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ABSTRACT The integration of communications with different scales, diverse radio access technologies, and

various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and

dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous

driving, and factory automation, have stringent requirements in terms of reliability, latency, throughput, and

so on. Such requirements pose new challenges to architecture design, network management, and resource

orchestration in NGWNs. Starting from illustrating these challenges, this paper aims at providing a good

understanding of the overall architecture of NGWNs and three specific research problems under this ar-

chitecture. First, we introduce a network-slicing based architecture and explain why and where artificial

intelligence (AI) should be incorporated into this architecture. Second, the motivation, research challenges,

existing works, and potential future directions related to applying AI-based approaches in three research

problems are described in detail, i.e., flexible radio access network slicing, automated radio access technology

selection, and mobile edge caching and content delivery. In summary, this paper highlights the benefits and

potentials of AI-based approaches in the research of NGWNs.

INDEX TERMS Next-generation wireless networks, heterogeneous networks, network slicing, machine

learning, radio access network slicing, radio access technology selection, content placement and delivery.

I. INTRODUCTION

A. NEXT-GENERATION WIRELESS NETWORKS: VISIONS &

CHALLENGES

The evolution of mobile communications from the first to

the fifth generation (5G) has revolutionized many aspects

of human society in the past four decades. Expediting this

evolution, the next-generation wireless networks (NGWNs)

are envisioned to be the cornerstone for a vast number

of novel applications, ranging from remote surgery to

smart cities. Following the classification of services into

enhanced mobile broadband (eMBB), massive machine-type

communications (mMTC), and ultra-reliable and low-latency

communications (URLLC) [1], the NGWNs will support even

more diversified services with various throughput, latency,

and reliability requirements [2]. Meanwhile, thanks to

improved reliability and connection density, the NGWNs are

expected to attract enterprise users, in addition to conventional

mobile communication users, by supporting use cases such as

autonomous driving and factory automation [3], [4].

The above evolution has been shaping wireless networks to-

wards becoming increasingly heterogeneous and dynamic [5].

For instance, NGWNs will incorporate various components

such as device-to-device (D2D), vehicle-to-everything

(V2X), and mobile edge computing (MEC), with different

radio access technologies including cellular, Wi-Fi, and

dedicated short-range communications (DSRC), as well
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as different access points such as cellular base stations

(BSs), road-side units (RSUs), and unmanned aerial vehicles

(UAVs). Each component in the integrated heterogeneous

communication networks can have a unique focus and a

corresponding set of performance metrics. For example, V2X

communications must handle highly dynamic communication

channels and rapidly changing network topology, while D2D

communications require decentralized channel access control

and communication resource allocation with high energy

efficiency. As the heterogeneous and dynamic characteristics

are inevitable results of supporting ever-growing demands for

increasingly-diverse communication services, they impose

significant challenges in the architecture design, network

deployment, and network management in NGWNs.

Designing the architecture for NGWNs that can handle

diversified services and maximize infrastructure and resource

utilization efficiency is the first major challenge. Achieving

the goals of increasing network capacity and accommodating

highly diverse services with stringent quality of service (QoS)

requirements necessitates innovations in network architecture.

Network densification via deploying ultra-dense small cells

can improve network capacity [6]. However, it does not pro-

vide a solution to scalable management of heterogeneous net-

works, but creates additional challenges such as extra infras-

tructure deployment cost, low cell utilization efficiency, and

inter-cell interference. The integration of terrestrial and space

networks has been proposed for providing seamless communi-

cation coverage [7]. Such integration, however, poses a further

challenge in network management considering the dynamic

trajectory of UAVs, the orbits of satellites, and the resulting

impact on the service range and communication channels.

A cloud/Fog-radio access network (RAN) based architecture,

which incorporates the paradigm of cloud and fog computing

into wireless networks, has also been proposed [8]. However,

such an architecture focuses on improving energy efficiency,

reducing cost, and alleviating data traffic on the fronthaul

rather than satisfying diversified service requirements in com-

plex heterogeneous networks.

The second challenge is how to achieve scalable and intelli-

gent network management that can adapt to dynamic network

environments. Network environments can change rapidly due

to user mobility, time-varying channel conditions, dynami-

cally changing traffic load distribution, and temporal varia-

tions of content popularity. Up to the current generation of

wireless communication services, the problem of handling

a dynamic environment has been studied mostly on a small

scale, i.e., from the perspective of individual or several mobile

users or base stations. One example is opportunistic spec-

trum access that targets individual secondary mobile users

for them to access channels in a dynamic network envi-

ronment [9], [10]. Another example is the dynamic deploy-

ment of virtual machines in cloud-fog computing systems

based on computing task arrival patterns [11]. Nevertheless,

managing NGWNs requires the development of scalable and

adaptive models and approaches that suit large-scale prob-

lems and heterogeneous network architectures, which should

include both centralized and decentralized network control

components.

Last but not least, effective real-time network resource or-

chestration in the presence of multi-dimensional resources,

many service types, and unknown traffic models is another

challenge. The NGWNs will integrate functionalities of net-

working, caching, computing, sensing, and control [12]. Cor-

respondingly, the resources in NGWNs will extend beyond the

conventional communication resources (i.e., bandwidth, time,

and/or transmit power), and include computing and caching

resources. As a result, adaptive and flexible network resource

orchestration becomes crucial, considering the surging growth

in data traffic and increasingly diversified and stringent QoS

requirements. Conventional centralized resource allocation

can become inadequate in certain parts of NGWNs. For exam-

ple, resource allocation in microcells and D2D communica-

tions may need to be decided locally in order to reduce signal-

ing overhead and response time [13]. In addition, conventional

approaches that rely on instantaneous network information,

such as channel state information, and focus on optimizing

an instantaneous performance metric, such as instantaneous

data rate, can become inapplicable when such information is

unknown. In NGWNs, exploiting the spatial-temporal traffic

patterns while achieving service differentiation and maintain-

ing massive connectivity will be a major challenge in network

resource orchestration.

B. NETWORK-SLICING BASED ARCHITECTURE

Network slicing is an important network architecture innova-

tion in 5G that is also expected to be inherited in the next gen-

eration [14]–[16]. Network slicing enables the coexistence of

multiple isolated and independent virtual (logical) networks,

i.e., slices, on the same physical network infrastructure. The

advantages of network slicing are multifold. First, through the

multiplexing of the virtual networks, network slicing supports

multi-tenancy, i.e., multiple virtual network operators (VNOs)

sharing the same physical network infrastructure [17]. This

reduces capital expense in network deployment and opera-

tion. Second, network slicing provides the potential to cre-

ate customized slices for different service types with various

QoS requirements, which can achieve service differentiation

and guarantee service level agreement (SLA) for each service

type. Third, as slices can be created on-demand and modified

or annulled as needed, network slicing increases the flexibility

and adaptability in network management [18].

The enabling techniques for implementing network slicing

are software-defined networking (SDN) and network func-

tion virtualization (NFV). SDN leverages the cloud comput-

ing paradigm in network management, such that the network

has a centralized controller to dynamically steer and manage

traffic flow and orchestrate network resource allocation for

performance optimization [19]. An SDN controller provides

the abstract set of resources and control logic for establishing

slices, and a slice can be viewed as an SDN client context [20].

Therefore, SDN facilitates the pre-defining of slice blueprints

as well as the on-demand creation of slice instances based
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on the corresponding service characteristics and requirements.

NFV implements network functions, e.g., firewall, load bal-

ancing, address translation, etc., as software instances, known

as virtual network functions (VNFs), running on virtual ma-

chines on top of general servers (referred to as NFV nodes)

without requiring specialized hardware [21], [22]. Thus, a

network service in NFV can be considered as a component

of a network slice, while a network slice contains one or more

VNFs [23]. NFV complements SDN in implementing network

slicing since SDN establishes control plane functions that

enable slicing while NFV provisions services and manages

the life cycle of network slices and orchestrates slice resources

through realizing VNFs [24].

