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Abstract 

The focused drug repurposing of known approved drugs (such as lopinavir/ritonavir) 

has been reported failed for curing SARS-CoV-2 infected patients. It is urgent to 

generate new chemical entities against this virus. As a key enzyme in the life-cycle of 

coronavirus, the 3C-like main protease (3CLpro or Mpro) is the most attractive for 

antiviral drug design. Based on a recently solved structure (PDB ID: 6LU7), we 

developed a novel advanced deep Q-learning network with the fragment-based drug 

design (ADQN-FBDD) for generating potential lead compounds targeting SARS-CoV-

2 3CLpro. We obtained a series of derivatives from those lead compounds by our 

structure-based optimization policy (SBOP). All the 47 lead compounds directly from 

our AI-model and related derivatives based on SBOP are accessible in our molecular 

library at https://github.com/tbwxmu/2019-nCov. These compounds can be used as 

potential candidates for researchers in their development of drugs against SARS-CoV-

2. 

 

Introduction 

 The emerging coronavirus SARS-CoV-2 has caused an outbreak of coronavirus 
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disease (COVID-19) worldwide.1 As of March 2, 2020, more than 90,000 people have 

been infected by SARS-CoV-2 and more than 3000 people have been reported dead 

according to Johns Hopkins Coronavirus map tracker.2 The numbers of infection and 

death are still increasing. To face the considerable threat of SARS-CoV-2, it is urgent 

to develop new inhibitors or drugs against this deadly virus. Unfortunately, since the 

outbreak of severe acute respiratory syndrome (SARS) eighteen years ago, there has 

been no approved treatment against the SARS coronavirus (SARS-CoV),3 which is 

similar to SARS-CoV-2. Repurposing potential drugs such as lopinavir and ritonavir 

also failed to SARS-CoV-2 injected patients.4 Structure-based antiviral drug design 

with a new artificial intelligence algorithm may represent a more helpful approach to 

get the SARS-CoV-2 targeted inhibitors or drugs. Thanks to the prompt efforts of many 

researchers, we have several pieces of important information about this vital virus 

genome and protein structures. We now know that the non-structural protein 5 (Nsp5) 

is the main protease (Mpro) of SARS-CoV-2 and it is a cysteine protease, which also 

been called "3C-like protease" (3CLpro). Moreover, we know that the 3D structure of 

3CLpro is very similar to SARS-CoV with a sequence identity of >96% and 3D structure 

superposition RMSDCα of 0.44 Å as shown in Figures S1 and S2. 

 

3CLpro has been reported as an attractive target for developing anti-coronaviral drugs: 

1) this protease is highly conserved in both sequences and 3D structures;5 2) 3CLpro is 

a key enzyme for related virus (including SARS and SARS-CoV-2) replication; 3) it 

only exists in the virus, not in humans. Developing specific antiviral drugs targeting 

3CLpro of the specific virus has shown significant success; for example, both approved 

drugs lopinavir and ritonavir can completely occupy the substrate-binding site of 3CLpro 

to break down the replication of human immunodeficiency virus (HIV). However, due 

to the large difference between HIV and SARS-CoV-2 3CLpro, lopinavir and ritonavir 

were validated ineffective for inhibiting SARS-Cov-2.4 On the other hand, the 

substrate-binding site of 3CLpro is almost the same between the SARS-CoV-2 and 

SARS as Figure S3 presents. The developed potential inhibitors and drug-design 

experience targeting SARS-3CLpro may also be applicable to SARS-CoV-2. For 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.03.972133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.972133


 

 

example, the recently solved structure of SARS-CoV-2 3CLpro (PDB ID: 6LU7) 

indicates that the developed inhibitor N3,6 which is a covalent inhibitor derived from 

non-covalent inhibitors against SARS can also bind SARS-CoV-2 3CLpro with a similar 

binding conformation (Figure S4).  

 

All the above available information paved a way to design new targeted covalent 

inhibitors (TCI)7 against SARS-CoV-2. A successful TCI against 3CLpro must first be 

able to fit in the binding site of 3CLpro with an appropriate pose that keeps its reactive 

groups close enough to the Cys145, which then undergoes a chemical step (nucleophilic 

attack by Cys145) leading to the formation of a stable covalent bond as presented in the 

scheme below: 

 

TCIs usually have a longer target residence time than the relative non-covalent 

inhibitors in theory given the following: 1) For the inhibition, k1 must be larger than k2, 

and thus the non-covalent binding is determined by the equilibrium constant k1/k2; 2) 

TCIs have the chemical reaction step with the target, where usually k3 >> k4; and 3) for 

TCIs, the binding process is controlled by k1 k3/(k2 k4), which is bigger than k1/k2 in 

non-covalent inhibitors. In some extreme cases k4 = 0, and hence, these irreversible 

inhibitors covalently bind the target until the target disappears.7, 8
   

 

Considering the inhibitors of SARS 3CLpro may be also bio-active to SARS-CoV-2, we 

have created a molecular library including all the reported SARS-3CLpro inhibitors (284 

molecules)9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and we will also add new 

validated molecular structures into this library with our research progresses. To date, 

there are no clinically approved vaccines or drugs specifically targeting SARS-CoV-2. 

Thus, with the hope to discover novel candidate drugs targeting SARS-CoV-2, we 

combine artificial intelligence (AI) with the structure-based drug design (SBDD) to 

accelerate generating potential lead compounds and design TCIs.   
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Figure 1. Flowchart for our SARS-CoV-2 3CLpro lead compounds development. 

