
Software defects are more costly if discovered and fixed in
the later stages of the development life cycle versus during
production (Brooks 1995). Therefore, testing is one of the

most critical and time-consuming phases of the software devel-
opment life cycle, which accounts for 50 percent of the total
cost of development (Brooks 1995).

The testing phase should be planned carefully in order to save
time and effort while detecting as many defects as possible. Dif-
ferent verification, validation, and testing strategies have been
proposed so far to optimize the time and effort utilized during
the testing phase: code reviews (Adrian, Branstad, and Cherni-
avsky 1982; Shull et al. 2002), inspections (Fagan 1976), and
automated tools (Menzies, Greenwald, and Frank 2007; Nagap-
pan, Ball, and Murphy 2006; Ostrand, Weyuker, and Bell 2005).
Defect predictors improve the efficiency of the testing phase in
addition to helping developers assess the quality and defect-
proneness of their software product (Fenton and Neil 1999).
They also help managers in allocating resources. Most defect
prediction models combine well-known methodologies and
algorithms such as statistical techniques (Nagappan, Ball, and
Murphy 2006; Ostrand, Weyuker, and Bell 2005; Zimmermann
et al. 2004) and machine learning (Munson and Khoshgoftaar
1992; Fenton and Neil 1999; Lessmann et al. 2008; Moser,
Pedrycz, and Succi 2008). They require historical data in terms
of software metrics and actual defect rates, and combine these
metrics and defect information as training data to learn which
modules seem to be defect prone. Based on the knowledge from
training data and software metrics acquired from a recently
completed project, such tools can estimate defect-prone mod-
ules of that project.

IAAI Articles

SUMMER 2011 57Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

AI-Based�Software�Defect�Predictors:�
Applications�and�Benefits�

in�a�Case�Study

Ayse Tosun Misirli, Ayse Bener, and Resat Kale

n Software defect prediction aims to reduce
software testing efforts by guiding testers
through the defect-prone sections of software
systems. Defect predictors are widely used in
organizations to predict defects in order to save
time and effort as an alternative to other tech-
niques such as manual code reviews. The usage
of a defect prediction model in a real-life setting
is difficult because it requires software metrics
and defect data from past projects to predict the
defect-proneness of new projects. It is, on the
other hand, very practical because it is easy to
apply, can detect defects using less time, and
reduces the testing effort. We have built a learn-
ing-based defect prediction model for a telecom-
munications company in the space of one year.
In this study, we have briefly explained our
model, presented its payoff, and described how
we have implemented the model in the compa-
ny. Furthermore, we compared the performance
of our model with that of another testing strat-
egy applied in a pilot project that implemented
a new process called team software process
(TSP). Our results show that defect predictors
can predict 87 percent of code defects, decrease
inspection efforts by 72 percent, and hence
reduce postrelease defects by 44 percent. Fur-
thermore, they can be used as complementary
tools for a new process implementation whose
effects on testing activities are limited.

Recent research on software defect prediction
shows that AI-based defect predictors can detect 70
percent of all defects in a software system on aver-
age (Menzies, Greenwald, and Frank 2007), while
manual code reviews can detect between 35 to 60
percent of defects (Shull et al. 2002) and inspec-
tions can detect 30 percent of defects at the most
(Fagan 1976). Furthermore, code reviews are labor
intensive since, depending on the review proce-
dure, they require 8 to 20 lines of code (LOC) per
minutes for each person in the software team to
inspect the source code (Menzies, Greenwald, and
Frank 2007). Therefore, AI-based models are popu-
larly used by various organizations (Menzies,
Greenwald, and Frank 2007; NASA MDP 2007;
Nagappan, Ball, and Murphy 2006; Nagappan,
Murphy, and Basili 2008; Ostrand, Weyuker, and
Bell 2005). These predictors learn specific patterns
concerning defect-proneness from past projects
and use this information to predict the defect-
proneness of new projects. As more projects are
observed throughout the development life cycle,
more data is collected, and predictions are more
accurate.