Despite its popularity in both academia and industry, the

slicing of RANs faces several challenges. For example, de-

termining the optimal slicing granularity, i.e., whether or not

there should be a slice for each type of service, each set of QoS

requirements, each VNO, or some combination of the afore-

mentioned, is an open problem [25]. In addition, effective ad-

mission control that strikes a balance among infrastructure uti-

lization, service provisioning in each slice, and the revenue of

network operator calls for further investigation [26]. Last, the

monitoring of slice SLA and the slice adaption based on traffic

dynamics can be challenging, considering that the resource

allocation among slices aims at slice isolation. The afore-

mentioned challenges, generally involving making optimal

decisions in a dynamic environment with unknown informa-

tion, may not be solved following conventional model-based

methods. Therefore, although network slicing will continue to

be an important part of the NGWNs, additional innovations

in the network architecture are necessary for addressing the

above challenges.

C. INTEGRATING ARTIFICIAL INTELLIGENCE

The past decade has witnessed remarkable advances in the

research and applications of artificial intelligence (AI). Re-

search in machine learning (ML), one of the most powerful AI

tools, has been progressing rapidly to embrace a wide range

of applications including voice recognition, image processing,

and self-driving vehicles. The rapid advances in ML, boosted

by the progress in hardware technology specialized to support

AI, paves the path for applying AI in NGWNs [27]. A major

advantage of ML is its ability to handle complicated problems,

which renders ML a powerful tool that suits the dynamic,

heterogeneous, and decentralized features of NGWNs. Ap-

plying ML can potentially yield benefits such as improved

performance and faster convergence in network manage-

ment automation and performance optimization in large-scale

systems.

ML methods include supervised learning, unsupervised

learning, and reinforcement learning (RL), each of which

suits a different group of research problems in wireless com-

munications. Supervised learning relies on labeled data to

learn the mapping from the input to the output, and can be

used to analyze network data, learn network characteristics,

and estimate network parameters [28]. Applications of su-

pervised learning in communications and networks include

traffic classification [29], smart offloading [30], sub-6 GHz

to millimeter wave (mmWave) frequency handover [31], and

mmWave beam alignment [32]. Unsupervised learning iden-

tifies patterns and attributes hidden in data for inference and

prediction without using labeled data. Potential applications in

communication networks include spectrum sensing [33] and

traffic volume prediction [34]. RL iteratively learns the opti-

mal decisions, based on the feedback of network state infor-

mation, to maximize a cumulative reward in the long term. RL

methods are particularly suitable for decision making in a dy-

namic environment. The applications of RL include protocol

design [35] and user scheduling with resource allocation [36].

Due to their potential applications and benefits, applying

ML methods is gaining momentum in the research and de-

velopment (R&D) of communication networks to enhance

system performance, flexibility, and scalability. For network

data analysis, ML can handle the heterogeneity and spatial-

temporal diversity in the data for network design and manage-

ment [37]. For user mobility management, ML is a tool for an-

alyzing the mobility pattern of mobile users for location-based

services [38]. For network resource management, ML-based

methods can be applied to model and study the joint allocation

of communication, caching, and computing resources [39] or

the joint problem of content caching and delivery [40].

As mentioned earlier, the heterogeneous and dynamic char-

acteristics of NGWNs demand powerful tools to automate and

optimize network slicing. From existing studies in literature,

it can be seen that ML is potentially a promising tool for

this purpose. Applying ML in network slicing can provide the

innovations required to address the aforementioned challenges

in the network architecture and resource orchestration and,

thereby, help fulfill the great prospect of NGWNs.

The rest of this paper is organized as follows. Section II pro-

vides a description of the overall architecture. Sections III to V

discuss three research problems in a network-slicing based ar-

chitecture, as well as related research efforts and, in particular,

AI-based approaches. Section III focuses on RAN slicing. In

Section IV, we present radio access technology (RAT) selec-

tion and user association automation. Section V investigates

content caching and content delivery. Section VI concludes

this study. Table 1 lists the acronyms used in this paper.

II. NETWORK ARCHITECTURE

This section presents the overall network architecture based

on network slicing and discusses where and how AI can be

applied. Due to the challenges mentioned in the introduction,

the NGWN architecture is expected to have the following

properties [41]:
� Flexible and scalable, to support a wide range of service

types and QoS requirements, and to support scalable

slice management after the deployment of slices;
� Automated and adaptive, to support automated RAN and

cloud network resource allocation and adaptation based

on data traffic and network performance, and to support
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TABLE 1. List of Acronyms

automated slice creation, slice performance monitoring,

and slice adaption;
� Open and modularized, to support customized slices de-

fined or operated by VNO, and to open certain network

management functions to third parties.

A network-slicing based AI-assisted network architecture

satisfying the above properties is illustrated in Fig. 1. This

architecture employs two-tier controllers, with a logical cen-

tralized SDN controller placed at a central cloud, and local

SDN controllers at individual RANs. Each local controller is

connected to the infrastructure in its corresponding RAN and

responsible for collecting the network information and mak-

ing local decisions in network operations. VNFs are deployed

at servers connected to radio heads, APs, storage facilities,

local data servers, etc. In the context of RAN, VNFs con-

sist of baseband unit (BBU) functions, e.g., compression and

encryption procedures and hybrid automatic repeat-request

(HARQ) [42], [43]. Accordingly, network slicing translates to

the placement of VNFs into various slices (subject to physical

infrastructure constraints and QoS requirements), the estab-

lishment of the logical topology of the VNFs in each slice,

and the mapping from the VNFs to the underlying physical

infrastructure. In this architecture, computing becomes espe-

cially important due to the virtualization of network functions

since the placement of VNFs in the slices is essentially the

allocation of required computing resources.

The key functional components and their relations corre-

sponding to the architecture in Fig. 1 are shown in Fig. 2.

While end-to-end (E2E) connections span both wireless seg-

ment(s) and the core network, this illustration focuses on the

wireless domain. The centralized SDN controller is responsi-

ble for slice blueprint definition and end-to-end slicing based

on the information collected from local controllers. Local

controllers are responsible for assisting the centralized con-

troller in the slicing of their corresponding RANs. After a slice

is deployed, the corresponding local controller is responsible

for orchestrating slice resources among end users as well

as monitoring slice status for resource utilization and QoS

satisfaction. In addition, local controllers can be involved in

slice adaption, while the centralized SDN controller may or

may not be involved depending on the service type and the

use case. The network status and operation data, aggregated

from all slices, are collected by local controllers and either

processed locally or forwarded to the centralized SDN con-

troller for analysis. The analysis results will be used to update

slice deployment and slice adaption. The relation between

centralized and local controllers introduces an important ques-

tion: whether and when should the centralized controller be

involved in specific network management and resource allo-

cation tasks under this network architecture? Evidently, in-

volving the centralized SDN controller in such tasks can take

advantage of the global network information for making op-

timal network management and resource allocation decisions.

However, decision making via the centralized SDN controller

can incur significant signaling overhead. Therefore, a balance

between the tasks for the centralized and local controllers,

which depends on the type of tasks and the type of a slice,

should be investigated.

The three blocks in Fig. 2, i.e., network topology, net-

work protocol, and network resource orchestration, form a

closed loop, which reflects the interplay between the two

levels of network management: network planning and network

resource scheduling [52]. Network planning, including the ini-

tial resource reservation for all slices, corresponds to the block

of network topology in Fig. 2. Meanwhile, network resource

scheduling consists of the network protocol and network
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FIGURE 1. An illustration of network-slicing based NGWN architecture,with three example network slices.

resource orchestration blocks in Fig. 2, where the resource

orchestration applies within each slice. As shown in Fig. 3,

network planning admits slice requests, reserves resources for

the admitted slices, and determines the placement of required

VNFs in each slice. Based on the result of network planning,

network resource scheduling further allocates resources in a

slice to individual network users dynamically. The resulting

SLA violation and resource utilization in the admitted slices

are monitored, based on which the network planning may be

adjusted in the future.

