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AI-based chest CT semantic
segmentation algorithm enables
semi-automated lung cancer
surgery planning by recognizing
anatomical variants of
pulmonary vessels
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Background: The recognition of anatomical variants is essential in preoperative

planning for lung cancer surgery. Although three-dimensional (3-D)

reconstruction provided an intuitive demonstration of the anatomical

structure, the recognition process remains fully manual. To render a

semiautomated approach for surgery planning, we developed an artificial

intelligence (AI)–based chest CT semantic segmentation algorithm that

recognizes pulmonary vessels on lobular or segmental levels. Hereby, we

present a retrospective validation of the algorithm comparing surgeons’

performance.

Methods: The semantic segmentation algorithm to be validated was trained on

non-contrast CT scans from a single center. A retrospective pilot study was

performed. An independent validation dataset was constituted by an arbitrary

selection from patients who underwent lobectomy or segmentectomy in three

institutions during Apr. 2020 to Jun. 2021. The golden standard of anatomical

variants of each enrolled case was obtained via expert surgeons’ judgments

based on chest CT, 3-D reconstruction, and surgical observation. The

performance of the algorithm is compared against the performance of two

junior thoracic surgery attendings based on chest CT.
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Results: A total of 27 cases were included in this study. The overall case-wise

accuracy of the AI model was 82.8% in pulmonary vessels compared to 78.8%

and 77.0% for the two surgeons, respectively. Segmental artery accuracy was

79.7%, 73.6%, and 72.7%; lobular vein accuracy was 96.3%, 96.3%, and 92.6% by

the AI model and two surgeons, respectively. No statistical significance was

found. In subgroup analysis, the anatomic structure-wise analysis of the AI

algorithm showed a significant difference in accuracies between different lobes

(p = 0.012). Higher AI accuracy in the right-upper lobe (RUL) and left-lower

lobe (LLL) arteries was shown. A trend of better performance in non-contrast

CT was also detected. Most recognition errors by the algorithm were the

misclassification of LA1+2 and LA3. Radiological parameters did not exhibit a

significant impact on the performance of both AI and surgeons.

Conclusion: The semantic segmentation algorithm achieves the recognition of

the segmental pulmonary artery and the lobular pulmonary vein. The

performance of the model approximates that of junior thoracic surgery

attendings. Our work provides a novel semiautomated surgery planning

approach that is potentially beneficial to lung cancer patients.
KEYWORDS

pulmonary vessel, artificial intelligence, semantic segmentation, surgery planning,
lung cancer
Introduction

Lung cancer is one of the leading causes of cancer-related

morbidity and mortality worldwide, with an estimated 2.2

million new cases and 1.8 million deaths (1). With the

increased frequency of computed tomography (CT) screening,

especially thin-section CT, the early detection rate of small-sized

lung cancer and ground-glass opacity has dramatically increased

(2). Anatomic lobectomy and segmentectomy are the main

curative treatments for early-stage lung cancer, especially

segmentectomy, which preserves more lung tissue (3, 4).

However, pulmonary arteries and veins are highly variable;

understanding the anatomical structure of each patient during

preoperative surgical planning is crucial yet challenging. The

misclassification of segmental or even lobular vessels can occur

even for experienced surgeons, which can lead to bleeding,

increased surgical resection, or other catastrophic consequences.

Traditionally, chest CT is the most common tool for

preoperative planning that typically consists of three steps: 1.

3-D reconstruction; 2. variant recognition; and 3. intraoperative

projection. In the first step, surgeons rely on their own spatial

imagination or 3-D reconstruction software to perform a 3-D

reconstruction of anatomical structures. Second, normal

anatomy and anatomical variations require careful

identification, which relies heavily on the experience of the

surgeon. Third , the surgeon needs to project the
02
reconstruction of the preoperative 3-D anatomy to the

intraoperative anatomy, that is, the surgeon matches and

identifies the anatomy seen during the operation according to

the preoperative 3-D reconstruction. All three steps rely solely

on human effort, which impairs the accuracy and efficiency of

preoperative planning. The recent development of artificial

intelligence (AI), however, has shown potential in optimizing

this practice.

