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Abstract. The production of small batches to single parts has been
increasing for many years and it burdens manufacturers with higher cost
pressure. A significant proportion of the costs and processing time arise
from indirect efforts such as understanding the manufacturing features
of engineering drawings and the process planning based on the features.
For this reason, the goal is to automate these indirect efforts. The basis
for the process planning is information defined in the design department.
The state of the art for information transfer between design and work
preparation is the use of digital models enriched with additional informa-
tion (e.g. STEP AP242). Until today, however, the use of 2D manufac-
turing drawings is widespread. In addition, a lot of knowledge is stored
in old, already manufactured components that are only documented in
2D drawings. This paper provides an AI(Artificial Intelligence)-based
methodology for extracting information from the 2D engineering and
manufacturing drawings. Hereby, it combines and compiles object detec-
tion and text recognition methods to interpret the document systemati-
cally. Recognition rates for 2D drawings up to 70% are realized.

Keywords: Drawing · Manufacturing drawing · Image recognition ·
Text recognition · Process planning

1 Introduction

Most components have been manufactured on the basis of 2D drawings up to
now. In addition to the pure geometry, these 2D drawings contain a lot of addi-
tional information like e.g. surface tolerances, dimensional tolerances, and a heat
treatment that have to be read out and described semantically. This information
is called Product Manufacturing Information (PMI) [1].

State-of-the-art transmission of information from design to process planning
and on to production are enriched data formats from software such as CATIA,
INVENTOR, Pro/E, SolidWorks, NX, etc., or software-independent exchange
formats like STEP, JT, 3D PDF, and STL [2]. Some of these formats like STEP
AP 242 include the documentation of the described additional information based
on the ISO 10303-242:2014. On this basis, the exchange between disciplines is
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theoretically possible today. Despite these prerequisites, many manufacturing
companies use or receive 2D manufacturing drawings. This is because the reuse
of existing drawings, the use of 2D CAD tools, and the not standardized anno-
tation of manufacturing-specific information on 3D models are demanded. The
digitalization and semantic description of 2D drawings are the basis for the
automation of work planning and digitalized test procedures in production. The
combination of this information and technology data form a knowledge database
that can be used to derive rules for the automation of the work planning pro-
cess. This paper focuses on AI (Artificial Intelligence)-based methodology for
the extraction of non-geometric information which contains a high information
content that is essential for rough pricing and work planning. In further work, it
is planned to combine non-geometric and geometric information extracted from
2D manufacturing drawings. This combined information can be merged with 3D
models to build a sufficient base for fully automated detailed work planning.

2 State of the Art

A literature review shows that there are several approaches to extracting non-
geometric information from technical drawings. Prabhu et al. [3] propose a sys-
tem, called the AUTOFEAD algorithm, that is able to extract non-geometric
information from manufacturing drawings using Natural Language Processing
(NLP) techniques. To search for dimensions and their attributes, a heuristic
search procedure is developed. Scheibel et al. [4] describe a method to extract
dimensional information from pdf manufacturing drawings. The text and posi-
tion are extracted into HTML format. By clustering multiple text elements by
position, the dimensional information is extracted. The authors suggest that the
extracted information can be used to optimize a quality control system. Elyan
et al. [5] develop an end-to-end framework to process and analyze engineering
drawings. To interpret the drawings deep learning methods are used to detect
and classify symbols.

To recognize text from images Optical Character Recognition (OCR) tech-
nology can be used. In the past years, a lot of research has been done on OCR
methods. In [6,7], a rule-based algorithm is developed for text and graphics
separation from engineering drawings. OCR method is used to recognize text
from the separated areas. Jamieson et al. [8] propose a deep learning-based app-
roach for text detection and recognition from engineering diagrams. The model
is capable to recognise horizontal and vertical text.

Object detection is one of the most fundamental problems in computer vision
techniques for locating instances of objects in images. A deep convolutional neu-
ral network is able to learn robust and high-level feature representations of an
image. In the deep learning field, object detection can be categorized into two
main groups “one-stage detection” (e.g. YOLO [9], SSD [10]) and “two-stage
detection” (e.g. Faster R-CNN [11], Mask R-CNN [12]), where the former is
regarded as “complete in one step” while the latter is called as a “coarse-to-fine”
process [13]. The object detection technology is applied to understand the class
and the location of symbols in [5].