The role of AI in the network architecture includes ex-

ploiting the slice SLA monitoring data and the slice resource

utilization data to facilitate slice deployment, slice adaption,

and slice update. Due to the heterogeneous and dynamic char-

acteristics of NGWNs, conventional approaches based com-

pletely on statistical models are likely to become intractable

or too slow, if not both. The results are suboptimal if the

statistical models are inaccurate. In addition, the required

statistical models are unavailable for many new use cases

and emerging applications. By contrast, AI-based approaches

can potentially make use of the aforementioned monitoring

data for both slice and network performance optimization.

Through the application of AI for data analysis and decision

making in both the centralized and local SDN controllers,

the slicing based architecture in Fig. 1 can be empowered

by AI.

In the following sections, we investigate the RAN slicing

framework, RAT selection automation, and content caching

and delivery, respectively, under this AI-assisted slicing based

network architecture.

III. RAN SLICING FRAMEWORK

RAN slicing is deemed as the most promising technology

in 5G networks and beyond, by providing a flexible and
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FIGURE 2. The functional architecture of a network-slicing based AI-assisted next-generation RAN.

FIGURE 3. The interplay between network planning and network resource
scheduling in the slicing based architecture.

scalable network architecture to support a variety of services

attached to manifold QoS requirements. By slicing the shared

physical wireless networks into multiple isolated logical net-

works, RAN slicing can dynamically and elastically allocate

network resources to provide tailored services for isolated

logical networks. Building on the shared physical network

infrastructure, RAN slicing is a cost-effective solution for

network management. A study reported that RAN slicing can

reduce capital expenditure (CapEx) and operational expendi-

ture (OpEx) by up to 60 billion USD worldwide within the

next five years [48]. These benefits motivate the study on RAN

slicing for NGWNs. Extensive industry efforts have been de-

voted to RAN slicing framework ratification. For example,

network slicing has been introduced as one of the key features

of international mobile telecommunication (IMT)-2020 net-

work [53]. The 3rd generation partnership project (3GPP) has

conducted extensive studies on the slicing based architecture

for 5G networks [54], [55]. Multiple proof-of-concept systems

on RAN slicing have been developed and evaluated based on

real-world network traffic data [56]–[58]. In this section, we

first present the research challenges of RAN slicing. Then,

existing works on RAN slicing are reviewed, which are sum-

marized in Table 2. Finally, potential benefits and challenges

of emerging AI-based RAN slicing are discussed.

A. RESEARCH CHALLENGES IN RAN SLICING

The RAN slicing in NGWNs can be divided into two steps:

1) Slice creation – Various over-the-top services with dif-

ferent QoS requirements request for creating slices to guar-

antee service isolation. After receiving a slice creation re-

quest, the network controller decides to accept or reject the

request based on the availability of network resources. Once

a slice is admitted, a new slice will be created based on

the slice templates and network function instances; and 2)

Resource orchestration – Network resources are allocated to

admitted slices in order to meet their SLAs. Since emerging

real-time mobile services, such as virtual reality (VR), aug-

mented reality (AR), and autonomous driving, may consume

multiple-dimensional resources (communication, computing

and caching), a slice would be allocated with multiple virtual-

ized network resources. These virtualized network resources

would be mapped to the physical network infrastructure via

a resource mapping algorithm. An illustrative example of the

RAN slicing is shown in Fig. 4. The NGWNs become more

complicated due to diverse network resources, heterogeneous

network topology (e.g., cellular BSs, drone BS, WiFi APs),
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TABLE 2. Summary of Literature on RAN Slicing

FIGURE 4. The RAN slicing in NGWNs.

and differentiated QoS requirements (e.g., URLLC, eMBB,

mMTC1). These characteristics create challenges for RAN

slicing to support diverse services.

The goal of RAN slicing is to provide customized services

for mobile users with differentiated QoS requirements in het-

erogeneous networks. Hence, the key issue of RAN slicing is

how to efficiently allocate network resources while meeting

the user QoS requirements. As shown in Fig. 5, multiple-

dimensional network resources of the shared network infras-

tructure are allocated to each slice in a slicing window.2 Based

on a priori service-specific traffic statistics, the communi-

cation resources can be sliced in terms of radio spectrum

1The URLLC services desire high reliability and low latency, such as
mission-critical environmental sensing for autonomous driving and tactile
applications with millisecond latency requirement. The eMBB services aim
to have a high throughput for a large amount of data, such as video streaming
and VR/AR gaming. The mMTC services target to connect massive devices
with low throughput requirements, such as Internet of things (IoT) sensor
monitoring.

2A slicing window is a unit time for RAN slicing. At the beginning of a
slicing window, the resource allocation decision will be enforced.

FIGURE 5. The network resources of the shared network infrastructure are
allocated to each slice via RAN slicing in each slicing window.

bandwidth, the computing resources can be sliced in terms

of CPU computing power, and the caching resources can be

sliced in terms of storage unit for each slice. Hence, RAN

slicing should jointly allocate multiple network resources
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(e.g., communication, computing, and caching) to optimize

the network utility, while satisfying the differentiated QoS re-

quirements of customized services. Due to the heterogeneous

network infrastructures and differentiated QoS requirements,

RAN slicing faces the following unique challenges:
� Resource interplay – Since a service may consume mul-

tiple network resources, there exists an inherent tradeoff

among the network resources. For example, in comput-

ing offloading services, the service latency consists of

two elements: task transmission latency and task pro-

cessing latency. If a user associates with a remote MEC

server having abundant computing resources for task

processing, a high task transmission latency will incur.

On the other hand, if a user associates with a nearby

MEC server having insufficient computing resources, it

takes a longer time for task processing. In such a man-

ner, the allocation of computing and communication re-

sources is coupled with each other in the exemplary com-

puting offloading services. Similarly, the allocation of

multiple network resources is intertwined, which com-

plicates the RAN slicing. A joint multiple network re-

source allocation scheme should be judiciously designed

to maximize network welfare;
� Strict QoS requirements – Compared with traditional 4G

networks, 5G networks and beyond have stricter QoS

requirements, including a higher throughput and a lower

latency. Especially, the typical URLLC service in 5G

requires ultra-high reliability (e.g., 99.999%), which is

much stricter than that of other services. In addition, the

payload of data packets in URLLC services is usually

small, such as 32 bytes [72]. The transmission perfor-

mance of short-length packets cannot be characterized

by the traditional Shannon theory which is suitable for

long-length packet transmission due to a large trans-

mission overhead. Instead, the finite block length chan-

nel coding theory should be applied to characterize the

achievable rate for short-length packets [73]. Traditional

QoS provisioning is unsuitable for short-length packet

URLLC services with ultra-high reliability. Thus, an ac-

curate QoS provisioning for URLLC services is desired

in the RAN slicing framework;
� User mobility – Due to the high network density, users

may frequently move out the coverage of its associ-

ated network infrastructure, which results in a dynamic

network topology. For example, high-mobility vehicle

users can trigger handover frequently. The dynamic net-

work topology changes the service traffic distribution,

rendering previously optimal slice allocation suboptimal

over time, degrading network performance, and may

even violate users’ QoS requirements. When the network

performance degrades to a threshold, adjusting existing

slices or creating new slices will be triggered, which

incurs slice reconfiguration overhead. Thus, dynamic yet

efficient RAN slicing to accommodate user mobility re-

mains a challenging issue.

