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Abstract—Recently, significant research attention has been
devoted to the study of reconfigurable intelligent surfaces (RISs),
which are capable of reconfiguring the wireless propagation en-
vironment by exploiting the unique properties of metamaterials-
based integrated large arrays of inexpensive antennas. Exist-
ing research demonstrates that RISs significantly improve the
physical layer performance, including the wireless coverage,
achievable data rate and energy efficiency. However, the medium
access control (MAC) of multiple users accessing an RIS-enabled
channel is still in its infancy, while many open issues remain to
be addressed. In this article, we present four typical RIS-aided
multi-user scenarios with special emphasis on the MAC schemes.
We then propose and elaborate upon centralized, distributed
and hybrid artificial-intelligence (AI)-assisted MAC architectures
in RIS-aided multi-user communications systems. Finally, we
discuss some challenges, perspectives and potential applications
of RISs as they are related to MAC design.

I. INTRODUCTION

With the ever-increasing demands on wireless networks,

research in wireless communications continues to focus on

meeting the challenges of improving the energy efficiency

(EE) versus spectral efficiency (SE) trade-offs. Advances in

meta-materials have fuelled research in reconfigurable intelli-

gent surfaces (RISs) for beneficially reconfiguring the wireless

communication environment with the aid of a large array of

low-cost reconfigurable elements. This new design paradigm

results in migration from traditional wireless connections to

“intelligent-and-reconfigurable connections”. The intelligently

controlled features of RISs lead to potential benefits for future

wireless networks, such as their coverage enhancement, EE/SE
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Université Paris-Saclay; Z. Han is with University of Houston and Kyung Hee
University; D. Niyato is with Nanyang Technological University; H. V. Poor
is with Princeton University; L. Hanzo is with University of Southampton.

performance improvement, leading to improved throughput

and security [1]. Because of these potential benefits, RISs

are eminently suitable for addressing various challenges of

wireless communications; hence they have been extensively

investigated in diverse applications. Although the benefits of

RISs in the physical layer have already been validated in

practice, their performance is still constrained by the medium

access control (MAC) layer, since the real-time configuration

of RISs is complex and hence costly. To address this problem

and improve the benefits of RISs, artificial intelligence (AI)-

based methods can be applied to design MAC protocols for

RIS-aided wireless networks.

Most of the existing research activities on RISs focus on

physical layer issues, such as the issues of RIS deployment and

their sustainable operation, flexible beamforming reconfigura-

tion, EE/SE performance improvement and their compatibility

with emerging technologies such as non-orthogonal multiple

access (NOMA), as well as massive multiple-input multiple-

output (MIMO) aided millimeter-wave (mmWave)/terahertz

(THz) communications [2]. Following the recent breakthrough

in the fabrication of programmable metamaterials, RISs have

been employed in various wireless networks. Some of the

MAC-related issues have also been investigated in order to

support seamless connectivity [3]–[13]. However, these ex-

plorations of the MAC layer have focused primarily on the

single-user uplink (UL) or multi-user downlink (DL). But there

is a paucity of promising multi-user uplink solutions, since

this scenario has not attracted significant attention to date.

With the continued development of RIS technology and its

integration with AI, the latency-sensitive services/applications

supported by RISs are of salient importance in the 6G area,

including RIS-aided vehicular, drone, or robotic communi-

cations, as shown in Fig. 1. Moreover, handling the mas-

sive number of RIS-aided sensors or Internet-of-things (IoT)

devices represents a significant challenge in terms of the

EE/SE. Finally, RISs are eminently suitable for supporting the

emerging mmWave/THz communications in pursuit of high

quality of service (QoS). Clearly, compelling MAC designs

have to be conceived for fully exploiting the potential of RIS-

aided wireless networks.

Against this background, we first present four typical sce-

narios (S) of RIS-aided multi-user wireless communications,

with special emphasis on their MAC protocol design. Then, we

propose three types of AI-assisted MAC structures designed
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Fig. 1: RIS-aided wireless network applications.

for the RIS-aided multi-user uplink and discuss their protocols

and applications. Next, we discuss some potential challenges

facing AI-assisted MAC protocols. Furthermore, we evaluate

the proposed AI-assisted MAC solutions to quantify their

system throughput. Finally, we conclude with the trends in

designing AI-assisted MAC protocols for RIS-aided wireless

networks.