AI algorithms have been widely applied in every aspect of

medicine recently (5–9). From the screening of the pulmonary

nodule (10) to the diagnosis of skin cancer (11) and diabetic

retinopathy (12) and even in the development of new treatment

drugs (13–15), utilizing the AI algorithm has been

revolutionizing. Among all applications, the pattern

recognition of medical imaging is the most reliable, of which

semantic segmentation excels due to its interpretability and

robustness in highly specialized tasks.

According to literatures, semantic segmentation

algorithms are capable of detecting red blood cells for sickle

cell disease in microscopic images (16); deciding the tumor

border in pathological images (17, 18); recognizing the

infection area of coronavirus disease of 2019 (COVID-19)

lesions on chest CTs (19); distinguishing the brachia plexus,

fetal head, and lymph node from ultrasound images (20);

segmenting the thalamus, caudate nucleus, and lenticular

nucleus in brain MRI (21); and diagnosing gastrointestinal
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cancer margins during endoscopy (22). Aiming to optimize

the surgical planning process, we have previously developed a

fully automated 3-D reconstruction algorithm (23) to classify

and reconstruct the pulmonary artery and vein. The

performance of the algorithm is the same as manual

reconstruct ion. Although the granular i ty of these

applications is coarse, the clinical significancy is solid.

In this study, we go one more step into the surgical planning

process. We developed a fine-grained chest CT semantic

segmentation algorithm that systematically identifies 18

segmental pulmonary arteries and 5 lobular pulmonary veins.

We evaluated the independent performance of the algorithm

using the CT data from 27 patients who had undergone

lobectomy or segmentectomy at three medical institutions. This

algorithm would facilitate the realization of a semiautomated

surgical planning process, which is one of the backbones for the

development of a fully automated thoracoscopic surgical system.
Methods

Patient enrollment

Patients who underwent lobectomy or segmentectomy at

Peking University People’s Hospital, Shanghai Pulmonary

Hospital, and the Second Xiangya Hospital of Central South

University between Apr. 2020 to Jun. 2021 were retrospectively

reviewed. The inclusion criteria were as follows: (1) preoperative

thin-section (<1.25 mm), either non-enhanced chest CT images or

contrast-enhanced CT chest CT images available, (2) the time

interval between CT examination and surgery of less than 1

month, and (3) the video of surgery and preoperative 3-D

reconstruction of pulmonary vessels and bronchi available.

Among patients who met the above criteria, 27 cases representing

most of the common lobectomies and segmentectomies were

arbitrarily selected from three participating centers.
Frontiers in Oncology 03
Chest computed tomography acquisition

All enrolled patients underwent a chest CT examination at

most a month prior to surgery. The whole lung scan from the

thoracic entrance to the bottom of the lung was completed after

one inhalation and holding breath using CT instruments from

GE Healthcare (Chicago, IL, USA), Philips Healthcare

(Amsterdam, Netherlands), Siemens Healthineers (Forchheim,

Germany), and United Imaging (Shanghai, China). CT images

were reconstructed by using different convolutional kernels with

a layer thickness of less than 1.25 mm.
Deep learning algorithm for automated
semantic segmentation of
pulmonary vessels

Based on the automatic 3-D reconstruction system of

pulmonary blood vessels and bronchi (InferOperate Thoracic

Surgery) (23), a pulmonary blood vessel semantic segmentation

system was developed using deep learning (DL) algorithms for the

automatic segmentation and name of the segmental pulmonary

arteries and lobular pulmonary veins, aiming to provide guidance

for surgery and promote the application of anatomical lobectomy

and segmentectomy. In brief, segmental arteries and lobular veins

were manually and concisely segmented based on the automatically

constructed 3-D blood vessels by senior thoracic surgeons and then

used for training the model. The ResUNet was utilized as the

backbone, and the label propagation algorithm was employed to

reduce the misclassification of segmental arteries and lobular veins;