B. EXISTING APPROACHES

Extensive research efforts have been devoted to RAN slicing

in different contexts due to its advantages in reducing network

operation cost and improving resource utilization. Based on

the known service-specific traffic statistics, a communication

resource slicing strategy is proposed to support both machine-

type users and mobile users, by allocating the spectrum in

heterogeneous networks [21], in which bandwidth resource

and user association are jointly allocated to maximize network

utility. The results show that the proposed slicing strategy can

effectively boost the network utility compared with bench-

mark schemes. A communication resource slicing strategy is

developed to provide customized services in the context of ve-

hicular networks [44]. These works mainly formulate a RAN

slicing problem as an optimization problem with the objective

of maximizing network utility, while satisfying the QoS con-

straints of admitted slices. By resorting to optimization the-

ory, these complicated optimization problems can be solved

by classic iterative optimization algorithms. Another line of

work focuses on the communication resource slicing from

the perspective of a network operator with an objective of

maximizing the operator’s revenue in different scenarios, such

as in cellular networks [26] and indoor neutral-host small cell

networks [46]. Sub-optimal algorithms are applied to solve

these complicated slicing problems. The existing works [44],

[21], [26] address the communication resource slicing from

different perspectives. With emerging services and new use

cases, further investigation is needed for RAN slicing that in-

corporates multiple-dimensional network resources. However,

a multiple-resource slicing problem is much more complex

than an individual resource slicing problem, taking account

of network dynamics in traffic load and user mobility. In

addition, existing works mainly deal with services attached

to relatively loose QoS requirements, and hence developing

RAN slicing to support strict URLLC services requires further

investigation. In summary, model-based optimization meth-

ods are widely applied to solve RAN slicing problems, which

can effectively manage resources in a small-scale network

under simplified network statistical models.

Existing model-based optimization methods suffer from

two limitations: i) the prerequisite of a priori accurate traf-

fic model – Service demand statistic models are usually as-

sumed to be known in advance and accurate in most of the

existing works, such as a known Poisson process to model

service traffic of mobile users, which do not hold in practical

time-variant wireless networks, especially in highly-mobility

scenarios; and ii) high computational complexity – With the

dense deployment of wireless networks, efficient RAN slic-

ing for a large-scale network (e.g., tens to hundreds of BSs

and APs) is required. Applying existing iterative model-based

optimization methods can be unsuitable since the computa-

tional complexity greatly increases with the network scale,

such that slicing algorithms will take a long time to converge.

These limitations undermine the practicality of the existing

model-based optimization methods. Hence, an efficient RAN

52 VOLUME 1, 2020



slicing strategy for large-scale networks without accurate a

priori traffic model, is of paramount importance.

C. AI-BASED RAN SLICING

With the development of advanced AI techniques, model-free

AI-based methods become promising techniques to provide

potential benefits to address the difficulties with unknown traf-

fic models and high computational complexity. In the follow-

ing, the potential benefits and challenges of AI-based RAN

slicing are discussed in detail.

AI-based methods can provide two potential benefits for

RAN slicing. On one hand, we can use AI-based methods

to provide accurate service-specific traffic prediction. Only

with such accurately predicted service-specific traffic, RAN

slicing can effectively facilitate network resource allocation to

accommodate service demands in the near future. Recent stud-

ies show that AI-based methods, such as deep neural network

(DNN) and long short-term memory (LSTM), are capable of

accurately forecasting service-specific traffic load. For exam-

ple, a DNN is used to predict aggregated data traffic in cellular

networks based on historical service requests in [74]. For fine-

grained service-specific traffic, a prediction model based on

a modified LSTM network is presented in [50] to accurately

predict the average traffic load, while a deep learning frame-

work is proposed for the maximum service traffic prediction

in [51], which can help to reduce resource over-provisioning

and SLA violations. Based on historical user service requests

and a known user mobility model, Sciancalepore et al. develop

an unsupervised learning based forecasting module to predict

service traffic load [45], with the traffic load prediction accu-

racy depending on the accuracy of the user mobility model.

The existing preliminary studies illustrate the potential of

an AI-based prediction method to accurately capture service

traffic patterns. Such an accurate online service-specific traffic

prediction can help to eliminate the requirement of a priori

accurate traffic modeling in RAN slicing.

Moreover, AI-based methods can facilitate efficient re-

source allocation in RAN slicing. An online AI-based re-

source allocation decision process has the potential to achieve

a low complexity after an offline training procedure, which

addresses the high computational complexity challenge in the

conventional model-based optimization methods. Recently,

extensive research works have shown that AI-based methods

can be widely applied in solving complicated resource man-

agement problems in wireless networks, such as power allo-

cation for the interference management [75], resource block

allocation in cloud radio access networks (CRANs) [76],

SBS on/off scheduling in cellular networks [74], and com-

puting task offloading in space-air integrated networks [77].

In general, the resource allocation problem is formulated as

a Markov decision process (MDP), and an RL framework is

developed for the MDP problem to make online decisions. As

the essence of RAN slicing can be viewed as an optimiza-

tion problem with the objective of maximizing network per-

formance under constraints of satisfying QoS requirements,

RL-based methods can be applied. In [45], an RL algorithm

is presented to determine the optimal set of admitted slices in

order to maximize the welfare of the infrastructure provider

(e.g., 5G broker). Note that traditional RL methods, such as

Q-learning, suffer from the curse of dimensionality, which are

only suitable for RAN slicing problems in small-scale net-

works. Deep RL methods incorporate deep learning networks

in the RL framework can effectively address the complexity

issues in large-scale networks. Chen et al. present a deep

RL learning based scheduling strategy to minimize service

latency in a sliced RAN [47], using a modified deep RL

method for computing power allocation and task transmis-

sion scheduling. An enhanced RL method, deep deterministic

policy gradient (DDPG), is proposed to dynamically slice

the shared time-varying spectrum resources in indoor small

cell networks [46]. In addition to the centralized network

resource management for RAN slicing in [45]–[47], decen-

tralized RAN slicing can be formulated as a multi-tenant RAN

slicing problem, in which multiple tenants (i.e., slice owners)

contend for network resources from an infrastructure provider.

The multi-agent RAN slicing problem aims at bidding and

allocating network resources to maximize the revenue of each

tenant. The multi-tenant RAN slicing problem can be modeled

as a non-cooperative stochastic game and solved by a stochas-

tic learning algorithm [48]. A deep learning approach based

on a double deep Q network can be applied for jointly allo-

cating communication and computing resources to maximize

the welfare of each tenant [49]. The existing studies [45]–[49]

demonstrate the potential of using AI-based approaches to

address the RAN slicing problem in various contexts.

On the other hand, AI-based RAN slicing faces its unique

challenges, such as achieving strict QoS guarantee within

the RL framework. How to satisfy the QoS constraints

in the RL framework requires innovative solutions in the

RAN slicing optimization. Due to limitations of the Q-value

based mathematical modeling, the QoS requirements are usu-

ally integrated into the reward function by some predefined

weights [74]. In such a manner, strict QoS requirements can-

not be guaranteed unless appropriate weights for the QoS

requirements are determined, which is difficult to achieve,

especially when the QoS requirements are multi-dimensional.

Most of existing solutions can only satisfy soft QoS require-

ments [46]. Developing an efficient RL-based RAN slicing

algorithm while satisfying strict QoS requirements requires

further investigation.