II. SCENARIOS, PROTOCOLS AND OBJECTIVES

In this section, we commence by presenting our typical

MAC scenarios seen in Fig. 2 and then review the existing

MAC protocols and their design objectives.

A. Scenarios

- S1: Single RIS-aided multiple-Tx single-Rx. In S1, a

single RIS is deployed to coordinate the uplink transmis-

sions of multiple transmitters (Txs) to a base station (BS),

e.g., K Txs to a BS via an RIS. Note that the single-input

single-output scenario is a special case when K = 1.

- S2: Single RIS-aided multiple-Tx multiple-Rx. In S2,

a single RIS is deployed to coordinate the uplink trans-

missions of multiple Txs to multiple receivers (Rxs), e.g.,

K Txs to M Rxs via an RIS.

- S3: Multiple RIS-aided multiple-Tx single-Rx. In S3,

multiple RISs are coordinated to support the uplink

transmissions of multiple Txs to a BS, e.g., K Txs to

a BS via N RISs.

- S4: Multiple RIS-aided multiple-Tx multiple-Rx. In

S4, multiple RISs are coordinated to assist the uplink

transmissions of multiple Txs to multiple Rxs, e.g., K

Txs to M Rxs via N RISs.

For future networks with the ultra dense deployment of

users, the coordination of massive users for meeting their QoS

demands in the scenarios with a single RIS (e.g., S1 and S2)

becomes challenging. For the scenarios having multiple RISs

(e.g., S3 and S4), the user-RIS association (also known as RIS

allocation) becomes more attractive, since serious interference

may occur among the RISs.

B. MAC Protocols

Conceiving MAC protocols (P) for RIS-aided multi-user

wireless communications have become essential. Both the con-

ventional orthogonal multiple access (OMA) and the emerging

NOMA schemes have already been investigated [3]–[13].

RIS-aided OMA. It aims for improving the SE/EE, for

enhancing the QoS and for increasing the number of network

connections by reconfiguring the wireless propagation envi-

ronment [3]–[10]. The available OMA technologies integrated

with RISs are enumerated as follows.

- P1: RIS-aided time division multiple access (TDMA).

It enables multiple users to transmit their data via RISs

on the same frequency in different time slots [5]–[10].

- P2: RIS-aided frequency division multiple access (FD-

MA). It enables multiple users to transmit their informa-

tion via RISs in the same time slot on non-overlapping

domain frequency channels [3], [4], [9].

- P3: RIS-aided spatial division multiple access (SD-

MA). It enables multiple users to transmit their data via

RISs either in unique angular direction or by exploiting

the users’ unique channel impulse responses (CIRs) by

spatial multiplexing [11].

- P4: RIS-aided carrier sensing multiple access (CS-

MA). It enables multiple users to transmit their signals

via RISs relying on random contention-based multiple ac-

cess protocols, where some control information exchange

is required before the RIS-aided payload transmission [2],

[13].

RIS-aided NOMA. With the assistance of RISs, NOMA

schemes are capable of avoiding having to distinguish multiple

users on the same resource block by their power levels, which

may improve their SE/EE and latency. Hence, NOMA-assisted

RIS-aided multi-user downlink communications have been

explored in [11], [12], concluding that the performance of NO-

MA is not always preferable compared to OMA. For example,

NOMA may perform worse than angularly-orthogonal SDMA

or TDMA.
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Fig. 2: AI-assisted MAC scenarios in RIS-aided wireless communi-
cations.

C. Objectives

The objectives (O) of MAC designs conceived for RIS-aided

multi-user systems include the following potential aspects.

- O1: System throughput. The throughput is direct-

ly linked to the SE, which can be increased by

increasing the number of transceivers and/or the

time/frequency/space/RISs resources.

- O2: EE performance. The EE is given by the capacity

normalized by the MAC’s energy consumption, which can

be readily improved by the directional communications of

RISs, which is mitigating the interference by directional

beams and/or enhancing the strength of the desired signal

reflected by passive elements. From a specific MAC

design perspective, the EE can be further improved by

avoiding access collisions. Therefore, a critical aspect of

EE in the MAC is that of exploiting the angular focusing

capabilities of RISs for multiple users.

- O3: Fairness. The rate fairness of different users should

be guaranteed without degrading the overall system per-

formance, especially when the resources are limited. In

this context, avoiding these starvations of users suffering

from low link quality becomes a pivotal criterion when

designing an appropriate MAC for RIS-aided wireless

networks.