We conducted a comprehensive metrics pro-
gram and built a defect prediction model at a large
telecommunications company in Turkey during a
period of one year (Tosun, Bener, and Turhan
2009). During this metrics program, we collected
static code metrics and churn metrics from the
company’s 9 projects in 10 releases. We matched
the prerelease defects (the defects detected during
the testing phase) of the previous releases with the
source code at file level. Then we made predictions
on the new releases of the projects. We calibrated
our model based on its prediction accuracy and
discovered that it is possible to detect on average
88 percent of defective files using a defect predic-
tor (Tosun, Turhan, Bener 2009). We also com-
pared our model in terms of the gain in inspection
effort against a random testing strategy. It is seen
that our defect predictor can reduce inspection
efforts by 72 percent.

In this article, we describe our model from a
machine-learning perspective with measurable
benefits such as the defect detection capability and
improvements in the cost-benefit analysis. We
present the payoff of the model used and show
how the model has been implemented in the com-
pany. We also compare the model’s performance
with a pilot process transformation, which applies
labor-intensive checklists and formal procedures to
detect defects during testing. In terms of time and
effort spent for finding defects, manual code
reviews, inspections, and unit testing constitute 25
percent of the total effort. Our results show that
our prediction model automatically finds 75 per-
cent of the defects detected in unit testing, code
reviews, and inspections only in a few seconds.

Therefore, we conclude that defect predictors can
augment process changes during testing activities
by lowering defects and inspection efforts.

Brief Information
about the Organization

The organization we collaborated with in this
study is the leading telecommunications (Global
System for Mobile Communications, or GSM)
operator in Turkey and the third biggest operator
in Europe in terms of number of subscribers. As of
31 December 2009, it is providing mobile commu-
nication services to 35.4 million subscribers, with
an additional 26.1 million subscribers in Azerbai-
jan, Kazakhstan, Georgia, Ukraine. and Northern
Cyprus. It was founded in 1994, and since 2006, it
has had a research and development (R&D) center
with around 200 engineers. In this R&D center, the
company develops software products and solu-
tions for mobile operators all over the world. Some
of these solutions are network solutions, value-
added services, subscriber identity module (SIM
card)–related solutions, terminal-based solutions,
billing and charging solutions, data mining, data
warehouse, and customer and channel manage-
ment systems and applications. Its legacy system
contains millions of lines of code that are being
maintained. The majority of its software is imple-
mented with Java, JavaServer Pages (JSP), PL/SQL,
and other new technologies such as service-orient-
ed architecture (SOA).

As with any other company, time and budget
constraints put constant pressure on R&D. As cus-
tomers require new functionality or technology
changes, the company has to respond faster and
faster with new software releases. Therefore, its
approach to development is incremental, with
each new release adding new functionality or a
software modification to previous releases. In such
a limited time, the software team cannot apply any
measurement process to assess the overall software
quality. Therefore, there was an urgent need to
implement a measurement and analysis program
to monitor defects, reduce defect rates and testing
effort, and to improve software quality. We have
built a measurement repository, bug tracing and
matching system, and a defect prediction model
for the company. In this study, we explain the
implementation of the defect prediction model
after it has been calibrated with local data to
achieve the highest prediction accuracy.

Description of the
Prediction Model

Our learning-based defect predictor is a typical
machine-learning application: it contains a train-

IAAI Articles

58 AI MAGAZINE

ing phase to learn from the data related to previous
projects and a testing phase to predict the poten-
tial defect-free and defective modules of the new
project. A module could be a package, class, file, or
method inside the source code. Erroneous predic-
tions of the defect-free modules in the form of
defects (false alarms) force testers to inspect “safe”
modules and waste their precious time. On the
other hand, missing defective modules (false neg-
atives) would cause more expensive and hard-to-
fix failures on the final software product. Thus,
false negatives need to be avoided.