IV. AUTOMATED RAT SELECTION

In NGWNs, multiple types of RAT will coexist. Thus, proper

RAT selection for each user is essential. RAT selection is

closely related to user association, which associates each user

with specific APs.3 In the simple scenario of a homogeneous

network, RAT selection is basically user association. How-

ever, in a general scenario with heterogeneous networks, asso-

ciating a user to an AP requires both the selection of an RAT

3Here we use APs to include all network infrastructures such as base
stations in cellular networks, and RSUs in vehicular ad-hoc networks.
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FIGURE 6. The classification of RAT selection based on the control
paradigm: Centralized, distributed, and hybrid. For distributed user
association, the case of mobility triggered network selection is illustrated
here as an example.

and the selection of a specific AP given the chosen RAT. In

this section, we use “RAT selection” as a synonym of “user

association” in the case of heterogeneous networks.

User association has been widely studied for various net-

work scenarios, especially in the case of homogeneous net-

works. Existing studies focus on user association in a multi-

tier cellular network [78], [79], under particular physical-layer

settings (such as MIMO [80], mmWave [69], energy harvest-

ing [81]), and other networking environments (such as self-

organizing networks [82], D2D communications [83], and

UAV-to-ground communications [59]). Many performance

metrics, including spectrum efficiency, energy efficiency, and

energy consumption, are considered in the study of user

association [84].

In the rest of this section, we focus on RAT selection in

slicing based NGWNs. Firstly, we give an overview of con-

ventional user association schemes. Then, we introduce RAT

selection in network-slicing based networks. After that, we

review and discuss AI-assisted RAT selection.

A. CONVENTIONAL USER ASSOCIATION APPROACHES

As shown in Fig. 6, conventional user association can be

divided into three categories: centralized, distributed, and hy-

brid based on control paradigm [60].4 A global controller

is assumed in the case of a centralized solution to collect

network-related information. The centralized method deter-

mines a network association strategy by formulating the prob-

lem based on a Markov model or through a centralized op-

timization. Using a Markov model, the network selection is

usually formulated as a joint user association and mobile

traffic offloading problem. The target is to obtain a desirable

admission and offloading policy to optimize certain system-

level metrics such as service blocking probability [85]–[87].

4Similarly, user association can also be classified as network controlled,
user controlled, and user assisted according to the control entity.

In the centralized optimization approach [21], [79], a selection

algorithm is executed each time when association decisions

need to be updated. The target is to optimize system-level per-

formance such as energy efficiency, spectrum efficiency, load

balancing, or system aggregated utility, subject to network re-

source availability and user association constraints. However,

both Markov model-based and optimization-based centralized

user association approaches have their own limitations. In the

Markov-based approach, user mobility and handoff are gener-

ally ignored (i.e., the users are assumed to associate with the

same AP until the end of a service session). Moreover, users

are treated without any differentiation, i.e., no consideration

of user preference and service priorities in general. On the

other hand, the centralized optimization method suffers from

scalability and efficiency issues. In addition, the optimality

is usually achieved at the cost of signaling overhead in the

information gathering and the policy enforcement stages.

Distributed user association has been studied using var-

ious methods, including multiple attribute decision making

(MADM) [88], MDP [89], fuzzy-logic [90], game theory (e.g.

cooperative game [91], and non-cooperative game [80]). Un-

der the distributed setting, network attributes are collected or

estimated at the user side. The user then chooses the AP with

the best performance. Compared to the centralized method,

the distributed selection scheme can usually be implemented

with lower complexity. Further, a decentralized approach can

reduce the signaling overhead at the cost of suboptimal per-

formance. The limitations of distributed selection schemes

include that i) non-cooperative user association can lead to

network load oscillation when multiple devices try to asso-

ciate and disassociate with the same AP concurrently; and

ii) the design of effective information exchange is necessary

for distributed cooperative user association but can be very

challenging.

The hybrid selection can achieve a tradeoff between net-

work performance and signaling overhead, which can be im-

plemented as a mixture of centralized and distributed control.

In [92], Elayoubi et al. solve the user association problem

using a Bayesian game. Two types of players are involved,

which represent the different networks and the users. Each

user selfishly maximizes their own utility without any user-

level cooperation, while each network cooperates with users

within its coverage by broadcasting its current status (such as

the traffic load), to maximize the total utility of its users. Such

a design may result in multiple Nash equilibria. Therefore,

the information that the network needs to broadcast should

be carefully designed, so that an equilibrium with a high

efficiency can be achieved.

B. RAT SELECTION IN SLICING BASED HETEROGENEOUS

NETWORKS

Figure 7 shows an envisioned scenario of NGWNs in the

presence of a SDN controller. In such networks, multiple types

of RATs, multiple types of APs, multiple types of UEs with

various service requirements, and multiple types of resources

jointly contribute to an unprecedented level of heterogeneity.
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FIGURE 7. An illustration of RAT selection with multiple services in
heterogeneous wireless networks.

Next, we discuss the main differences of RAT selection un-

der the slicing based NGWNs from that in conventional user

association.

Firstly, from the control perspective, the capacity of the

SDN controller for information collection and centralized

control should be leveraged in the RAT selection. It can be

seen from Fig. 7 that a global view of the network is enabled

through the deployment of the SDN controller. Network status

information such as current network loads, user service de-

mands, and user distribution, as well as user status information

such as user location, speed, and moving direction can be ob-

tained by the SDN controller for centralized decision making.

However, such centralized control is not scalable and can yield

significant signaling overhead. Therefore, a hybrid control

architecture is preferred in the NGWNs, in which users make

distributed RAT selection decisions at a small timescale,

while the centralized control is triggered at a large timescale.

Secondly, given the SDN/NFV enabled network slicing

architecture [24], each slice is assigned with only a portion

of physical resources based on its target services. Therefore,

the resource availability and resource utilization level of each

slice become a concern and need to be accounted for properly

via the RAT selection. Further, considering network slicing,

it is possible that a user is involved in multiple network

slices [93]. The RAT selection in such a case requires further

investigation.

Thirdly, new types of network resources are emerging,

which can affect the RAT selection. Traditional network in-

frastructures (e.g., cellular BSs and WiFi APs) only have

the communication functionality. As the networks continue

to evolve, these infrastructures will support more and more

caching and computing services. Such a trend leads to diverse

network resources as compared to that in previous genera-

tions. In addition, an unprecedented level of network and ser-

vice heterogeneity is expected and, correspondingly, the com-

plexity of solving the RAT selection problem will increase in

the NGWNs.

C. RESEARCH CHALLENGES

Based on the preceding discussion, several research chal-

lenges related to RAT selection in the NGWNs are identified

as follows.

1) SERVICE MODELING

The dependence between service requirements and the cor-

responding demands for multi-dimension resources has not

been modeled explicitly in conventional user associations. In

the literature, users can either select the network based on a

radio link quality, i.e., the always-best-connected (ABC) [94],

or associate with a nearby AP that has the content of their

interest in its cache [95] or a nearby AP that has high com-

puting capability [61]. However, the network selection in

NGWNs should be determined based on multi-dimensional

resource availability for communication, caching, and com-

puting, considering that different services can have totally

different requirements on these three types of resources. For

example, video streaming services require most attention to

the communication resources (e.g., the link quality and the

available bandwidth); vehicles downloading high-definition

maps should connect to an AP which caches contents of their

interest; for VR applications [96] (e.g., Pokémon GO), com-

puting resources are of the foremost concern. As a result, the

demand for different resources will impact the RAT selection.

Some recent works provide ideas on how to model tasks of

different services. Mao et al. model a computing task using

three parameters: offloaded task size (in bits), computation in-

tensity (in CPU cycles per bit), and completion deadline [97].

A VR related task modeling with three-dimension resources

is proposed in [98], [99], in which cached contents are used

as inputs of the computing stage. However, a general model

to characterize the dependence between service requirements

and multi-dimensional resources is not available yet. The

complexity in developing such a service model comes from

the variety of services and their diversified requirements.