- O4: Overhead. The overhead of user access-grant di-

rectly affects both the communication and computational

complexity in terms of the RIS channel estimation, re-

configuration and resource allocation. Additionally, the

wireless handshake of the MAC design may impose extra

costs. How to implement the MAC protocol at a low-cost

in RIS-aided wireless networks is a challenging dilemma.

- O5: Latency. The MAC design needs to meet the low-

latency requirement of delay-sensitive applications with

the aid of RISs.

Existing contributions on the MAC design of RIS-aided

communication systems are summarized at a glance in Table

I, with an emphasis on their design objectives and critical fea-

tures. In the table, the acronyms SDR, STM, SCA, and BCD

represent semidefinite relaxation, strongest tap maximization,

successive convex approximation and block coordinate de-

scent, respectively. Notably, with the context of the coming

wireless intelligence era, AI will give impetus to the MAC

designs in RIS-aided networks by enabling the users and BS

to “think-and-decide”.

III. AI-ASSISTED MAC FOR RIS-AIDED NETWORKS

In this section, we design three AI-assisted MAC architec-

tures for RIS-aided wireless networks, namely for centralized,

distributed and hybrid schemes. We discuss their differences

from the perspective of their overall framework, protocol

design, computational aspects and promising applications.

A. Centralized AI-Assisted MAC

1) Framework: In the proposed centralized AI-assisted

MAC framework, the BS tightly coordinates the multiple

access of users. Explicitly, the BS enables each of the RIS-

controllers to beneficially configure the wireless propagation

environment via deep learning for multiple users. Here, the

RISs are assumed to be passive, simply reflecting the incident

signals without sensing or processing. More explicitly, the BS

has to estimate the concatenated BS-RIS-user link, calculate

the RIS phase reconfiguration, and allocate resources via deep

learning, as it will be detailed below in the ‘computation’

part. As shown in Fig. 3, each sub-frame is divided into

three periods: the pilot period, computing period and scheduled

transmission period. The pilot period and scheduled transmis-

sion period can be further divided into K pilot slots and J

data slots, respectively. The users transmit their data in the J

data slots over the N non-overlapping sub-channels. Based on

this, the centralized AI-assisted MAC protocol is designed by

giving full cognizance to both channel estimation as well as

phase computation and data transmission.

2) Protocol: The protocol of the centralized AI-assisted

MAC is shown in Fig. 3, which is integrated with TDMA

and FDMA, where each user obeys the time division scheme

in each sub-channel. In particular, after synchronization, each

user initiates pilot transmission to the BS in dedicated pilot

slots. During the computational period, the BS first estimates

the concatenated RIS link, followed by time, frequency and

power resources allocation and RIS phase configuration. Then

the BS instructs each RIS-controller to configure its reflection

parameters and schedules the access of users, who transmit

their data to the BS via the RISs.

3) Computation: Given the excessive complexity of high-

dimensional full-search-based centralized MAC protocols, a

deep learning-based computational model trained offline can

be employed at the BS for finding a near-optimal solution at

a reduced complexity. The input of the trained deep learning

model can be the number of users, the number of sub-frames,

the number of channels, the number of RISs and the RIS

channel information. The online inference that moves the

complexity to offline training is performed at the BS, which

relies on a model-based training for determining the RIS

phase-shift configuration, the RIS-deployment strategy and the

resource allocation strategy, which are related to each other.

More explicitly, these related learning tasks share the same
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TABLE I: RIS-AIDED TRANSMISSION PROTOCOL DESIGN: STATE OF THE ART

Refs. Scenarios Protocols Objectives Approaches Applications Key features

Centralized

[3] S1 P1, P2 O1, O2 Iterative algorithm IoT
An RIS-aided transmission protocol with the RIS group
partition for long distance transmission.

[4] S1 P1, P2 O1 SDR, STM mmWave, IoT
An RIS-aided transmission protocol with frequency-
selective channels for delay-sensitive applications.

[5] S1 P1 O1 Iterative algorithm Wi-Fi
A pilot-assisted block transmission protocol for RIS
channel estimation and passive beamforming.

[6] S1, S3 P1 O4
Iterative algorithm,
supervised learning

RF sensing
A periodic configuring protocol aims to perform RIS-
aided human posture.