 

AI, especially deep learning, has been applied in predicting molecular properties30, 31, 

32, 33 and designing novel molecules34. Unlike earlier deep-learning molecular design 

by adding single atom one at a time34, 35, our approach explores new molecules by 

adding a meaningful molecular fragment one by one, which is not only computationally 

more efficient but also chemically more reasonable. To make our AI model work well, 

the first step is to prepare the molecular fragment library as shown in Figure 1. We used 

our collected SARS-CoV 3CLpro inhibitors (284 molecules) as the initial molecule 

database targeting SARS-CoV-2 3CLpro. Then, we split this set of molecules into 

fragments with a molecule weight no more than 200 daltons. Both of the collected 

inhibitors and the fragments are supplied in https://github.com/tbwxmu/2019-nCov. 

Then we applied an advanced deep Q-learning network with the fragment-based drug 

design (ADQN-FBDD) for generating potential lead compounds. Noted, if researchers 

have enough experience and internal lead compounds or biased fragments, they can 

inject all such information into ADQN-FBDD by manually adding the lead compounds 

and biased fragments to the corresponding files. By using the same fragments directly 

from existing bioactivate molecules, our ADQN-FBDD agent can easily access the 

potential chemical space focused on 3CLpro of SARS-CoV-2.  
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After ADQN-FBDD automatically generated novel compounds targeting this new virus 

3CLpro, we obtained a covalent lead compound library with 4,922 unique valid 

structures. In total, 47 of these compounds were selected with high scores from our AI-

model’s reward function. Then these molecules were further evaluated by docking and 

covalent docking studies. The lead compound #46 with a high covalent docking score 

attracts our attention, which also has a low difference between non-covalent and 

covalent docking pose among the 47 lead compounds. After carefully checking the lead 

#46’s interaction mode with 3CLpro, we believe there is still much space to optimize 

lead it. Then we designed a series of derivatives from compound #46 based on our 

chemical biology knowledge and the structure-based optimization policy. All the 

generated molecular structures are published in our code library 

https://github.com/tbwxmu/2019-nCov. We encourage researchers who are interested 

in finding a potential treatment for this viral infection to synthesize and evaluate some 

of these molecules for treating COVID-19. 

 

Results 

Figure 2. A: Framework of ADQN-FBDD. B: Examples for explaining the fragment-based actions. C: 

The solid lines represent taken actions including the addition/deletion of a different fragment or no 

modification during each step. The dashed lines represent actions that our reinforcement learning agent 

considered but did not make. After the first three actions to S1, S2, and S3, the fourth action to S4 was an 

exploratory action, meaning that it was taken even though another sibling action, the one colored in red 
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dashed line leading to 𝑠"∗, was ranked higher. Exploratory action does not result in any learning, but each 

of our other actions does, resulting in updates as suggested by the purple curved arrow in which estimated 

values are moved up the tree from later nodes to earlier ones. 

 

Integrating the double dueling deep Q learning with fixed q-targets and prioritized 

experience replay enables our agent ADQN stable and efficient during learning from 

the chemical environment. Combining the state-of-the-art AI algorithm with the idea of 

FBDD as presented in Figure 2, ADQN-FBDD is flexible and efficient to access the 

focused chemical space targeting the SARS-CoV-2 3CLpro. Based on the configurations 

targeting the SARS-CoV-2 3CLpro, ADQN-FBDD generated a potential lead library 

containing 4,922 unique molecular structures (Supplementary dataset in 

https://github.com/tbwxmu/2019-nCov). To narrow our focus to a smaller set of 

molecules for analysis, we elaborately defined filter rules (QED>0.1 and DRL-

reward>=0.6) and the detailed information of the rules can be found in the Methods 

section. And then 47 unique molecules (Table S1) were kept for the next non-covalent 

docking and covalent-docking evaluation. These 47 virtual leads display suitable 3D-

complexity with common characteristics of peptidomimetics and protein-protein 

interaction (PPI) inhibitors. They are mainly ranked by covalent-docking scores, 

considering covalent-docking also contains the scores of non-covalent docking.36 And 

we also paid attention on the RMSD difference between the covalent binding and non-

covalent binding poses based on all heavy atoms. Finally, we selected the lead molecule 

#46 as displayed in Figure 3 with both a good covalent docking score and a small 

RMSD value (Table S1). We further optimized it and get a series of derivatives based 

on the SBDD approach.  

 

Molecule #46 was ranked number 1 based on the covalent docking score and its 

interaction model with the binding site was carefully checked as shown in Figure 3. 

Although compound #46 has the best covalent docking score, it has the alerting group 

aldehyde. Considering there is still much space for compound #46 to fill in the S1' 

subsite and α-ketoamides may be good to fit the oxyanion hole (Figure 4A) of 3CLpro,3 
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we replaced the aldehyde by formamide and also replaced the 1,4 Michael acceptors by 

alpha-ketoamides. Thus, we optimized compound #46 to compound 46-14-1 (Figure 4 

A and B). 

Figure 3. Lead compound #46 generated by AI. A: Non-covalent molecular docking model of 

SARS-CoV-2 3CLpro (brown surface) with the bound lead compound #46 (magenta sticks). The 

triazole ring binds to the S1 subsite of the catalytic active center, the covalent fragment of α, β-

unsaturated aldehyde binds to S1' subsite, β-lactam ring binds to S2 subsite and 5,7-dihydroxy 

chromone binds to S3 subsite. B: A two-dimensional (2D) view of non-bonding interaction of lead 

compound #46 in complex with 3CL protease based on non-covalent docking. The triazole ring, i.e., 

keto-amide, phenolic hydroxy forms hydrogen bond (H-bond) with His163, Glu166, and Thr190, 

respectively. C: Covalent docking model between compound #46 (green sticks) and 3CL protease 

(brown surface) exhibits a similar docking model as non-covalent docking. D: A 2D view of ligand 
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interaction between compound #46 and protease under covalent docking. The triazole ring forms an 

H-bond with His163; the fragment of α,β-unsaturated aldehyde forms a covalent bond with Cys145, 

i.e., the key residue in the catalytic center of the protease, resulting in covalent inhibition; aldehyde 

carbonyl forms an H-bond with His41; and besides, the hydroxyl of chromone at position 7 forms 

an H-bond with Thr190.  

