[3] W. Maetzler, J. Klucken, and M. Horne, “A clinical view on the
development of technology-based tools in managing parkinson’s disease,”
Movement Disorders, vol. 31, no. 9, pp. 1263–1271, 2016.

[4] M. Dautta, A. Jimenez, K. K. H. Dia, N. Rashid, M. A. A. Faruque, and
P. Tseng, “Wireless qi-powered, multinodal and multisensory body area
network for mobile health,” IEEE Internet of Things Journal, pp. 1–1,
2020.

[5] M. Abdel-Basset, H. Hawash, V. Chang, R. K. Chakrabortty, and
M. Ryan, “Deep learning for heterogeneous human activity recognition
in complex iot applications,” IEEE Internet of Things Journal, pp. 1–1,
2020.

[6] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga, “A
survey of online activity recognition using mobile phones,” Sensors,
vol. 15, no. 1, pp. 2059–2085, 2015.

[7] O. D. Lara and M. A. Labrador, “A mobile platform for real-time
human activity recognition,” in 2012 IEEE consumer communications
and networking conference (CCNC). IEEE, 2012, pp. 667–671.

[8] L. M. S. Morillo, L. Gonzalez-Abril, J. A. O. Ramirez, D. la Concepcion,
and M. A. Alvarez, “Low energy physical activity recognition system on
smartphones,” Sensors, vol. 15, no. 3, pp. 5163–5196, 2015.

[9] O. D. Lara and M. A. Labrador, “A survey on human activity recognition
using wearable sensors,” IEEE communications surveys & tutorials,
vol. 15, no. 3, pp. 1192–1209, 2012.

[10] A. M. Khan, Y.-K. Lee, S. Y. Lee, and T.-S. Kim, “A triaxial
accelerometer-based physical-activity recognition via augmented-signal
features and a hierarchical recognizer,” IEEE transactions on information
technology in biomedicine, vol. 14, no. 5, pp. 1166–1172, 2010.

[11] J. Zhu, R. San-Segundo, and J. M. Pardo, “Feature extraction for robust
physical activity recognition,” Human-centric Computing and Information
Sciences, vol. 7, no. 1, p. 16, 2017.

[12] E. Fullerton, B. Heller, and M. Munoz-Organero, “Recognizing human
activity in free-living using multiple body-worn accelerometers,” IEEE
Sensors Journal, vol. 17, no. 16, pp. 5290–5297, 2017.

[13] W. Qi, H. Su, C. Yang, G. Ferrigno, E. De Momi, and A. Aliverti, “A
fast and robust deep convolutional neural networks for complex human
activity recognition using smartphone,” Sensors, vol. 19, no. 17, p. 3731,
2019.

[14] W. Jiang and Z. Yin, “Human activity recognition using wearable sensors
by deep convolutional neural networks,” in Proceedings of the 23rd ACM
international conference on Multimedia, 2015, pp. 1307–1310.

[15] C. A. Ronao and S.-B. Cho, “Human activity recognition with smart-
phone sensors using deep learning neural networks,” Expert systems with
applications, vol. 59, pp. 235–244, 2016.

[16] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[17] E. Sansano, R. Montoliu, and Ó. Belmonte Fernández, “A study of
deep neural networks for human activity recognition,” Computational
Intelligence, 2020.

[18] E. Kim, “Interpretable and accurate convolutional neural networks for
human activity recognition,” IEEE Transactions on Industrial Informatics,
2020.

[19] N. Rashid, M. Dautta, P. Tseng, and M. A. Al Faruque, “Hear: Fog-
enabled energy-aware online human eating activity recognition,” IEEE
Internet of Things Journal, vol. 8, no. 2, pp. 860–868, 2021.

[20] F. Samie, L. Bauer, and J. Henkel, “Hierarchical classification for
constrained iot devices: A case study on human activity recognition,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8287–8295, 2020.

[21] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the
internet of things with edge computing,” IEEE network, vol. 32, no. 1,
pp. 96–101, 2018.