2) RESOURCE SLICING

Different RATs can use different resource allocation schemes

and yield different resource utilization. Therefore, resource

allocation and RAT selection are mutually dependent, and

joint network resource allocation and user association should

be considered. Existing studies on joint computing resource

allocation and user association [100], [101], joint caching re-

source allocation and user association [62], or joint allocation

of the communication, computing and caching resources and

user association [63], [64], do not consider network slicing.

On the other hand, current works on network slicing consider
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focus on one type of RAT and/or only the communication re-

source [21], [102], which limits their applications in NGWNs

with multiple RATs and multiple resources.

After RAN slicing in the planning stage, multiple slices are

established. Within each network slice, RAT selection adjust-

ments may be required in the scheduling stage due to user mo-

bility, network load distribution dynamics, scheduled power-

off of APs [74], and so on. For such adjustments of RAT

selection within a slice, it may be possible to extend some ex-

isting works on user association without considering network

slicing, to develop an RAT selection adjustment solution.

3) USER MOBILITY

Mobility is an essential issue in the RAT selection. A

properly designed association algorithm should avoid

unnecessary handoffs, since a re-association procedure

incurs extra signaling and excessive execution latency. To

avoid unnecessary handoffs, RAT selection can be based

on predicted user mobility. Many state-of-the-art prediction

algorithms have been proposed to estimate user trajectory,

cell dwelling time, and other mobility-related information,

using data-based [103] and model-based [104] mobility

prediction methods. With the prediction of user mobility,

a proactive network resource adjustment can be designed

to achieve a timely and smooth handoff. For instance, the

networks can adaptively or proactively adjust their resource

allocation, using a mobility-aware computing strategy [105]

and/or caching strategy [106]. However, these mobility-aware

resource allocation strategies assume that the user association

policy is known and fixed, which is inappropriate in the

NGWNs. In order to efficiently utilize network resources, user

association should be considered jointly with mobility-ware

network resource allocation. For example, a joint user

association and content placement in an edge caching scenario

should account for user mobility [107]. To jointly consider

both mobility and resource allocation, the RAT selection

problem is much more complex than the conventional one.

Moreover, due to user mobility, a communication or

computing task may not be completed while a user is

temporally connected to an AP. As a result, a task handover

from the original AP is necessary. For example, when a user

is moving out of the coverage of an AP and thus cannot

finish downloading a content, it should connect to another

AP that caches the same content if possible, to continue the

downloading task. Similarly, in order to preserve service

continuity in a computation task, the original task can be

decomposed into several subtasks. Each subtask is offloaded

to an AP with computing capacity, so that it can be finished

before the user moves out of the coverage of its current AP.

Therefore, the current user task completion status should be

incorporated in the RAT selection in the scheduling stage.

4) MULTI-CONNECTIVITY

In addition to the multi-mode capacity which allows only one

RAT connection at any time, multi-connectivity/multi-homing

terminals have the ability to support multiple RAT

connections simultaneously [108], [109]. Using concurrent

connections for a single service has the benefit of improving

service reliability [110]. The multi-homing related RAT

selection has been investigated from different perspectives.

From the perspective of networks, the service operator aims to

optimally allocate downlink (DL) bandwidth among multiple

radio connections to support users with different services in a

multi-RAT environment [108]. In contrast, from the perspec-

tive of a single user, the goal is to enhance QoS by optimally

distributing packets among multiple radio interfaces during an

uplink (UL) transmission [109]. In general, an RAT selection

problem for multi-homing terminals is much more compli-

cated than a problem of multi-mode, since we need to deter-

mine how many connections to establish and which set of the

available radio networks to connect for the user. Preliminary

work on multi-homing connection does not consider network

slicing and focuses only on communication resources [111].

D. AI-BASED RAT SELECTION

Here, we first review optimization-based solutions, and then

the learning-based solutions, followed by a discussion of the

challenges in applying AI to RAT selection. Table 3 summa-

rizes a few related works on user association in heterogeneous

networks. Some works adopt optimization techniques, while

others use learning-based approaches.5

Optimization-based approaches for solving user association

problems can be categorized into two classes: deterministic

optimization based approaches [67], [69], [79] and stochastic

optimization based approaches [98]. Both classes have the

following limitations. Firstly, user association related prob-

lems, in general, are formulated as combinatorial optimiza-

tion problems, which are non-convex and usually NP-hard.

Therefore, applying optimization-based methods can result

in significant computation latency and overhead [97]. Even

if the optimal solution can be found, the cost of finding the

solution can be prohibitive as the network size or the set of

service types grows due to the exponentially increasing com-

plexity. Secondly, optimization-based approaches rely on the

prior knowledge of the network (e.g., network topology, user

density, mobility, channel statistics, and service requirements)

and/or the assumptions made for mathematical tractability

(e.g., Poisson arrivals, exponential service time, uniform user

distribution, and so on). When network dynamics vary, estab-

lished theoretical models may no longer be applicable and the

performance of a previously obtained association solution can

degrade significantly.

Different from optimization-based approaches, model-free

RL provides an alternative approach for finding the optimal

solution of a problem through “trial and error” in the inter-

actions with the networking environment. According to the

type of the learning agent, RL-based RAT selection can be

5The Markov chain-based approach is considered as a special case of
optimization, where the objective is to optimize the steady-state performance
of a network.
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classified into two classes. The first class chooses individ-

ual users as the learning agents. In [112], a distributed Q-

learning-based handoff is proposed to optimize the long-term

discounted rewards of users. RL can also be combined with a

traditional RAT selection algorithm for performance improve-

ment. In [113], RL is adopted by users to learn the optimal cell

range extension bias with the global objective of minimizing

the total number of devices in outage. In the scenario of edge

computing, RL can help with user association decisions to im-

prove computing energy efficiency [61]. The second class of

RL-related works assume the APs as the learning agents. For

example, the BS can be the learning agent to achieve load bal-

ancing through user association in a vehicular network [60].

There are technical challenges in developing ML-based

approaches for solving the RAT selection problem. The un-

derlying MDP model may not accurately capture the RAT au-

tomation problem. It is possible that only partial information

is available, or there exist observation errors. In such cases,

a generalized partially observable MDP (POMDP) model can

be adopted [114]. Also, deriving models and metrics to char-

acterize the performance, or even a performance bound, of the

learning algorithm is not an easy task. Most learning algo-

rithms are evaluated only numerically. Sun et al. present proof

on the performance bounds for their proposed learning algo-

rithm in [61]. However, a unified framework on the conver-

gence and performance analysis of RL is yet to be developed.

V. MOBILE EDGE CACHING AND CONTENT DELIVERY

As mentioned previously, resources in NGWNs will extend

beyond communication resources and include caching re-

sources. Mobile edge caching leverages storage spaces at the

network edge to cache popular contents within the RAN.

As a result, mobile edge caching can help to reduce content

retrieval time for users and alleviate backhaul congestion for

the network [115]. As mobile edge caching is usually limited

by the cache size, it is necessary to optimize caching strate-

gies for maximal caching resource utilization. In this section,

we present research challenges of mobile edge caching in

conventional and network-slicing based wireless networks,

respectively. The related research works are reviewed, and

future research directions on AI-based mobile edge caching

are discussed.

A. RESEARCH CHALLENGES

There are two main research issues in mobile edge caching,

i.e., content placement and content delivery. Content place-

ment determines which contents to be cached at the edge,

while content delivery determines how to deliver cached con-

tents to users [116]. The first major challenge in content

placement roots from time-variant content popularity and/or

an evolving content catalogue. If the content popularity could

be accurately estimated, the problem of maximizing cache

hit rate would be simple. However, it can be very difficult to

predict the content popularity, especially when the popularity

demonstrates spatial-temporal variations [117]. The second

challenge in content placement is due to the multi-tier cache

system with overlapped spatial coverage in heterogeneous

wireless networks [118]. When content delivery is considered,

the joint optimization of communication and caching strategy,

which corresponds to a complex decision-making problem,

becomes another major challenge.