 

The non-bonding interaction between compound 46-14-1 and SARS-CoV-2 3CLpro is 

mainly hydrogen bond. The carbonyl group of covalent scaffold α-ketoamide forms H-

bonds with Leu141 and Gly143 as a hydrogen acceptor or a hydrogen donor. The 

hydrogen on the nitrogen atom of the triazole ring forms an H-bond with Glu166, while 

Glu166 also forms an H-bond with the carbonyl group on the main chain. The oxygen 

in the β-lactam ring forms an H-bond with His41. In order to enhance the polarity of 

the compounds, sulfonic groups were introduced to replace the ketone carbonyl groups 

on the main chain and sulfonamides 46-14-2 were obtained. The covalent docking 

model of compound 46-14-2 with SARS-CoV-2 3CLpro is shown in Figure 4 C and D. 

 

In order to make the compound 46-14-2 fit the active pocket with a higher affinity, we 

added a carbon atom to the sulfonic acid group of the original molecule, extending the 

carbon chain to increase the flexibility of the molecule, and obtained another optimized 

compound 46-14-3. The mode of covalent docking with SARS-CoV-2 3CLpro is shown 

in Figure 5. Due to the introduction of carbon atoms and the enhancement of molecular 

flexibility, the β-lactam ring can be inserted deeper into the S2 pocket and the other 

fragments of the compound can better adapt to the S1, S1' and S3 subsites. The α-

carbonyl carbon on the α-ketoamide of compound 46-14-3 forms a covalent bond with 

the key residue Cys145 on the protease, but the main non-bond interaction is still 

hydrogen bond (indicated by a yellow dash). The triazole ring mainly forms H-bonds 

with Phe140 and Glu166 residues in the S1 pocket; α-ketoamide covalent binding 

fragment mainly forms H-bonds with key amino acid residues Cys145, Gly143 and 

Ser144 in the S1' subsite, which forms an oxyanion hole in the red circle in Figure 9; 

the β-lactam side chain mainly forms H-bonds with residues Tyr54 and AsS187 in the 
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S2 pocket; the chromone scaffold mainly forms H-bonds with key residues Thr190 and 

Gln192 in the S3 pocket. In addition, the oxygen on the sulfonyl group of the main 

chain forms an H-bond with Glu166 in the S1 pocket. 

 

 

Figure 4. The covalent binding models of compound 46-14-1 and 46-14-2 in complex with the 

SARS-CoV-2 3CLpro. A: The covalent docking model between compound 46-14-1 (green sticks) 

with 3CL protease (yellow-orange surface). The oxyanion hole formed by the segment of α-

ketoamides is shown in the red circle. B: The detailed view of the interactions between the 

compound 46-14-1 and 3CLpro. C: The covalent docking model between compound 46-14-2 with 

3CL protease. The molecule 46-14-2 is shown as green sticks and the protein is shown as brown 

surface. D: The 2D view of the interactions between the compound 46-14-1 and 3CLpro. 
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Figure 5. The covalent binding model of Compound 46-14-3 in SARS-CoV-2 3CLpro. A: Surface 

representation of SARS-CoV-2 3CLpro (brown) complexed with 46-14-3 (green sticks). B: A stereo 

view showing 43-14-3 bound into the substrate-binding pocket of the SARS-CoV-2 3CLpro at 4 Å. 

The molecule 43-14-3 is shown as green sticks. Residues forming the H-bond are shown as yellow 

sticks. And the yellow dashes represent the H-bonds, as well as the oxyanion hole, is in the red circle 

region. 

 

 

Figure 6. Structures of optimized compounds. 
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The representatives were selected (46-14-1, 46-14-2 and 46-14-3 as Figure 6 displays), 

which may be further evaluated by molecular dynamics simulation to get the binding 

free energy and by quantum chemical calculation to get the reaction energy barrier. 

Meanwhile, 46-14-1, 46-14-2 and 46-14-3 are chosen as our candidates for chemical 

synthesis and anti-SARS-CoV-2 activity testing, which is ongoing.  

 

 

Discussions 

Computational approaches are particularly important for emerging diseases given the 

urgent need to provide timely solutions. In this work, our robust and efficient 

computational method and pipeline for designing compounds can provide useful drug 

candidates for treating SARS-CoV-2 infections. For more information about our AI 

model generated leads and SBDD optimized derivatives, please go to the library 

https://github.com/tbwxmu/2019-nCov. These candidates or their variants have a good 

chance to produce valid leads of anti-COVID-19 drugs. It is understood that the 

computational design requires experimental validations. While we are exploring 

experimental validations ourselves, we like to release these candidates promptly for 

other researchers to accelerate the development of anti-COVID-19 drugs given the 

emergency of seeking treatments for the disease.  