[22] G. Bhat, Y. Tuncel, S. An, H. G. Lee, and U. Y. Ogras, “An ultra-low
energy human activity recognition accelerator for wearable health appli-
cations,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 5s, pp. 1–22, 2019.

[23] N. Rashid and M. A. Al Faruque, “Energy-efficient real-time myocardial
infarction detection on wearable devices,” in 2020 42nd Annual Interna-
tional Conference of the IEEE Engineering in Medicine Biology Society
(EMBC), 2020, pp. 4648–4651.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[25] N. Rashid, L. Chen, M. Dautta, A. Jimenez, P. Tseng, and M. A.
Al Faruque, “Feature augmented hybrid cnn for stress recognition using
wrist-based photoplethysmography sensor,” in 2021 43rd Annual Inter-
national Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). IEEE, 2021, pp. 2374–2377.

[26] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for energy-
efficient and enhanced pattern recognition,” in 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
475–480.

[27] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why should
we add early exits to neural networks?” arXiv preprint arXiv:2004.12814,
2020.

[28] G. Bhat, N. Tran, H. Shill, and U. Y. Ogras, “w-har: An activity
recognition dataset and framework using low-power wearable devices,”
Sensors, vol. 20, no. 18, p. 5356, 2020.

[29] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster,
P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha et al., “Collecting complex
activity datasets in highly rich networked sensor environments,” in 2010
Seventh international conference on networked sensing systems (INSS).
IEEE, 2010, pp. 233–240.

[30] Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu, “On neural architec-
ture search for resource-constrained hardware platforms,” arXiv preprint
arXiv:1911.00105, 2019.

[31] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[32] M. Odema, N. Rashid, and M. A. Al Faruque, “Energy-aware design
methodology for myocardial infarction detection on low-power wearable
devices,” in 2021 26th Asia and South Pacific Design Automation Con-
ference (ASP-DAC). IEEE, 2021, pp. 621–626.

[33] M. Odema, N. Rashid, and M. A. A. Faruque, “Eexnas: Early-exit
neural architecture search solutions for low-power wearable devices,” in
2021 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), 2021, pp. 1–6.

[34] M. Odema, N. Rashid, B. U. Demirel, and M. A. A. Faruque, “Lens:
Layer distribution enabled neural architecture search in edge-cloud hier-
archies,” in 2021 58th ACM/IEEE Design Automation Conference (DAC),
2021.

[35] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train
one network and specialize it for efficient deployment,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://arxiv.org/pdf/1908.09791.pdf

[36] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830,
2016.

[37] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2019, pp. 8612–
8620.

[38] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[39] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[40] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

[41] S. Labs. (2021) Efm32™ giant gecko 32-bit microcontroller. [Online].
Available: https://www.silabs.com/mcu/32-bit/efm32-giant-gecko

https://arxiv.org/pdf/1908.09791.pdf
https://www.silabs.com/mcu/32-bit/efm32-giant-gecko

	I Introduction
	I-A Motivational Example
	I-B Observation and Problem Statement
	I-C Novel Contributions

	II Related Works
	II-A Works on Human Activity Recognition
	II-B Energy-efficient CNN Design Approaches

	III Proposed Methodology
	III-A Pre-processing Steps
	III-A1 Filtering
	III-A2 Segmentation
	III-A3 Downsampling
	III-A4 Calculating Statistical Features
	III-A5 Z-score Normalization

	III-B Adaptive CNN Architecture
	III-B1 Multi-output CNN Architecture
	III-B2 Output Block Predictor (OBP)

	IV Experimental Setup
	IV-A Datasets
	IV-A1 Opportunity Dataset OPPORTUNITY
	IV-A2 w-HAR Dataset wHAR

	IV-B Training Multi-output CNN Classifier
	IV-C Training Output Block Predictor
	IV-D Wearable Platform

	V Experimental Results and Analysis
	V-A Performance Evaluation of Multi-output CNN Classifier
	V-B Performance Evaluation of Output Block Predictor
	V-C Performance Evaluation of Adaptive Architecture
	V-D Energy and Memory Evaluation on Real Hardware
	V-E Final Benchmarking

	VI Conclusion
	VII Acknowledgement
	References