NGWNs demonstrate heterogeneity in both resources and

service types. In the network-slicing based architecture, the

resources in RAN, including communication, caching, and

computing resources, are orchestrated and sliced to support

the corresponding virtual networks with QoS guarantee [119].
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FIGURE 8. Overview of caching-centric resource management in a network-slicing based architecture.

An overview of caching-centric resource management in a

network-slicing based architecture is illustrated in Fig. 8. Af-

ter slicing the resources in the planning stage, the resources

will be further scheduled in each slice to improve user ser-

vice experience. In resource scheduling, in addition to content

placement and content delivery, joint caching and commu-

nication resource management should be taken into account.

Under this network-slicing based architecture, new challenges

in content placement and content delivery are summarized as

follows.
� Heterogeneity among different slices: The physical

cache for an edge entity can be sliced into several log-

ical caches for serving different applications with di-

verse QoS requirements. Different from the conventional

caching, content requests are accommodated into differ-

ent slices in NGWNs. User access patterns and popu-

lar contents in different virtual networks can have dis-

tinct characteristics. For example, in IoT applications,

users usually fetch contents from a static content cata-

logue periodically while, in mobile applications, users

typically request contents from an evolving catalogue.

Hence, designing a customized content placement policy

to support diversified virtual networks is challenging and

requires further investigation;
� Dynamic cache size: By resource virtualization, the

cache size for a slice can be modified as a result of

dynamic slicing on a large timescale. The cache place-

ment policy should be updated dynamically to adapt

to the variable cache size. When the cache size allo-

cated to a slice is sufficient, contents with a large size

can be cached to reduce the backhaul usage. Otherwise,

popular contents with a small size should be cached to

improve the cache hit rate. Thus, in addition to time-

variant content popularity and evolving content cata-

logue, new uncertainty is introduced due to the variable

cache size, which can make the content placement prob-

lem intractable;
� Multi-resource allocation: MEC is expected to be a basic

element in NGWNs. The contents cached by an edge

will not only include popular contents such as videos,

but also include the essential files for implementing

computing functions. To improve the computing service

performance, the allocation of computing, caching, and

communication resources should be jointly optimized in

terms of content delivery. However, the multi-resource

allocation problem can be too complicated to solve in

real-time using model-based approaches.

B. STATE-OF-THE-ART CACHING SOLUTIONS

Here, we review existing works on content placement and

content delivery. For content placement, we summarize re-

search efforts on content updating strategies at a single

caching server. For content delivery, we focus on research

works for joint caching and communication resource manage-

ment. A summary of the literature is provided in Table 4.

1) CONTENT PLACEMENT

Content popularity is time-varying in general and, hence, the

cached contents stored at a server need to be updated dynam-

ically. The main goal of content placement is to maximize the

cache hit probability. As illustrated in Fig. 8, there are two

types of caching policies to update the contents in a cache,
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namely the reactive caching policy and the proactive caching

policy.

In a reactive caching policy, the edge node determines

whether or not to cache a content after a request for that

content arrives [127]. A common assumption is that the con-

tent popularity follows a stochastic distribution, such as Zipf

distribution [125]. However, the popularity of contents varies

over time, and different types of contents can exhibit a variety

of popularity evolution patterns. To adapt to non-stationary

traffic and content popularity, content updating policies have

been proposed. For example, the least recently used (LRU)

policy replaces the least recently requested content in the

cache when the cache is full. To improve the cache hit rate, the

content popularity can be estimated according to the content

request during a period of time [120]. However, in practice,

the reactive caching policies adapt slowly to changes in con-

tent popularity [116], [128].

Proactive caching policies aim to prefetch popular con-

tents that are likely to be requested by users ahead of time.

Therefore, proactive caching can mitigate backhaul usage

if prefetching is scheduled during off-peak hours. Proactive

caching is illustrated in the bottom part of Fig. 8, where his-

torical content requests used for predicting popular contents

are added into a data set as records. Future content requests

can be predicted by exploiting the spatio-temporal association

among the records in the data set, such that the edge server

can proactively cache contents for improving the cache hit

rate [123]. Another category of solutions does not directly

predict requests, but formulates an MDP problem to find an

optimal content placement policy which maximizes the cache

hit rate in the long term [40], [64], [126]. Since the content

placement problem has large state-action space and unknown

state transition probabilities caused by a dynamic network

environment, it is difficult to solve the MDP problem by

the conventional dynamic programming method. RL can be

utilized to solve the MDP problem according to the reward

feedback from the network environment. However, RL has

some limitations in solving the content placement problem.

The first limitation is the Markov property of the underlying

MDP, which is assumed when RL is applied. As a result,

it is difficult for RL to explore the temporal correlation in

a sequence of historical user requests. Second, most works

using RL for optimizing caching strategies assume that the

catalogue of contents is known in advance, which can be

unrealistic for the scenario in which the content catalogue

changes dynamically. Therefore, in the case when new con-

tents dynamically emerge, the RL based approaches in most

existing studies, such as [64], [126], cannot be applied since

they cannot predict the popularity of new contents. One po-

tential solution to handle a changing content catalogue is to

add or remove contents based on their lifetime, as proposed

in [40], so that caching decisions can be made for an evolv-

ing catalogue of contents. However, such an approach yields

another challenge, i.e., estimating the lifetime of contents. In

addition, existing works predict content requests according to

all content requests received at the server, without considering

the type of services or applications. However, such granu-

larity is not fine enough in a network-slicing based network

architecture as different slices may have different traffic and

content popularity patterns.

In summary, both reactive and proactive content place-

ment approaches aim to improve the cache hit rate. A reac-

tive caching policy can handle a varying content catalogue

or evolving content popularity via an online content update,

while a proactive caching policy exploits historical user re-

quests and predicts the content popularity offline. Since the

pattern of the evolving content popularity can become more

evident after the network resources are sliced based on service

types, proactive caching can be a potential approach to find a

customized content placement policy for virtual networks. In

addition to the spatio-temporal features of user requests, other

features can be excavated to further improve the performance
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FIGURE 9. An illustration of the relation between caching placement and
content delivery.

of service-specific content request prediction, such as the QoS

requirements and application types for the corresponding vir-

tual network. In addition, existing works generally assume

that all contents have an identical size, which is not practical.

The content size can substantially affect caching performance

due to the dynamic slicing of the physical cache. Therefore,

the trade-off between the backhaul usage decrease and cache

hit rate improvement needs to be studied in the context of

dynamic slicing of the physical cache.

2) CONTENT DELIVERY

The main goal of content delivery is to reduce content

transmission time. In order to achieve this objective, except

caching popular contents in the edge servers, the average com-

munication delay between users and the edge server should

be minimized. A trade-off between the transmission delay

and caching service coverage is discussed in [125], where

a cache-enabled UAV is deployed as an edge server. When

the UAV is deployed at a high altitude, it can cover a large

number of users and reduce content delivery time for these

served users. However, the data rate of content delivery from

the UAV to the users can be low, due to the high altitude of the

UAV. By contrast, when the UAV is deployed at a low altitude,

the data rate can be improved, but fewer users can benefit from

the cached contents due to the reduced coverage of the UAV.

In a more general scenario, e.g., when there are multiple

edge servers connected with each other, a dependency relation

between cache and communication resources emerges across

the servers [124]. As shown in Fig. 9, in addition to deter-

mining which content to be cached, the cooperation among

edge servers and the network topology should be considered

in the content placement and delivery problem. The edge

servers can cooperate with each other in content placement

and delivery in order to improve the overall cache hit rate and,

as a result, reduce the backhaul congestion. A user can access

contents from both its own server and, via the relay of its

server, other edge servers (shown as the virtual link in Fig. 9).