[7] S1 P1 O5
Iterative algorithm

(BCD)
Edge

computing
RIS aided TDD transmission is investigated in mobile
edge computing systems.

[8] S1 P1 O1
Iterative algorithm

(SCA)
Drone commu-

nications
Jointly optimizing UAV trajectory and RIS beamform-
ing for RIS-aided UAV communications.

[9] S3 P1, P2 O1, O2 Iterative algorithm IoT, massive
RIS-aided transmission combined TDD with OFDMA
is discussed by jointly optimizing.

[10] S1 P1 O1, O2
Alternating

optimization (BCD)
Wi-Fi

RIS-aided TDD transmission with considering perfect
channel state information (CSI) and imperfect CSI.

[11] S3 P3, NOMA O1
Cauchy-Schwarz

inequality
Edge

computing
RIS-aided NOMA transmissions are used to serve mul-
tiple users on each orthogonal spatial direction.

[12] S1 NOMA O1, O2
Iterative algorithm

(BCD, SDR)
Massive,

low-latency
An RIS-aided NOMA with combined-channel-strength
is proposed while ensuring the fairness among users.

Distributed

[1], [2] S1-S4 × O1-O3 ×
Wi-Fi, D2D,

mmWave, IoT
Randomly access with information exchange in RIS-
aided multi-user system.

[13] S1, S2 P1, P2, P4 O1
Alternating

optimization
IoT, D2D,

Wi-Fi
Randomly reserved access in RIS-aided multi-user sys-
tem.

input parameters, thus learning multiple related tasks jointly

improves the prediction accuracy and generalization capability

compared to learning them separately.

4) Applications: Given the centralized implementation and

deep learning-based computation model considered, the cen-

tralized AI-assisted MAC design advocated can be readily

applied to the scenarios S1 and S3 for supporting low-power

RIS-aided communications.

B. Distributed AI-Assisted MAC

1) Framework: In contrast to the centralized scheme, in

the proposed distributed AI-assisted MAC framework, each

user configures the multiple access and computes the RIS

configuration by itself based on the RIS-aided network en-

vironment. In this case, no BS assistance is necessary. Each

RIS is assumed to be passive and to occupy a non-overlapping

frequency channel. In contrast to the centralized MAC design,

the user has to negotiate with the RIS-controller for channel

access. The corresponding RIS-aided data transmission as

illustrated in Fig. 3. In particular, channel sensing and compu-

tation are carried out at the user side via reinforcement learning

(RL) to determine the RIS configuration. Once a channel

is idle, the user sends the RIS configuration information to

the RIS-controller to negotiate the ensuing RIS-aided data

transmission.

2) Protocol: The protocol of the proposed distributed AI-

assisted MAC is shown in Fig. 3, which is integrated with

CSMA and FDMA, where each user follows the distributed

coordination function (DCF) based scheme in each channel.

In particular, a competing user senses the state of each sub-

channel. Once a channel is sensed to be idle, the user contends

for the access to the channel. Waiting for a DCF inter-

frame space (DISF) and backoff, the user computes its RIS

configuration based on RL and sends an RIS configuration

request to the RIS-controller. If the RIS is available for the

user, the RIS-controller configures its reflection parameters

and sends its feedback to the user after a short inter-frame

spacing (SIFS). Following the elapse of a SIFS, the user

then transmits the data to the BS via the RIS. Note that the

feedback from the RIS-controller is sent without a transmit

radio frequency chain. Moreover, the access collisions of users

can be alleviated by the RIS-controller.

3) Computation: In the distributed MAC protocol, an RL-

based computational model can be employed by each user to

solve the resource allocation and RIS configuration problems

because no RIS channel-information exchange is required. The

RL model includes the following aspects: the current RIS

configuration, the current RIS deployment, and the currently

occupied resources (e.g., power) of each user. The model

actions include three aspects: the update of RIS configuration,

the motion-trajectory of the user and the occupied resources

updates. The reward function is decided by the throughput

requirement of the user. When the action taken by the user

improves its data rate, the user obtains a positive reward. By

contrast, for throughput reductions, the user receives a negative

reward (also termed the penalty). The RL-based computational

model is more suitable for small RISs to avoid potential

dimensionality problems. If the RIS is large, the RIS elements

may be partitioned into groups, where each group maintains

the same RIS configuration.

4) Applications: Due to the distributed implementation and

the RL-based computational model, the distributed AI-assisted
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Fig. 3: Hybrid AI-assisted MAC structure with centralized and distributed designs, an illustration of Case 1.