a schematic roadmap is shown in Figure 1. Label propagation is

usually utilized to classify a massive number of unlabeled examples

in the presence of a few labeled examples (24, 25). In our scenario,

the label of each pixel is propagated to adjacent pixels according to

the similarity. During each step of propagation, each pixel adds the

label values propagated by its surrounding pixels according to the
FIGURE 1

Workflow diagram of the deep learning (DL)-based pulmonary blood vessel segmentation system.
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propagation probability and updates the probability distribution of

their respective label types. By keeping the labels of known pixels

unchanged at the initial value and then restarting a new round of

propagation until each pixel of different categories is divided into a

range, the color mixing of blood vessels could be well reduced. In

this multicenter study, we validated the robustness and

generalizability of the pulmonary blood vessel segmentation

system by examining its segmentation performance on either

plain CT scans or contrast-enhanced CT scans.
The golden standard for anatomical
structures compositions of
targeted lesions

To quantitatively evaluate the performance of the

pulmonary blood vessel segmentation system, the golden

standard for calculating accuracy was firstly established by

three senior thoracic surgeons with CT images, surgery videos,

and preoperative 3-D reconstructions as references. Taking the

clinical needs into account, the anatomical structures related to

target lesions and their relationships were analyzed. Two senior

thoracic surgeons reviewed these cases back to back, and

disagreements would be settled by a third senior thoracic

surgeon. To simplify the establishment procedure, possible

anatomical variants that represent the spatial pattern of

relevant anatomical structures were enumerated in a table,

which is inherited from our previous study with minor

simplification (23) and made available to the surgeons

(Supplementary Table 1).
Reader study

To comprehensively analyze the performance of the

pulmonary blood vessel segmentation system, we invited two

junior attendings in thoracic surgery at Peking University

People’s Hospital to participate in a reader study in

comparison to the AI algorithm. The recognition by both the

algorithm and junior attendings is based on chest CT. The

recognized anatomical variant is selected or described based

on Supplementary Table 1. By comparing with the golden

standard, recognition accuracy was calculated to evaluate their

performance and compare it with the DL-based system.
Evaluation index and statistical analysis

Accuracy was utilized as the evaluation index in the

independent performance test and reader study, including

anatomical structure-wise accuracy and case-wise accuracy.
Frontiers in Oncology 04
The former was defined as the correctly segmented/recognized

targeted pulmonary vessel structures in the 3-D reconstruction

divided by the total related structures, while the latter was

achieved by averaging the anatomical structure-wise accuracy

of each case. Patients’ demographics and clinical features (age,

sex, and smoking history), tumor characteristics (tumor

location, tumor size, and histology), and surgery characteristics

(blood loss and operation time) were analyzed. Continuous data

with normality distribution and the homogeneity of variance

were analyzed using one-way ANOVA; otherwise, the Mann–

Whitney test or Kruskal–Wallis test was utilized. Meanwhile, the

categorical variables were processed by chi-square or Fisher’s

exact tests as appropriate.
Results

Clinical characteristics

To validate the performance and practice of the DL-based

semantic segmentation algorithm, we arbitrarily selected 27

patients who underwent lobectomy or segmentectomy from

Apr. 2020 to Jun. 2021 in three medical centers, among which

nine were enrolled from Peking University People’s Hospital,

nine were enrolled from Shanghai Pulmonary Hospital, and nine

were enrolled from The Second Xiangya Hospital of Central

South University. The clinical characteristics are delineated in

Table 1. The median age was 59 with the interquartile range

(IQR) from 53.5 to 64.5 years. A total of 14 patients (51.85%)

were women, and 13 (48.15%) were men. Most of the enrolled

patients were non-smokers (88.89%). Five of the enrolled cases

were pathologically diagnosed with benign lesions and 22 with

malignant ones (MIA or invasive adenocarcinoma). Regarding

the location of lesions, 10 RUL, 4 right-middle lobe (RML), 5

right-lower lobe (RLL), 6 left-upper lobe (LUL), and 2 LLL were

included. With respect to surgical procedures, 10 received

segmentectomy and 17 underwent lobectomy. No significant

differences between baseline data were found across the three

institutions except for blood loss (30 ml vs. 50 ml vs. 50 ml, p =

0.006). All enrolled cases were successfully processed by the

semantic segmentation algorithm without systemic failures. The

outputs of the algorithm are demonstrated in Supplementary

Figures 1–6. The median inference time was 100 s.
Performance of the semiautomated
surgical planning algorithm

The independent performance of the DL-based semantic

segmentation algorithm in classifying segmental arteries and

lobular veins was first validated. The overall case-wise accuracy
frontiersin.org
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TABLE 1 Clinical characteristics of the validation dataset.