 

Comparing with other deep RL methods, ADQN-FBDD has several highlights: 1) It 

directly modifies and generate molecular structures without format conversion 

problems while some other tools such as Insilico Medicine’s GENTRL 

(https://insilico.com) may generate invalid SMILES output. 2) Most of the generative 

models require pre-training on a specific dataset and then produce the molecules with 

high similarities to a given training set. For example, the best molecule from Insilico 

Medicine for their target DDR1 was actually very similar to the kinase inhibitor Iclusig 

(ponatinib) on the market.37 ADQN-FBDD does not need pre-training at all and has a 

capacity to generate novel molecules. 3) The process of generating molecules is very 
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efficient and effective as ADQN-FBBD is molecular fragment-based growing with the 

knowledge of chemical reactions, while other models are all atom-based with no rules 

of chemical reactions at all34, 38, 39. 4) ADQN-FBDD is highly flexible and user-friendly 

for the medicinal chemists, who can easily inject their drug discovery experience into 

the reward function to guide the novel molecule generation. Our ADQN-FBDD and 

related pipeline can be used not only for designing anti-COVID-19 drugs but also other 

structure-based drug discoveries, especially for emerging infetious diseases that require 

treatments timely. 

 

 

Methods 

Markov Decision Process for Molecule Generation 

Intuitively, the problem of chemical structure graph generation is formulated as learning 

a reinforced agent, which performs discrete actions of chemical reaction-based 

fragment addition or removal in a chemistry-aware Markov Decision Process (MDP). 

Formally, the components of MDP) include M = {S, A, P, R, γ}, where each term is 

defined as follows: 

 

𝑆 = {𝑆'}  denotes the state space containing all possible intermediate and final 

generated molecular graphs. Each 𝑠' is a tuple of (s, t). s stands for a valid molecule 

structure and t is the time step. For the initial state 𝑠), the structure can be represented 

as a specific core as Figure 2C indicates or randomly chosen from the prepared 

fragment library at time t = 0. We also limit the maximum number of time steps T in 

our molecule fragment based MDP, which defines the set of terminal states as {𝑠' |t=T} 

containing all the states with the number of steps reaching the maximum allowed value 

T. 

 

Ac={At} denotes a set of actions that describe the modification made on the current 

molecule structure at each time step t. Here, each action can be classified into three 
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categories: fragment addition, fragment deletion, and no modification. 

 

P =p(st+1 |st … s0) =p(st+1|st, at) is the basic assumption in MDP. The state transition 

probability, which specifies the next possible state given the current state and action at 

time step t. Here, we define the state transition to be deterministic. For example, as 

Figure 2C indicates S0 to S1, by adding a 1H-1,2,3-triazol-4-yl fragment on S0, the next 

state S1 will be the new structure of added 1H-1,2,3-triazol-4-yl with a probability of 1.  

 

R is the reward function that specifies the reward after reaching state 𝑆',	𝛾𝜖(0,1] is the 

discount factor and typically γ = 0.9 in our study. In our framework, the state always 

has a valid and complete chemical structure at each step as Figure 2C indicates. A 

reward is given not just at the terminal states, but at each step. Both intermediate 

rewards and final rewards are used to guide the behavior of the reinforcement learning 

(RL) agent. So, there is no delayed or sparse reward issue as many other reinforced 

frameworks suffered.40, 41 Furthermore, to ensure that the last state is rewarded the most, 

we use γT–t to discount the value of the rewards at state 𝑠'. In addition, our reward 

function can directly integrate the experience of medicinal chemists. For example, 

given a core of interest, medicinal chemists may add biased fragments of their interests 

and their input can be used to design a reward function that gives high reward signal 

values to biased fragments so that ADQN-FBDD may have a better chance to generate 

the desired structures. 

 

Chemical Environment Design 

In our RL framework, the chemical environment receives action at from the agent and 

emits scalar reward rt and state s'3  to the agent as Figure 2A shows. Note that the 

definition of the environment state is different from the general approach that the 

environment state is only the environment’s private representation invisible to the agent. 

We define the state of the chemical environment s'3  as the intermediate generated 

molecule structure at time step t, which is fully observable by the RL agent. Simply, 
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the environment’s state s'3  is the agent’s state 𝑠'45.   For the task of molecule 

generation, the environment incorporates rules of chemistry. In our study, chemistry 

rules are not only the basic chemical valency, but also the rules about adding and 

removing the fragments derived from known inhibitors based on chemical reactions. 

The detail information of 45 defined chemical reaction rules is presented in Table S2. 

 

Agent Design 

As indicated in Figure 2A, the basic model of our ADQN-FBDD is an advanced Q-

network. The goal of molecule generation is equally to fit a Q function Q(st, at) to make 

the agent choose the action at at state st that maximizes the future expected γ-discounted 

cumulative rewards with policy π. Mathematically, given the agent’s policy π, the value 

of the state-action pair Qπ(st , at) and the value of state Vπ(st ) are defined as, respectively:  

𝑄8	(𝑠' , 𝑎'	) = 𝐸	<=~8(?=) @AγCDE · R(𝑠E, 	𝑎E)
C

EH'
I

= 𝐸	<=~8(?=)JR(𝑠' , 	𝑎') + γ · 𝐸	<=LM~8(?=LM)(𝑄8	(𝑠'45, 𝑎'45	)N										(1) 
𝑉8	(𝑠') = 𝐸<=~8(?=)[𝑄8	(𝑠' , 𝑎'	)]																																																																																										(2) 

where 𝐸	<=~8(?=) is the expectation within policy π on state st taken at and R(𝑠E, 	𝑎E) 
denotes the reward at step n. Value function Qπ(st , at) measures the value of taking 

action at on state st. Vπ(st ) is the value of being at state st means how good to be in this 

state. Obviously, Vπ(st ) can be seen as a part of Qπ(st , at). Then, the rest part from Qπ(st , 

at) can be defined as the so-called advantage function Aπ(st , at)42 as: 

A8	(𝑠' , 𝑎'	) = 𝑄8	(𝑠' , 𝑎'	) − 𝑉8	(𝑠')																																																																																		(3) 
 

Intuitively, the advantage value shows how advantageous selecting the action is relative 

to the others at the same given state. Then Eqn. (2) can be rewritten according to Eqn. 