MAC design can be applied to all the scenarios S1 to S4 for

meeting low-latency requirements.

C. Hybrid AI-Assisted MAC

Based on the centralized and distributed MAC frameworks

proposed, we now discuss three types of hybrid AI-assisted

MAC designs, where the centralized and distributed imple-

mentations are integrated into a single frame.

1) Case 1: In this hybrid framework, the scheduled and the

competing transmissions relying on RISs are combined after

the pilot transmissions and computing, while enabling users to

switch between them for meeting different QoS demands, as

illustrated in Fig. 3. Each frame is partitioned into four parts,

namely, the pilot period, the computing period, the scheduled

transmission period and the competing transmission period.

According to the proposed distributed AI-assisted MAC de-

sign, the scheduled users transmit their data to the BS via

RISs in the scheduled transmission period. After that, based

on the distributed AI-assisted MAC design, the unscheduled

users (i.e., the unserviced users that have sent their pilots and

the new requesting users) transmit their data to the BS or the

Rxs via RISs during the competing transmission period. Given

the dynamic switching between two transmission modes, this

scheme is capable of maintaining the target-rate, and it may

be suitable for all scenarios (i.e., S1 to S4).

2) Case 2: In this hybrid framework, the competing re-

quests and the scheduled RIS-aided transmissions are com-

bined into a single frame. Each frame consists of the compet-

ing request period, the computing period and the scheduled

transmission period. The user sends a request to the BS and

when a sub-channel becomes available during the competing

request period, then the BS issues a feedback for acknowl-

edgment. Based on the requests received, the BS controls the

RISs and sends the scheduling information to users during the

computing period. Afterwards, the scheduled users transmit

their data to the BS via RISs in the scheduled transmission

period. Due to the competitive access of Case 2, it can be

applied in scenarios S1 and S3 for supporting RIS-aided smart

homes or smart factories.

3) Case 3: This hybrid framework is similar to Case 2,

since it combines the competing requests and the reserved RIS-

aided transmissions into a single frame. The slight difference

is that computing in Case 3 is carried out at the user, rather

than at a BS or RIS-controller. When a sub-channel becomes

idle, the user occupies the channel, then computes the required

resources and RIS configuration based on RL and sends a

request to the RIS-controller for reserving the resources for

future RIS-aided transmissions. The RIS-controller sends a

feedback to the user once a request is registered and controls

the RIS. When the reserved transmission period arrives, the

user transmits the data to the Rx or the BS via the RIS in

the reserved slots. Since RL is mainly used for complexity

reduction, Case 3 can be applied in all the scenarios S1 to S4

for supporting RIS-aided periodic communications.

In practice, due to the implementation constraints, the phase

shifts applied by the RIS elements belong to a discrete set.

Hence, the RIS configuration may be viewed as a classification

problem, which can be tackled by using deep learning. If the

phase shifts can be configured continuously, e.g., for varactor-

based RIS designs, the optimal configuration of the phase

shifts of the RIS can be regarded as a regression problem.

IV. CHALLENGES

In this section, we discuss some potential research chal-

lenges of designing AI-assisted MAC protocols for RIS-

aided wireless networks in terms of the availability of limited

datasets, privacy and security, as well as spectrum sensing.

A. Limited Datasets

Using conventional supervised learning for both resource

allocation and RIS configuration requires complete labeled

datasets. However, collecting sufficient training data is a chal-

lenge in practice. For this reason, semi-supervised learning,

transfer learning, or even autonomous learning can be explored

to overcome the challenge of limited datasets.
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B. Privacy and Security

The centralized learning employed for the MAC design

of RIS-aided communications may rely on privacy-sensitive

datasets. To address this potential vulnerability, distributed

learning, e.g., federated learning [14], [15], requires upload-

ing of only local model parameters, thereby promoting data

privacy, although steps must be taken to preserve privacy even

with distributed learning. Moreover, privacy can be enhanced

in both training and inference through the use of federated

learning and neural network segmentation, respectively. Thus,

distributed learning constitutes a promising solution for en-

hancing the privacy and security of MAC protocols in RIS-

aided networks.

C. Spectrum Sensing

In practice, when designing an efficient AI-assisted MAC

protocol for RIS-aided wireless networks, especially a dis-

tributed version, accurate spectrum sensing is quite critical

for reducing collisions and interferences. Due to the typical

hidden and exposed terminal problems, conventional carrier

sensing techniques suffer from spectrum sensing deficiencies.