Variable Total Center A Center B Center C p-value

Number of cases, n 27 9 9 9

Age, median (IQR), years 59 [40, 75] 62 (49–63) 58 (55–63) 57 (53–67) 0.981

Sex, n(%) 0.145

Female 14 (51.9) 3 (33.3) 4 (44.4) 7 (77.8)

Male 13 (48.1) 6 (66.7) 5 (55.6) 2 (22.2)

Smoking history, n(%)

Yes 3 (11.1) 1 (11.1) 1 (11.1) 1 (11.1) 1

No 24 (88.9) 8 8 8

Histology, n(%) 0.267

Benign lesion 5 (18.5) 0 (0) 2 (22.2) 3 (33.3)

MIA* 7 (25.9) 4 (44.4) 1 (11.1) 2 (22.2)

Invasive adenocarcinoma 15 (55.6) 5 (55.6) 6 (66.7) 4 (44.4)

Tumor location** 0.569

RUL 10 (37.0) 4 (44.4) 1 (11.1) 5 (55.6)

RML 4 (14.8) 1 (11.1) 2 (22.2) 1 (11.1)

RLL 5 (18.5) 1 (11.1) 3 (33.3) 1 (11.1)

LUL 6 (22.2) 2 (22.2) 3 (33.3) 1 (11.1)

LLL 2 (7.4) 1 (11.1) 0 (0) 1 (11.1)

Surgery type, n(%)

Segmentectomy 10 (37)

Lobectomy 17 (63)

Blood loss, median (IQR), ml 50 [20, 50] 30 [20, 50] 50 [40, 50] 50 [50, 50] 0.006

Operation time, median (IQR), min 110 [60, 195] 120 [110, 146] 100 [90, 120] 110 [100, 120] 0.355

CT instrument manufacturer <0.05

GE 6 (22.2) 1 (11.1) 5 (55.6) 0 (0)

Siemens 15 (55.6) 6 (66.7) 0 (0) 9 (100)

Philips 4 (14.8) 0 (0) 4 (44.4) 0 (0)

UIH 2 (7.4) 2 (22.2) 0 (0) 0 (0)

Chest CT slice thickness, mm 0.072

0.625 3 (11.1) 0 (0) 3 (33.3) 0 (0)

0.8 1 (3.7) 0 (0) 0 (0) 1 (11.1)

1 20 (74.1) 8 (88.9) 4 (44.4) 8 (88.9)

1.25 3 (11.1) 1 (11.1) 2 (22.2) 0 (0)

Imaging convolutional kernels <0.05

stnd 3 (11.1) 1 (11.1) 2 (22.2) 0 (0)

Lung 3 (11.1) 0 (0) 3 (33.3) 0 (0)

B70f 7 (25.9) 0 (0) 0 (0) 7 (77.8)

Br40d\3 5 (18.5) 5 (55.6) 0 (0) 0 (0)

Br60f\3 1 (3.7) 0 (0) 0 (0) 1 (11.1)

BI64d\3 1 (3.7) 1 (11.1) 0 (0) 0 (0)

BI57d\2 1 (3.7) 0 (0) 0 (0) 1 (11.1)

Lung iDose(3) 1 (3.7) 0 (0) 1 (11.1) 0 (0)

Lung iDose(4) 3 (11.1) 0 (0) 3 (33.3) 0 (0)