376 C. Haar et al.

The challenge to transfer OCR and AI-based object detection to manufac-
turing drawings remains and is addressed in this paper.

3 Methodology

Information to be extracted out of manufacturing drawings can be categorized
into 5 categories. The dimensions, geometry, tolerances, general information, and
additional manufacturing information (Fig. 1).

Fig. 1. Information in production drawings

The focus of the work is to recognize the non-geometric information. Figure 2
describes the process of AI-based drawing information extraction. The input
drawing is divided into text and symbol information. The OCR method is used
to interpret the text from the drawing image. Simultaneously, the object detec-
tor allows delivering of the classified objects with bounding boxes. Then, the
extracted information is handled by matching algorithms. Based on this, PMIs
are read and visualized.

Fig. 2. Phases of the AI-based information extraction system

In the following three sections, the text recognition, the symbol recognition,
and the compilation of the information are described in more detail.

3.1 Text Recognition

There are numerous open-source libraries and cloud solutions available for text
recognition, also called OCR. The most commonly used systems are MMOCR,
EasyOCR, Google Vision, Keras-OCR, and so on. Multiple evaluations of dif-
ferent tools show different results for this system. These results also arise from
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the use of a wide variety of image data [14]. A basic analysis of some available
solutions showed the superiority of the Google Vision system. Due to the goal
of open source and python integration, the Python EasyOCR library is chosen.
It is composed of 3 main components: feature extraction (Resnet) and VGG,
sequence labeling (LSTM), and decoding (CTC). Due to the poor recognition
of vertically oriented text, the images are rotated at intervals of 90◦ for text
recognition.

3.2 Symbol Recognition

You Only Look Once(YOLO), a well-known and single-stage target detection
algorithm, is used as our basic architecture [9]. The network divides the image
into regions and predicts bounding boxes and probabilities for each region. These
bounding boxes are weighted with predicted probabilities. As a result, YOLO
achieves high detection performance and outstanding inference speed.

Dataset Generation. Synthetic data is an approach to producing datasets
that meet specific needs [15]. It enables humans to lessen labor for labeling or
generating data manually. The synthetic data is generated to make up for the
lack of data. 15 basic 2D drawing documents are used to enlarge the dataset
with the information relating to the class and the location of symbols for the
symbol recognition. For this purpose, 17 symbols like surface, edge, arrow, and
tolerance are cropped from the basic drawings and randomly added to the empty
background of basic drawings with different rotations and sizes (Fig. 3). The
associated information about the class and the location of the symbols is stored
in YOLO labeling format. The YOLO model is trained and tested with 1000
synthetic images. 80% of the dataset is used for training and validation and the
rest of them is utilized for the test set.

Fig. 3. 17 different extracted symbols, arranged by super-classes, for synthetic data

Object Detection Method. The latest version: YOLOv5 consists of multiple
varieties of pre-trained models such as YOLOv5s, YOLOv5m, YOLOv5x, and
so on. The difference between them is the size of the model. The lightweight
model version YOLOv5s is not for accurate predictions but for fast inference
time. Therefore, the YOLOv5x model is considered the main architecture since
accuracy is the most significant factor to analyze 2D drawings. The SGD opti-
mizer is used for training with the 1e-2 initial learning rate. Then the model is
trained with 16 batch sizes and 640 image sizes. Figure 4 illustrates the symbol
recognition sample with an actual 2D drawing document.
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Fig. 4. Inference image using the trained model on the test set of the actual data

3.3 Matching of Symbol and Text

After the text recognition and the symbol recognition are completed, the result
data is merged to extract the relevant information in each symbol. Tests have
shown that any text with less than 50% recognition accuracy was mostly not
recognized correctly, these are all filtered out. When it comes to symbol recogni-
tion, confidence and intersection over union(IoU) thresholds are set at 0.25 and
0.45, respectively. Then intersections of bounding boxes of text and symbols are
searched for. If there is an intersection between two bounding boxes, the text is
regarded as a related text for the symbol.