The joint problem of content placement and routing among

the servers can be formulated as a mixed-integer problem,

which generally has high complexity. For example, a Hopfield

neural network (HNN) framework can be explored to solve the

problem of routing without considering resource allocation in

cooperative caching [63]. However, solving the joint resource

allocation and routing problem in a scalable manner for coop-

erative caching with multiple edge servers remains an open

research problem. As the network topology becomes more

complex in NGWNs, the association between users and edge

devices should be considered, while deciding content place-

ment, in order to minimize the content delivery delay. In this

case, a user can connect with multiple edge servers that cache

popular contents. The trade-off between caching diversity and

spectrum efficiency is investigated in [129], while cooperative

caching and transmission is considered in [130] in the context

of coordinated multi-point transmission. In addition, with net-

work topology dynamics, the optimal content placement and

delivery decision can vary significantly [131]. The network

connectivity graph is analyzed in [118] for allocating content

to multiple edge servers given the network topology and the

content popularity. When the number of users increases, the

optimal content placement policy becomes intractable.

With the emergence of MEC in 5G networks, contents

stored in the cache include the files and data for imple-

menting various computing functions. To satisfy QoS re-

quirements of MEC, the resources (including communica-

tion, caching, and computing resources) should be jointly

optimized. As mentioned, RL is known for solving complex

decision-making problems and has been adopted in existing

studies to jointly allocate caching, computing, and commu-

nication resources [64], [126]. While the resulting caching

strategies obtained using RL can achieve a near-optimal per-

formance, they cannot handle an evolving content catalogue

in general. Moreover, existing works assume that computing

and caching resources can be allocated independently, while

computing tasks can only be executed when the corresponding

files and data are stored at the edge. Such dependency can

further complicate the content placement and computing of-

floading decision.

In summary, the essence of content delivery is a multi-

dimensional resource management problem. In a conventional

caching scenario, communication and caching resources are

jointly optimized to balance the content delivery time and

the cache hit rate. In the network-slicing based architecture,

computing resources at the edge are utilized to perform

latency-critical tasks in virtual networks. Thus, the concept

of content delivery is extended to computing offloading and

execution. The multi-resource allocation problem incurs

high complexity in problem solving, while the conventional

optimization techniques are hard to make real-time caching

and offloading decisions. Moreover, the dependency among

caching, computation, and communication resources needs

to be further investigated. The caching performance is not

only restricted by sliced caching resources (i.e., the size of

logical caches), but also constrained by sliced computing and

communication resources. Last, users with high mobility can

fail to download the content from or offload their tasks to

the edge due to intermittent connections [119]. Thus, user
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mobility prediction should be incorporated to improve the

performance of content delivery.

C. FUTURE RESEARCH DIRECTIONS IN AI-BASED CACHING

Given the aforementioned challenges, next, we discuss the

potential applications of ML for caching from three aspects:

content popularity prediction in proactive content placement,

dynamic content placement policy adjustment, and multi-

resource allocation in content delivery.

For content popularity prediction, ML based approaches,

e.g., DNN, can extract features from recorded content re-

quest data to facilitate the content popularity prediction. In

the network-slicing based architecture, a local SDN controller

can be deployed to monitor content requests and associate

the requests with user IDs, request time instants, and lo-

cations [132]. Given a sufficiently large data set of request

records collected by the controller, DNN can utilize the

records for predicting the content requests in future. Com-

pared with conventional statistical methods, such as linear

regression or Kalman filter, DNN has the advantage of ex-

ploiting a large data set to make more accurate predictions.

However, the performance of content popularity prediction

can be degraded by many factors, such as an evolving con-

tent catalogue or time-variant content popularity. As a variant

of DNN, recurrent neural network (RNN) has been widely

adopted for prediction from historical data due to its ability

to track time-variant patterns [133], [134]. Compared to the

conventional neural networks, RNN applies internal memory

to capture temporal correlations in the input data. Therefore,

RNN has been adopted to track time-variant content popular-

ity in the literature [123]. In addition to the temporal corre-

lation in the content requests, ML based approaches can be

used to capture the spatial correlation in the requests. Con-

volution neural network (CNN) can be a potential tool for

capturing such spatial correlations. Despite the various advan-

tages, several issues need to be addressed while developing

ML based approaches for caching in future communication

networks. Firstly, while CNN and RNN have the potential

to predict future content requests with a high accuracy based

on spatio-temporal features, deploying CNN/RNN based pre-

diction modules for content placement can lead to a high

computation load. This, in turn, requires a characterization

of the improvement in caching performance versus the result-

ing computation load. As a result, a trade-off between com-

putation and caching performance needs to be investigated.

Secondly, in the network-slicing based architecture, content

requests are distributed into different virtual networks. Conse-

quently, deploying one neural network as an open module that

all slices can use is preferred in terms of complexity, but may

not adapt to the specific characteristics of individual slices. By

contrast, deploying one neural network for each slice allows a

customized prediction module for each service or application,

but can lead to prohibitive complexity.

For caching policy adjustment, RL is a potential approach

to update the content placement policy in a dynamic environ-

ment with flexible cache size for each slice and time-variant

content request pattern. The instantaneous cache size, cached

contents, requested content, etc., can be modeled as states, and

the content update can be modeled as actions. The resulting

MDP model with unknown state transition probabilities can

explore RL techniques to find an efficient content updating

policy [135]. However, the assumption of an underlying MDP

model, and the associated Markov property in state transi-

tions, can be impractical. The RL based approach may not

fully capture the correlations of content requests over the time

domain. In addition, as mentioned in Subsection V.B, the

ML algorithm should be able to handle an evolving content

catalogue while updating the caching policy. Devising such

an ML algorithm without incurring significant complexity,

e.g., having to deploy an additional module for predicting

the lifetime of all contents, remains an open and challenging

problem.

For content delivery, deep RL has a potential to provide a

tractable approach to coordinate and allocate multiple types

of resources, including communication, computation, and

caching. While the state-action space of multi-dimensional

decision making in joint caching, computing, and communi-

cation resource allocation can be too large for conventional

RL, deep RL adopts deep learning techniques to estimate

policy and value function, and thus can handle the large

state-action space from the joint allocation of multiple re-

sources for content delivery. However, classic deep RL has

limitations when dealing with constrained decision-making

problems, in which the dependency among the resources ex-

ists and introduces constraints in resource allocation. For ex-

ample, a user with a computing task to offload prefers an

edge server that caches the data and files for this computing

task. In such a case, the content placement at the edge server

yields a constraint on the task offloading decision of the user.

Constrained MDP can be a possible model for incorporat-

ing the constraints [136], while how to develop a deep RL

based solution for the constrained MDP problem needs further

investigation.

VI. CONCLUSION

In this paper, we have illustrated the network-slicing based

architecture, focusing particularly on the RAN, and elaborated

how AI can potentially empower this architecture for NG-

WNs. Through the investigation of three research problems,

i.e., RAN slicing, automated RAT selection/user association,

and content placement and delivery, we have demonstrated

new challenges, as a result of the heterogeneity, dynamic en-

vironment, and/or strict and diversified service requirements,

in network management and resource orchestration under the

network-slicing based architecture. Most of these challenges

cannot be addressed by directly extending existing research.

Therefore, it is necessary to develop novel models, technique

tools, and/or problem-solving approaches. Summarizing re-

lated research efforts, we have demonstrated the potential

approaches and benefits in the application of AI for solv-

ing the three problems. Meanwhile, we have also noted the

challenges of applying AI-based approaches, e.g., handling
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non-stationary network environment. Through the three con-

sidered problems, this paper takes an initial step towards un-

derstanding the development of models and algorithms for

intelligent network management and resource orchestration in

network-slicing based NGWNs.
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