Soft B 2 (7.4) 2 (22.2) 0 (0) 0 (0)
Frontiers in Oncology
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* Microinvasive adenocarcinoma.
** RUL, right-upper lobe; RML, right-middle lobe; RLL, right-lower lobe; LUL, left- upper lobe; LLL, left-lower lobe.
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of the algorithm was 82.8% (Figure 2A). In the segmental artery

recognition task, the accuracy was 79.7% (Figure 2A). Higher

accuracy was seen in non-contrast CT (83.8% vs. 65.3%, p =

0.094) and segmentectomies (91.7% vs. 72.7%, p = 0.053) when

compared to contrast CT scans and lobectomies, respectively

(Figure 2B). Arteries in the LLL showed the highest recognition

accuracy at 100.0%, followed by the RUL (90.0%), the RML

(87.5%), the RLL (70.5%), and the LUL (58.3%) (Figure 2C). In

the lobular vein recognition task, the accuracy was 96.3%

(Figure 2A). In subgroup analyses, the accuracy reached 95.2%

and 100.0% on non-contrast CT and contrast CT scans,

respectively; similar accuracies (94.1% vs. 100.0%) were

observed for lobectomy and segmentectomy cases (Figure 2D).

Of note, the RUL, RLL, LUL, and LLL reached 100.0% accuracy

while in the RML, the accuracy was lower (75.0%) (Figure 2E).
Performance of junior thoracic
surgery attendings

Two junior attendings participated in the reader study for

recognizing pulmonary vascular anatomical structures and

obtained the overall accuracy of 78.8% and 77.0%, respectively

(Figure 3A). In the segmental artery recognition task, the

accuracy was 73.6% and 72.7%, respectively. Accuracies

slightly favored non-contrast over contrast CT (76.0% vs.

65.3%, p = 0.355; 76.0% vs. 61.1%, p = 0.245) and favored

segmentectomy over lobectomy (78.3% vs. 70.8%, p = 0.473;

83.3% vs. 66.4%, p = 0.074) (Figure 3B). No significant difference

across lobes were shown (RUL 66.7%, RML 100.0%, RLL 65.7%,

LUL 70.8%, LLL 83.3%, p = 0.247; RUL 76.7%, RML 75.0%, RLL

65.7%, LUL 66.7%, LLL 83.3%, p = 0.823) (Figure 3C). In the

lobular vein recognition task, the accuracy was 96.3% and 92.6%,

respectively (Figure 3A). No significant difference between non-

contrast and contrast CT was shown (Figure 3D). The accuracy
Frontiers in Oncology 06
of the RLL was 80% in both surgeons and LUL 83.3% in surgeon

B (Figure 3E). All other lobular vein recognitions reached

100.0% accuracy (Figure 3E).
Performance comparison between the
artificial intelligence algorithm and
surgeons’ performance

The case-wise artery recognition accuracy showed no

significant difference between the AI algorithm and two surgeons

in three-way analysis (Figure 4A). Upon further pairwise analysis,

surgeon A showed significantly lower accuracy in the RUL (p =

0.037) (Figure 4B). In non-contrast CT, contrast CT, lobectomy and

segmentectomy subgroups, no significant differences were shown

across the AI algorithm and two surgeons (p = 0.493, 0.825, 0.872,

0.396) (Figure 4C). Different CTmanufacturers, slice thicknesses, or

convolutional kernels showed no significant impact on the AI

algorithm and two surgeons (Figure 5).
Error analysis of artificial intelligence and
human recognition

Error analyses were performed by regrouping the results at the

segmental structure level instead of the case level. All recognition

errors by the algorithm are listed in Supplementary Figures 7–18.

Most errors were observed in segmental arteries, while few errors

were seen in lobular veins. The analysis of the AI recognition

showed significant differences across different segmental arteries

(p = 0.002) (Table 2), among which RA1, RA2, RA3, RA4+5, RA6,

LA6, and LA8-10 showed higher accuracies. Failure in distinguishing

LA1+2 and LA3 was the most frequently seen error in the algorithm;

accuracy in right-lower basal segmental arteries was also below 50%.