Specific characteristics of the drawing are used to analyze the title block.
First, all text fields are extracted that are in the area of the title block. Then
the text fields are assigned according to their geometric position or based on
their format. Table 1 describes the rules we define:

Table 1. Rules for title block-matching

Feature Rule

Title Next to “Benennung”

Drawingnumber Number with 6 digits

Material Next to “Werkstoff”

Materialnumber Next to “number”

Date Search for data format
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4 Experimental Results and Discussion

In this chapter, the results of the implemented method are presented and dis-
cussed. The strengths and weaknesses of the methods used are shown.

4.1 Text Recognition

Due to the focus of OCR systems on horizontal texts, the text images are ana-
lyzed both horizontally and rotated by 90◦. Only texts with a confidence level
over 0.5 are included in the analysis. The score for the evaluation of the text
recognition is created per correctly recognized character and correctly recognized
text field. 5 drawings with together 278 text fields are analyzed.

– 68% of the characters are recognized correctly
– 62% of the conveyors are recognized correctly

The difficulties in recognition are with mathematical special characters and
with texts that, are positioned at an angle and position close to other forms
(Fig. 5).

Fig. 5. Examples for incorrect and correct recognized characters, above the bounding
boxes the recognized text, and the confidence level are shown

4.2 Symbol Recognition

We use the test set of the synthetic data and the test set of actual 2D drawings
to estimate the trained model. The test set of synthetic data is created from the
same 15 drawings as the training set but the symbols are positioned in different
positions. When it comes to the actual 2D drawings test set, they are original
documents and unseen for training the model. The model is evaluated by the
detection mean average precision (mAP) since this is a common evaluation met-
ric for object detection. The average precision is calculated with two different
IoU thresholds: mAP and AP50. The intersection over union is a similarity mea-
sure between the bounding box of ground truth and the predicted detection.
The mAP indicates the average of all 10 average precisions with the increment
of the 0.05 IoU threshold steps from 0.5 to 0.95. And AP50 is the average pre-
cision at the IoU 0.5. The model achieves 0.927 accuracies with AP50 and 0.876
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Table 2. The mAP values of the YOLOv5 on the test set of synthetic and actual data

Dataset Test set (synthetic) Test set (actual)

all 0.876 0.364

surface all (6 classes) 0.870 0.537

edge all (4 classes) 0.911 0.480

arrow all (2 classes) 0.792 0.215

tolerance all (5 classes) 0.888 0.207

accuracies with mAP in the test set of the synthetic data. We list the mAP of
the final results of the model in each category in Table 2.

Most of the symbols are detected as their original label on the test set of
synthetic data. Especially, the model shows outstanding predictions for edge
classes with 0.911 accuracies. The average of the arrow classes results in relatively
low accuracy at 0.792. This is because some lines are drawn across the arrow
symbols and numbers are placed inside the bounding box of the arrows. On
the other hand, the model shows difficulties in predicting the symbols on the
actual dataset since the model relies on only small amounts of sample symbols
and drawings. For this reason, we recommend training the model with abundant
data for precise detection of symbols (Fig. 6).

Fig. 6. Samples of detected symbols in 2D drawing documents

4.3 Matching of Symbol and Text

To find a score for the matching algorithm, the number of correct matches from
the recognized texts and symbols is calculated. Only recognized features are
used, so that recognition issues are not included in the score. 21 drawings are
analyzed, and a total of 72% correct assignments are found. Problems arise
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especially when the bounding box is too small and the text is further away from
the symbol. The actual quality of the assignments depends to a large extent on
the text and symbol recognition. From the title box, 88% of the information
could be extracted correctly. The defined rules are reliable but must be adapted
to other drawing types.

5 Conclusion

In this work, the flexibility of machine learning-based systems is adapted to the
use case of production drawings recognition. Thus a system could be developed,
which is able to read out information from production drawings. Based on 15 test
drawings an accuracy of more than 70% is achieved. There is still potential for
optimization in each of the described fields text recognition, symbol recognition,
and merging. In the field of text recognition, the orientation of the texts and the
recognition of special characters is a weakness, which can be eliminated by train-
ing new models. In the area of symbol recognition, the greatest potential lies in
the extension of the training data set, especially to non-standard drawings. In
the area of merging, the extension of the set of rules for semantic processing of
the recognized texts and symbols has great potential. All in all, the realized app-
roach represents an expandable basis for the recognition of information from 2D
drawings. The biggest advantage of the presented method is the easy extension
of the logic due to the use of machine learning-based approaches.
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