Basic Terminology:
Input and Output Variables
As a classification task, our input variables are a set
of static code attributes, such as lines of code, com-
plexity, and operand and operator counts, extract-
ed from the source code. Static code attributes are
widely used and easily collected through automat-
ed tools (Menzies, Greenwald, and Frank 2007;
Moser, Pedrycz, and Succi 2008; Lessmann et al.
2008) and proposed by various researchers such as
McCabe (1976) and Halstead (1977). The full list of
attributes collected from the source code in this
study is illustrated in table 1.

In the literature, various researchers have also
used other types of metrics such as object-oriented
design metrics (Basili, Briand, and Melo 1996; Chi-
damber and Kemerer 1994), in-process metrics
(Nagappan, Ball, and Murphy 2006), and organi-
zational metrics (Nagappan, Murphy, and Basili
2008) in order to predict defects. Although increas-
ing the information content of input data by
adding different types of metrics has positive
effects on defect prediction capability, it is not easy
to collect in-process and organizational metrics
from an organization. Therefore, we have preferred
to rely on the source code as a basis for collecting
metrics, that is, input variables.

In addition to code attributes, there are class
labels for each module such as 0 as defect free and
1 as defective in the training set. If a module in the
software system has been associated with a bug
(code defect) during the testing phase, it is labeled
as 1; otherwise, it is labeled as 0. It is not necessary
to count the number of defects a module is associ-
ated with since our aim in this study is not pre-
dicting the number of defects. More precisely, the
training set is an N-by-M matrix where N is the
number of modules taken from past projects and M
is the number of code attributes (M-1) extracted
from their source code as well as a class label to
indicate whether a defect has been detected on
that module during testing.

The test set, on the other hand, contains attrib-
utes extracted from the modules of a new project
whose defect labels are unknown. Therefore, the
output variable (Y) of the model would be the class
labels of modules in the test set as defect free or
defect prone.

The Use of AI Technology
We have used a naïve Bayes classifier as the algo-
rithm of our prediction model. The Bayes theorem
defines the posterior probability as proportional to
the prior probability of the class p(Ci), and the like-
lihood of attributes, p(X|Y = Ci) with strong inde-
pendence assumptions on attributes (see Alpaydin
[2004]). In binary classification problems such as
defect prediction, naïve Bayes computes the poste-
rior probability of a module being defective, or the
probability of a module being defect free, given its
attributes. Then, it assigns a module to the defec-
tive class if its posterior probability is greater than
a predefined threshold (0.5). Otherwise, the mod-
ule is classified as defect free.

We have used a naïve Bayes classifier for several
reasons. First of all, it is a widely used, simple, and
robust machine-learning technique in various

IAAI Articles

SUMMER 2011 59

Attribute Description Attribute Description
Cyclomatic density,
vd(G)

The ratio of the
module’s cyclomatic
complexity to its length

Essential complexity,
ev(G)

The degree to which a
module contains
unstructured constructs

Design density, dd(G) condition/decision Cyclomatic complexity,
v(G)

Number of linearly
independent paths

Essential density, ed(G) (ev(G) – 1) / (v(G) – 1) Maintenance severity ev(G)/v(G)
Dif!culty (D) 1 / L Length (N) N1 + N2

Level (L) (2 / n1) * (n2 / N2) Programming effort (E) D * V
Volume (V) N*log(n) Programming time (T) E / 18
Unique operands n1 Executable LOC Source lines only with

code and white space
Branch count Number of branches Total operators N1
Decision count Number of decision

points
 Total operands

Condition count Number of conditionals Unique operators n2

Table 1. List of Static Code Attributes (NASA 2007)