(4): 
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𝑉8	(𝑠') = 𝐸<=~8(?=)[𝑉8	(𝑠') +	A8	(𝑠' , 𝑎'	)] = 𝑉8	(𝑠') + 𝐸<=~8(?=)[	A8	(𝑠' , 𝑎'	)]       (4) 

Obviously, 𝐸<=~8(?=)[	A8	(𝑠' , 𝑎'	)] = 0. To avoid the issue of identifiability, we deduct 

the mean value from the prediction and the Q-function of dueling DQN can be defined 

as: 

𝑄8	(𝑠' , 𝑎'; 	𝛩, 𝛼, 𝛽	)=𝑉8	(𝑠'; 	𝛩, 𝛽) + (A8	(𝑠' , 𝑎'; 	𝛩, 𝛼	) − 5
|Z[|∑ A8	(𝑠' , 𝑎'3 ; 	𝛩, 𝛼	))<=] 							(5) 

 

 
Figure 7. Architecture of used advance deep Q-learning network (ADQN). TD is the temporal 

difference error. 

 

Note that 𝛩, 𝛼	and	𝛽 come from the dueling Q-network as Figure 7 indicates. |Ac| is 

the size of action space and 𝑎'3𝜖𝐴𝑐. To make our RL agent more robust to be more 

stable learning and to handle the problem of the overestimation of Q-values, double Q-

network43 and fixed Q-targets44 are also incorporated: 

𝑇𝐷 = 𝑄8	(𝑠' , 𝑎'; 	𝛩, 𝛼, 𝛽	) − [R(𝑠' , 	𝑎') + γ ·
𝑄'<e8 f𝑠'45, 𝑎𝑟𝑔𝑚𝑎𝑥<=LM𝑄8	(𝑠'45, 𝑎'45; 	𝛩, 𝛼, 𝛽	); 	𝛩′, 𝛼′, 𝛽′	l] (6) 

where, TD is the temporal-difference; 𝑄'<e8  is another dueling DQN network as the 

target network and its parameters (𝛩′, 𝛼′, 𝛽′) keep fixed and copy from the dueling DQN 
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𝑄8	every m steps (m=20 as we used). To update the parameters (𝛩, 𝛼, 𝛽) from the 

dueling DQN as Figure 7 displays, we can train our RL agent by minimizing the loss 

function: 

𝑙(𝛩, 𝛼, 𝛽) = 𝐸[𝑓o(𝑇𝐷)]																																																																																																																									(7)		 
where E is the expectation. As the L2 loss has a disadvantage of the tendency to be 

dominated by outliers, we use the Huber loss as the loss function 𝑓o: 
𝑓o(𝑥) = q|𝑥| − 0.5					𝑖𝑓|𝑥| ≥ 10.5 ∗ 𝑥u							𝑖𝑓|𝑥| < 1                                                (8) 

 

Prioritized Experience Replay 

Prioritized Experience Replay (PER)45 is a technique to enable reinforcement learning 

agents remember and reuse experience from the past, and to replay important transitions 

more frequently. PER is very useful for replaying some less frequent experiences. Here, 

we use the same code of “Prioritized Replay Buffer” from open AI’s gym with version 

0.15.4.46 Finally, our RL agent is the double dueling deep Q learning with fixed q-

targets and prioritized experience replay. 

 

Fragment Library Design 

The fragment-based approach to drug discovery (FBDD) has been established as an 

efficient tool in the search for new drugs.47 The idea of FBDD is that proper 

optimization of each unique interaction in the binding site and subsequent incorporation 

into a single molecular entity should produce a compound with a binding affinity that 

is the sum of the individual interactions. However, the widely used fragment libraries 

only consider the diversity of fragments, such as the ZINC fragment database. They 

have a very low probability to exhibit the desired bioactivity for a given protein.   
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To combine the idea of FBDD with our RL framework, we first collected and built a 

SARS-CoV-2 3CLpro inhibitor dataset containing 284 reported molecules. Then using 

the improved BRICS algorithm48 to split those molecules to get the fragment library 

target on SARS-CoV-2 3CLpro as the flowchart displayed in Figure 1’s yellow box. An 

elaborate filtering cascade accompanied by manual inspection and the rules can be 

changed based on the needs in different studies. Our fragment library contains 316 

fragments with molecular weight <200 daltons, the minimum number non-hydrogen 

atom >1 and the maximum ≤ 25. The fragments directly from the existing inhibitors 

based on the chemical retrosynthetic rules are always true substructures and may have 

a high quality of bioactivity targeting 3CLpro. It is worth noting that the quality of the 

designed fragment library directly affects the behavior of the chemical environment of 

ADQN-FBDD. 

 

Figure 8. Structures of the chosen cores 

 

Core Selection  

Studies have identified various scaffolds or core structures that have privileged 

characteristics in terms of the activity of a certain target.49, 50, 51 Core structure selection 

is the starting point in a scaffold-based drug discovery. Choosing or designing a proper 
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initial scaffold is never trivial, and medicinal chemists may need enough experience to 

get such a skill. Luckily, there are serval reported privileged core structures targeting 

SARS Mpro.3, 52 Here, we chose 4-aminopent-2-enal and 3-amino-2-oxobutanal as the 

starting cores as Figure 8 displays, because both cores have been validated to generate 

covalent bonds with the Cys145 of SARS or SARS-CoV-2 3CLpro. 