To circumvent this impediment, intelligent spectrum learning

relying on the cooperation of the RISs, BSs or Txs can be

explored with the objective of improving the sensing efficiency

and accuracy.

V. PERFORMANCE EVALUATION

This section evaluates both the system throughput and the

EE of the three AI-assisted MAC frameworks proposed for

RIS-aided wireless networks. We opt for Case 1 as the hybrid

MAC protocol. We consider a scenario that consists of a

BS, 2 RISs having 128 RIS-elements each, and 100 single-

antenna Txs, where the Tx-RIS and RIS-BS distances are 50

m and 30 m, respectively. A Rician fading channel model is

assumed, where the Tx-RIS and RIS-BS channels benefit from

the existence of LoS links having a path loss exponent of 2.2,

while the Tx-BS channels are NLoS links with a path loss

exponent of 3.6. The power dissipated at each user is 10 dBm,

the noise power is -94 dBm, the total bandwidth is 10 MHz

and the number of sub-channels is 2. Furthermore, we assume

that each RIS occupies a single sub-channel as a benefit of

interference cancellation, and each Tx is only allowed to use

a single RIS to communicate with the Rx at a time.

A. System throughput vs. the number of Txs

Figure 4 shows the system throughput of RIS-aided wireless

communications versus the number of Txs in the three types

of AI-assisted MAC proposed. Firstly, it is observed that

the system throughput of each AI-assisted MAC is improved

compared to the MAC without AI, since AI methods have

the potential of reducing the computing time. Observe from

Fig. 4 that the throughput of each MAC initially increases,

but then tends to saturate as the number of Txs increases.

This is because the computation time ratio within each frame

is reduced upon increasing the length of each frame. Also,

the system throughput of the distributed MAC exhibits a

slight lesion after saturation due to the competition collisions.

Additionally, the system throughput of the distributed MAC

is best when the number of Txs is low (e.g., less than 20).

As the number of Txs increases, the system throughput of

centralized MAC becomes higher than that of the distributed

MAC and the system throughput of hybrid MAC (Case 1) is

in the middle.

B. EE performance vs. the number of Txs

Figure 5 shows the EE versus the number of RISs for all

three types of AI-assisted MAC. It is observed that the EE of

each type decreases as the number of RISs increases due to

the increased computational complexity associated with extra

computing time. Additionally, the EE of the centralized AI-

assisted MAC is better than that of the distributed AI-assisted

MAC, when the number of RISs is 1 or 2. As the number of

RISs increases to 4, 8 or 16, the EE of the distributed AI-

assisted MAC has the edge, because the overhead imposed

by the centralized AI-assisted MAC is increased. In other

words, the centralized AI-assisted MAC is suitable for a small

number of RISs, while the distributed AI-assisted MAC is

recommended for a large number of RISs.

VI. CONCLUSION AND OPEN ISSUES

In conclusion, we have presented four typical scenarios of

RIS-aided multi-user communications. We then have reviewed

the family of MAC solutions conceived for RIS-aided wire-

less networks and highlighted a range of competing MAC

designs conceived for AI-assisted MAC structures relying

on centralized, distributed and hybrid implementations. In

particular, the centralized AI-assisted MAC excels in satisfying

the target QoS of users, while the distributed AI-assisted

MAC is more capable of meeting the random or unpredictable

requirements of users. Finally, the family of hybrid AI-assisted

MAC solutions strikes a beneficial trade-off between them.

As performance evaluations revealed, distributed AI-assisted

MAC schemes are more applicable to networks with small

numbers of users associated with a large number of RISs. By
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Fig. 5: Energy efficiency vs. the number of RISs, where K=100.

contrast, the centralized AI-assisted MAC schemes are more

suitable for a large number of users in conjunction with small

numbers of RISs.

We foresee open issues along the road of integrating AI-

assisted MAC designs with next-generation technologies. For

example, a community-effort is required for conceiving ad-

vanced AI computing models in MAC design, AI-assisted

MAC solutions for both mmWave and THz communications,

for privacy-preserving, for smart sensing, for controlling and

optimizing AI-assisted MAC implementations. Promisingly,

MAC designs with AI-empowered-RISs become more exciting

and challenging. All in all, an exciting area for new research.
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