The error of two surgeons was analyzed on a structure-wise basis
A B D EC

FIGURE 2

Performance of the semiautomated surgical planning algorithm. (A) Case-wise overall accuracy and accuracy in arteries and veins; (B) artery
accuracy comparison between contrast and non-contrast CT, lobectomy and segmentectomy; (C) artery accuracy comparison between
different lobes; (D) vein accuracy comparison between contrast and non-contrast CT, lobectomy, and segmentectomy; (E) vein accuracy
comparison between different lobes. NECT, non-enhanced CT; CECT, contrast-enhanced CT; RUL, right-upper lobe; RML, right-middle lobe;
RLL, right-lower lobe; LUL, left-upper lobe; LLL, left- lower lobe. *p<0.05; ns non-significant.
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(Table 2). For surgeon A, a significant difference across different

segmental arteries was detected (p = 0.033), among which RA1 and

RA4+5 showed higher accuracy and LA1+2 showed significant lower

accuracy. The accuracies of RA2, RA6, LA4, LA5, and LA6 were

also below 50%. For surgeon B, no significant differences across

different segmental arteries were detected (p = 0.083). The

accuracies of LA1+2, LA4, LA5, and LA6 were less than 50%.
Discussion

In this study, we first reported a CT-based pulmonary vessel

semantic segmentation algorithm for semiautomated surgical

planning and comprehensively evaluated its clinical value by
Frontiers in Oncology 07
performing a validation study on multicenter datasets. Our results

showed that the independent performance of the semantic

segmentation algorithm approximated that of junior attendings in

thoracic surgery. The overall recognition accuracy ranged from 70%

to 80%. Subgroup analyses uncovered the possible influential factors

on algorithm performance, including the usage of a contrast agent,

radiation doses, the CT instrument manufacturer, and

reconstruction convolutional kernels, and explored its potential

applicable scenarios, such as lobectomy and segmentectomy.

A comprehensive understanding of the blood vessel

structure, especially the artery structure, is the most crucial

task in preoperative planning to minimize the chance of

intraoperative bleeding and misresection (26–28). Given the

fact that arteries are more hazardous than veins in surgeries
A B

D E

C

FIGURE 3

Performance of two junior thoracic surgery attendings. (A) Case-wise overall accuracy and accuracy in arteries and veins; (B) Artery accuracy
comparison between contrast and non-contrast CT, lobectomy, and segmentectomy; (C) artery accuracy comparison between different lobes;
(D) vein accuracy comparison between contrast and non-contrast CT, lobectomy, and segmentectomy; (E) vein accuracy comparison between
different lobes. NECT, non-enhanced CT; CECT, contrast-enhanced CT; RUL, right-upper lobe; RML, right-middle lobe; RLL, right-lower lobe;
LUL, left-upper lobe; LLL, left-lower lobe. *p<0.05, **p<0.01, ns non-significant.
A B C

FIGURE 4

Performance comparison between the artificial intelligence algorithm and two surgeons. (A) Three-way analysis between three groups; (B)
Pairwise analysis showed significantly lower accuracy in the RUL of surgeon A compared to the AI algorithm; (C) subgroup analysis between
non-contrast vs. contrast CT and lobectomy vs. segmentectomy. NECT, non-enhanced CT; CECT, contrast-enhanced CT. *p<0.05;
ns, non-significant.
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and require delicate recognition for precise resection, in addition

to the enormous number of vein variants on a segmental scale

that cannot be fully represented due to the limited amount of

training data, we thus split the surgical planning into two

separate recognition tasks: segmental artery recognition and

lobular vein recognition by developing a model that realizes

the fine-grained recognition on arteries and relatively coarse-

grained recognition on veins. Model performance was also

evaluated by segmental artery recognition accuracy and lobular

vein recognition accuracy on both case-wise and structure-wise.

In artery recognition, the algorithm showed similar accuracy

compared to surgeons. It is worth notice that two parties exhibited

complementary superiorities across lobes. The algorithm excels in the

RUL, while surgeons excel in bilateral basal segments. Our result

indicates a valid clinical application of this version of algorithm in

assisting surgical planning in certain lobes, especially for junior thoracic

surgeons. Vein recognition showed high accuracy in both parties; the

algorithmmayhelpinverifyingthesurgeon’srecognition.Corroborating
Frontiers in Oncology 08
our result, our previous study9 showed that the accuracy of the manual

identification of the anatomical variant by thoracic surgeons using

automated 3-D reconstruction is 85%, which is similar to our

semiautomated approach. As for the time efficiency, compared to our

previous study9 that showed a median recognition time of 120 s by

surgeons using 3-D reconstruction images, the human recognition of

anatomical structure in this research isno longerneeded, and thevariant

recognition time can be ignored, which is accomplished in less than 5 s.