 

Reward Design 

Most reported RL methods using the complete structure information of a positive drug 

or inhibitor as the template,38, 39 and they design a reward function for the RL agent to 

learn to regenerate the template structure or generate highly similar structures to the 

template. This way may be useful in testing the performance of RL methods but not 

suitable in a real-world drug design because no one knows the complete structural 

information of the novel molecule. A more practical approach is to learn the structure 

features of existing drugs or inhibitors to local, focused chemical space for a specific 

protein target. Instead of simply putting attention on the diversity of molecule structure, 

we explore the possibility of generating novel molecules based on the existing 

knowledge. Here, we designed a deep reinforcement learning reward (DRL-reward) 

function that consists of the final property score, containing specific fragments (CSF) 

score and pharmacophore score as: 

𝑅(𝑠) = 𝑤yez · 𝑓yez(𝑠)+	𝑤{zE · 𝑓{zE(𝑠)+	𝑤y|< · 𝑓y|<(𝑠)             (9) 

𝑓yez(𝑠) = } 1		𝑖𝑓	𝑄𝐸𝐷(𝑆) > 0.1	0		𝑒𝑙𝑠𝑒																											       (10) 

where 𝑤yez  represents weight for the quantitative estimate of drug-likeness (QED) 

property and its default value is 0.1. 𝑓yez stands for the QED. QED values can range 

from 0 (all properties are unfavourable) to 1 (all properties are favourable), which are 

calculated by eight molecular properties.53 The score function 𝑓{?�	 of containing 

specific fragments (csf) is: 
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𝑓���(𝑠) = q𝐹{?�(𝑠)		𝑖𝑓	𝐹���(𝑠) > 0.9	𝑒𝑙𝑠𝑒	0																												0			𝑒𝑙𝑠𝑒																																																																											       (11) 

𝐹���(𝑠) = E��=���=�=��	                         (12) 

 

Figure 9. Binding site of SARS-CoV-2 3CLpro. A: The subsites that complement the substrate-binding 

pocket are shown as surface, which are assigned as S1 (green), S1' (red), S2 (magenta), and S3(cyan). B: 

The key residues of the binding site are displayed by green, red, magenta and cyan lines (S1, S1', S2 and 

S3). The pictures of the binding site are generated using PyMol ((http://www.pymol.org/). 

 

The binding site of SARS-CoV-2 3CLpro (Figure 9) is commonly divided into the 

catalytic activity center (His41 and Cys145, specified as S1') and several subsites, 

defined as S1 (His163, Glu166, Phe140, Leu141 and Asn142), S1' (His41, Cys145, 

Gly143 and Ser144), S2 (Tyr54, Asp187, His41, Arg188, His164 and Met49), and S3 

(Thr190, Gln192, Glu166, Met165, Leu167 and Gln189). Each subsite may have its 

own favorable binding fragment. When generated structures (including the 

intermediates) containing those favorable fragments, 𝑓{?�  is equivalent to give an 

additional reward to our RL agent. 𝑤{zE  controls the contribution of the biased 

fragment to the reward signal and the default value is 0.6. 𝑛�<'{| stands for how many 

biased fragments have been matched in one generated structure. 𝑁'z'<o	is the number 

of biased fragments defined based on our knowledge learned from related work. 𝑓y|< 
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represents the score function of pharmacophores, which mainly depends on the ligand-

protein interaction mode from the crystal structure (PDB ID: 6LU7): 

𝑓y|<(𝑠) = }1					𝑖𝑓	𝑚𝑎𝑡𝑐ℎ𝑠	𝑡ℎ𝑒	𝑑𝑒𝑓𝑖𝑛𝑒𝑑	𝑝ℎ𝑎𝑟𝑚𝑎𝑐𝑜𝑝ℎ𝑜𝑟𝑒𝑠												0			𝑒𝑙𝑠𝑒																																																																																						(13) 

The pharmacophores plot was added in Figure S5. 𝑤y|< controls the contribution of 

the pharmacophore score to the reward and the default value is 0.4. 

 

Molecular Generation and Selection 

As discussed in the above reward design part, our reward function considers the 

molecular descriptor thresholds (QED>0.1), the defined pharmacophores and biased 

fragments. In total, 4,922 unique valid structures were automatically generated and all 

matched the defined rules by using ADQN-FBDD without any pre-training as many 

other methods need.35, 40, 41, 54, 55 Next, All the molecules with high deep reinforcement 

learning scores (DRL score: R(S)>0.6) were kept (47 molecules). Then, these 47 unique 

molecules were prepared to generate at least 1 conformation with the local energy 

minimization using the OPLS-2005 force field by the “ligand prepare” module of 

Schrödinger 2015 software. The 47 unique molecules generated a total of 163 3D 

conformations before docking into the substrate-binding site of SARS-CoV-2 3CLpro. 

Considering the balance between precision and calculation time, the stand-precision 

(SP) Glide56 was firstly used to predict the possible non-covalent binding poses in this 

binding site and the binding site grid centered on the original ligand N357 with 20 Å 

buffer dimensions. Following this non-covalent docking, we also calculated the 

covalent docking poses and scores for those 47 molecules. We reordered the docking 

results mainly based on the covalent docking score and the RMSD value from covalent 

docking pose to non-covalent (Table S1).  

 

Supplementary information 
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Supplementary dataset and additional information of this paper can be found at 

https://github.com/tbwxmu/2019-nCov. 

 

Acknowledgements 

We would like to thank Prof. Dongqing Wei’s group and the PCL lab for their generous 

support of high-performance computing resources. BT’s work was funded by the 

program of China Scholarships Council No. 201806310017. DX’s effort was supported 

by the US National Institutes of Health grant R35-GM126985. 

 

Authors’ contributions 

BT and DX designed the study. BT developed the AI-aided methods and wrote the 

manuscript. All authors contributed to the interpretation of results. All authors reviewed 

and edited the manuscript. All authors read and approved the final manuscript. 

 

Data and Code availability 

The code for the ADQN-FBDD and related data in this paper will be available at 

https://github.com/tbwxmu/2019-nCov upon acceptance of this paper for journal 

publication. 

 

Competing interests 

The authors declare that they have no competing interests.  

 

 

 

References: 

 
1. Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus–The species and its 

viruses, a statement of the Coronavirus Study Group. BioRxiv,  (2020). 

 

2. Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE ， available from ：

https://forum.truckersmp.com/index.php?/topic/93003-coronavirus-covid-19-global-cases-by-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.03.972133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.972133


 

 

johns-hopkins-csse/&tab=comments. 

 

3. Zhang L, et al. Alpha-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus 

replication Structure-based design, synthesis, and activity assessment. Journal of Medicinal 

Chemistry,  (2020). 

 

4. 卢洪洲 陈凌席刘李李尚王沈. 洛匹那韦利托那韦和阿比多尔用于治疗新型冠状病毒肺

炎的有效性研究. 中华传染病杂志 38,  (2020). 

 

5. Liu X, Wang X-J. Potential inhibitors for 2019-nCoV coronavirus M protease from clinically 

approved medicines. bioRxiv,  (2020). 

 

6. Yang H, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS 

biology 3,  (2005). 

 

7. Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nature reviews 

Drug discovery 10, 307-317 (2011). 

 

8. Tuley A, Fast W. The taxonomy of covalent inhibitors. Biochemistry 57, 3326-3337 (2018). 

 

9. Jain RP, et al. Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of 

severe acute respiratory syndrome 3CLpro. Journal of medicinal chemistry 47, 6113-6116 

(2004). 

 

10. Wu C-Y, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. 

Proceedings of the National Academy of Sciences 101, 10012-10017 (2004). 

 

11. Ghosh AK, et al. Design and synthesis of peptidomimetic severe acute respiratory syndrome 

chymotrypsin-like protease inhibitors. Journal of medicinal chemistry 48, 6767-6771 (2005). 

 

12. Shie J-J, et al. Discovery of potent anilide inhibitors against the severe acute respiratory 

syndrome 3CL protease. Journal of medicinal chemistry 48, 4469-4473 (2005). 

 

13. Shie J-J, et al. Inhibition of the severe acute respiratory syndrome 3CL protease by 

peptidomimetic α, β-unsaturated esters. Bioorganic & medicinal chemistry 13, 5240-5252 

(2005). 

 

14. Al‐Gharabli SI, et al. An efficient method for the synthesis of peptide aldehyde libraries 

employed in the discovery of reversible SARS coronavirus main protease (SARS‐CoV Mpro) 

inhibitors. ChemBioChem 7, 1048-1055 (2006). 

 

15. Lu I-L, et al. Structure-based drug design and structural biology study of novel nonpeptide 

inhibitors of severe acute respiratory syndrome coronavirus main protease. Journal of medicinal 

chemistry 49, 5154-5161 (2006). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.03.972133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.972133


 

 

 

16. Tsai K-C, et al. Discovery of a novel family of SARS-CoV protease inhibitors by virtual 

screening and 3D-QSAR studies. Journal of medicinal chemistry 49, 3485-3495 (2006). 

 

17. Wu C-Y, et al. Stable benzotriazole esters as mechanism-based inactivators of the severe acute 

respiratory syndrome 3CL protease. Chemistry & biology 13, 261-268 (2006). 

 

18. Akaji K, Konno H, Onozuka M, Makino A, Saito H, Nosaka K. Evaluation of peptide-aldehyde 

inhibitors using R188I mutant of SARS 3CL protease as a proteolysis-resistant mutant. 

Bioorganic & medicinal chemistry 16, 9400-9408 (2008). 

 

19. Ghosh AK, et al. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl 

ester-derived SARS-CoV 3CLpro inhibitors. Bioorganic & medicinal chemistry letters 18, 

5684-5688 (2008). 

 

20. Shao Y-M, et al. Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of 

SARS-CoV 3CL protease. Bioorganic & medicinal chemistry 16, 4652-4660 (2008). 

 

21. Kuo C-J, et al. Individual and common inhibitors of coronavirus and picornavirus main 

proteases. FEBS letters 583, 549-555 (2009). 

 

22. Ramajayam R, Tan K-P, Liu H-G, Liang P-H. Synthesis and evaluation of pyrazolone 

compounds as SARS-coronavirus 3C-like protease inhibitors. Bioorganic & medicinal 

chemistry 18, 7849-7854 (2010). 

 

23. Ryu YB, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. 

Bioorganic & medicinal chemistry 18, 7940-7947 (2010). 

 

24. Akaji K, et al. Structure-based design, synthesis, and evaluation of peptide-mimetic SARS 3CL 

protease inhibitors. Journal of medicinal chemistry 54, 7962-7973 (2011). 

 

25. Jacobs J, et al. Discovery, synthesis, and structure-based optimization of a series of N-(tert-

butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small 

molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL 

protease. Journal of medicinal chemistry 56, 534-546 (2013). 

 

26. Ren Z, et al. The newly emerged SARS-like coronavirus HCoV-EMC also has an" Achilles' 

heel": current effective inhibitor targeting a 3C-like protease. Protein & cell 4, 248 (2013). 