When analyzing the possible influential factors for this semantic

segmentation algorithm, we found the similar trend of lower accuracy

in the contrast CT subgroup for both the AI algorithm and human

performance. Contrast CTs are usually used in cases in which blood

vessels were overlayed by the lesion. Such situation is more challenging

for the algorithm than for surgeons. Since the model was also trained

based on mostly non-contrast CT, the extra information provided by

contrast CT may have not been fully utilized.

In terms of applicable scenarios, higher recognition accuracy

was observed in segmentectomy compared with lobectomy for both
FIGURE 5

The impact of radiological parameters on accuracy on three parties.
TABLE 2 Accuracy of the segmental artery in structure-wise error analysis.

Tumor location* Segmental artery AI Surgeon A Surgeon B

RUL A1 1.00 0.86 1.00

A2 0.80 0.30 0.50

A3 0.75 0.50 0.50

RML A4, A5 0.86 1.00 0.71

RLL A6 0.75 0.33 1.00

A7–10 0.20 0.60 0.60

LUL A1+2 0.00 0.25 0.25

A3 0.40 0.80 0.80

A4, A5 0.60 0.40 0.20

LLL A6 1.00 0.00 0.00

A8–10 1.00 1.00 1.00

In group p-value 0.002 0.033 0.083
fr
* RUL, right-upper lobe; RML, right-middle lobe; RLL, right-lower lobe; LUL, left-upper lobe; LLL, left-lower lobe.
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the AI algorithm and the thoracic surgeon. Meanwhile, the error

analysis indicated that the algorithm struggled in certain segmental

arteries (LA1+2, right basal segmental arteries, etc.) and

surgeons struggled more in bilateral upper lobe arteries (RA2,

RA3, and LA1+2). Our preliminary results indicated a better

performance of the AI algorithm on segmentectomy. Considering

the possible bias introduced by a limited number of cases and

unevenly distributed surgery types, a larger dataset needs to be

employed to further confirm the observation. As for the inferior

performance on LA1+2 and right basal segmental arteries, more

similar training data are needed to enhance the model performance.

A different performance between the AI algorithm and

surgeons was observed across lobes that may reflect their

difference in mechanics. The algorithm performed well in

RUL, while surgeons did not. On one hand, the RUL has

relatively well-defined anatomical patterns that are easier for

the algorithm to learn, while the 3-D structure is difficult for

humans to imagine. On the other hand, the RLL, especially basal

segmental arteries, have more anatomical variants that cannot be

completely defined and represented during model training,

while the imagination of a 3-D structure is relatively easy for

humans; thus, surgeons perform better than the algorithm.

To our knowledge, this is the first study that validated the

performance of a semiautomated surgical planning algorithm based

on the semantic segmentation of CT imaging. Recently, a number

of attempts of using semantic segmentation in medical imaging

have been made. We have seen its application from the microscopic

scale of segmenting red blood cells for sickle cell disease (16) to

segmenting the COVID-19 infection area from chest CT (19) or

lesions from endoscope images (22). However, the above-

mentioned applications are mostly single-labeled tasks, using a

large training set to achieve an organ or lesion recognition task.

Our work is the first in the class semantic segmentation application

that systemically presented the blood vessel anatomy of an organ.

The complexity of this task is yet unparalleled.

In conclusion, the semiautomated surgical planning algorithm

achieves similar accuracy in both segmental artery and lobular vein

recognition compared to the junior attendings of thoracic surgery.

As a continuation of our previous fully automated 3-D

reconstruction study, the addition of a fine-grained semantic

segmentation algorithm greatly enhanced their competency and

practicality in aiding accurate preoperative planning and even made

intraoperative intelligent interaction possible. With increased

training data and refined labeling in the near future, the model

will achieve higher accuracy and benefit both surgeons and patients

in lobectomy and segmentectomy. Since the study is based on a

small sample size, the promising results are to be confirmed in a

large-scale validation study in the future.
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