 

27. Thanigaimalai P, et al. Development of potent dipeptide-type SARS-CoV 3CL protease 

inhibitors with novel P3 scaffolds: Design, synthesis, biological evaluation, and docking studies. 

European journal of medicinal chemistry 68, 372-384 (2013). 

 

28. Turlington M, et al. Discovery of N-(benzo [1, 2, 3] triazol-1-yl)-N-(benzyl) acetamido) phenyl) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.03.972133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.972133


 

 

carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro 

inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit 

binding. Bioorganic & medicinal chemistry letters 23, 6172-6177 (2013). 

 

29. Kumar V, et al. Identification and evaluation of potent Middle East respiratory syndrome 

coronavirus (MERS-CoV) 3CLPro inhibitors. Antiviral research 141, 101-106 (2017). 

 

30. Tang B, Kramer ST, Fang M, Qiu Y, Wu Z, Xu D. A self-attention based message passing neural 

network for predicting molecular lipophilicity and aqueous solubility. Journal of 

Cheminformatics 12, 1-9 (2020). 

 

31. Liu K, et al. Chemi-Net: a molecular graph convolutional network for accurate drug property 

prediction. International journal of molecular sciences 20, 3389 (2019). 

 

32. Wang X, Li Z, Jiang M, Wang S, Zhang S, Wei Z. Molecule Property Prediction Based on Spatial 

Graph Embedding. Journal of chemical information and modeling 59, 3817-3828 (2019). 

 

33. Wu Z, et al. MoleculeNet: a benchmark for molecular machine learning. Chemical science 9, 

513-530 (2018). 

 

34. Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph 

generation. arXiv preprint arXiv:180204364,  (2018). 

 

35. You J, Liu B, Ying Z, Pande V, Leskovec J. Graph convolutional policy network for goal-

directed molecular graph generation. In: Advances in neural information processing systems 

(2018). 

 

36. Zhu K, et al. Docking Covalent Inhibitors: A Parameter Free Approach To Pose Prediction and 

Scoring. Journal of Chemical Information & Modeling 54, 1932-1940 (2014). 

 

37. Walters WP, Murcko M. Assessing the impact of generative AI on medicinal chemistry. Nature 

Biotechnology, 1-3 (2020). 

 

38. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep 

reinforcement learning. Journal of cheminformatics 9, 48 (2017). 

 

39. Zhou Z, Kearnes S, Li L, Zare RN, Riley P. Optimization of molecules via deep reinforcement 

learning. Scientific reports 9, 1-10 (2019). 

 

40. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Science 

advances 4, eaap7885 (2018). 

 

41. Zhavoronkov A, et al. Deep learning enables rapid identification of potent DDR1 kinase 

inhibitors. Nature biotechnology 37, 1038-1040 (2019). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.03.972133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.972133


 

 

 

42. Wang Z, Schaul T, Hessel M, Van Hasselt H, Lanctot M, De Freitas N. Dueling network 

architectures for deep reinforcement learning. arXiv preprint arXiv:151106581,  (2015). 

 

43. Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: 

Thirtieth AAAI conference on artificial intelligence (2016). 

 

44. Simonini T. Improvements in Deep Q Learning: Dueling Double DQN, Prioritized Experience 

Replay, and fixed Q-targets. Červenec (2018). 

 

45. Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. arXiv preprint 

arXiv:151105952,  (2015). 

 

46. Brockman G, et al. Openai gym. arXiv preprint arXiv:160601540,  (2016). 

 

47. Speck-Planche A. Recent advances in fragment-based computational drug design: tackling 

simultaneous targets/biological effects. Future Science (2018). 

 

48. Degen J, Wegscheid‐Gerlach C, Zaliani A, Rarey M. On the Art of Compiling and Using'Drug‐

Like'Chemical Fragment Spaces. ChemMedChem: Chemistry Enabling Drug Discovery 3, 

1503-1507 (2008). 

 

49. Varin T, Schuffenhauer A, Ertl P, Renner S. Mining for bioactive scaffolds with scaffold 

networks: improved compound set enrichment from primary screening data. Journal of 

chemical information and modeling 51, 1528-1538 (2011). 

 

50. Schuffenhauer A, Ertl P, Roggo S, Wetzel S, Koch MA, Waldmann H. The scaffold tree− 

visualization of the scaffold universe by hierarchical scaffold classification. Journal of chemical 

information and modeling 47, 47-58 (2007). 

 

51. Reis J, Gaspar A, Milhazes N, Borges F. Chromone as a Privileged Scaffold in Drug Discovery: 

Recent Advances: Miniperspective. Journal of medicinal chemistry 60, 7941-7957 (2017). 

 

52. Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung S-H. An Overview of Severe Acute 

Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics 

and Small Molecule Chemotherapy. Journal of Medicinal Chemistry,  (2016). 

 

53. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty 

of drugs. Nature chemistry 4, 90 (2012). 

 

54. Elton DC, Boukouvalas Z, Fuge MD, Chung PW. Deep learning for molecular design—a review 

of the state of the art. Molecular Systems Design & Engineering 4, 828-849 (2019). 

 

55. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.03.972133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.972133


 

 

computer-assisted drug discovery. Chemical reviews 119, 10520-10594 (2019). 

 

56. Friesner RA, et al. Extra precision glide: Docking and scoring incorporating a model of 

hydrophobic enclosure for protein− ligand complexes. Journal of medicinal chemistry 49, 6177-

6196 (2006). 

 

57. Jin Z, et al. Structure-based drug design, virtual screening and high-throughput screening 

rapidly identify antiviral leads targeting COVID-19. bioRxiv, 2020.2002.2026.964882 (2020). 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.03.972133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.972133