applications such as pattern recognition (Kunche-
va 2006), medical diagnosis (Uyar et al. 2009), and
defect prediction (Menzies, Greenwald, and Frank
2007; Moser, Pedrycz, and Succi 2008; Tosun, Ben-
er, and Turhan 2009). It is also easy for field practi-
tioners to understand and implement. Second,
defect prediction models with a naïve Bayes classi-
fier deliver the best prediction accuracy on public
datasets compared with models with other classi-
fiers (Menzies, Greenwald, and Frank 2007). One
of the reasons for the success of the naïve Bayes
classifier over other methods is that it combines
signals coming from multiple sources. It is not
affected by the “brittleness” of data (minor
changes in training sample do not give complete-
ly different results), since it polls numerous Gauss-
ian approximations to the numeric distributions
(Menzies, Greenwald, and Frank 2007). Therefore,
minor correlations between attributes or samples
in the training set within the field of software
defect prediction do not confuse naïve Bayes clas-
sifiers. Third, a recent study by Lessmann et al.
(2008) finds that the importance of classification
algorithms in defect prediction may be less than
previously assumed, since no significant perform-
ance differences exist among the top 17 classifiers.
This result is very important for our case study
since it reduces the necessity of trying all classifi-
cation techniques. Thus, instead of applying dif-
ferent algorithms, we have selected naïve Bayes as
the algorithm of our model and focused on cali-
bration based on local data.

Performance Evaluation
We use receiver operator characteristics (ROC)
curves to assess the discriminative performance of
a binary naïve Bayes classifier.1 In a ROC curve, our
objective is to reach the point (1, 0) in terms of (y,
x), where the y-axis represents the true positive rate
and the x-axis represents the false positive rate. We
have computed these performance measures to
evaluate the accuracy of our model. However, sim-
ilar to defect prediction research (Menzies, Green-
wald, and Frank 2007; Lessmann et al. 2008), we
name the true positive rate as the probability of
detection rate (pd) and the false positive rate as the

probability of false alarm rate (pf) in this study. The
ideal classification, point (1, 0) in a ROC curve, can
be reached when we correctly classify all defective
modules (pd = 1, that is, 100 percent) with no false
alarms (pf = 0, that is, 0 percent).

Finally, the common performance measures are
derived from a confusion matrix (table 2) where
{TP, FP, FN, TN} are {true positive, false positive,
false negative, and true negative} rates respectively
(Menzies, Greenwald, and Frank 2007). Probability
of the detection rate (pd) is a measure of accuracy
for correctly classifying defective modules. It cor-
responds to the true positive rate in machine learn-
ing and should be as close to 1 as possible: (pd) = TP
/ (TP + FN).

Probability of the false alarm rate (pf) is a meas-
ure of accuracy to represent the false alarms when
we misclassify defect-free modules. We must avoid
high pf rates in software defect prediction models
since they would increase the testing effort: (pf) =
FP / (FP + TN).

It is very rare to achieve the ideal case with 100
percent pd and 0 percent pf rates using a prediction
model. When the model is triggered often to
increase the pd rate, the pf rate would, in turn,
increase. Therefore, our objective is to get as high
pd rates as possible while keeping pf rates at a min-
imum.

Utilization of the Model and Payoff
We built our defect prediction model on the soft-
ware system of a telecommunications company.
Previously, a tool that collected metrics from the
source code did not exist. Moreover, although the
defects were logged in a version management sys-
tem, they were not matched with the source code
at any granularity level, that is, package, file,
method, or LOC.

We started a metrics program to collect the
required data for building our defect predictor. We
developed an open-source metrics extraction and a
defect prediction tool called Prest (Kocaguneli et al.
2009) and collected code metrics from Java and JSP
files. Previously, there was no process in the com-
pany for bug tracing. Defects were not often stored
during development activities. Furthermore, there
was no process to match defects with the files in
order to keep track of the reasons for any change in
the software system. Therefore, we implemented
an organizationwide process change that is fully
supported by the senior management (Tosun,
Benar, and Turhan 2009). This process change
helped us to store defects as well as to match them
at the file level.

Static code attributes at the file level and defect
labels matching the files (more precisely, Java and
JSP files) were collected from 9 different projects in
10 releases, and this dataset was donated to a pub-

IAAI Articles

60 AI MAGAZINE

Actual Predicted
Defective Defect Free

Defective TP FN

Defect free FP TN

Table 2. Confusion Matrix.

lic data repository, Promise.2 Then, the project-
based defect prediction was performed such that
the defective files of a project at release n were pre-
dicted using the static code attributes and the
defect labels of the same project at release n-1. This
methodology was used in the literature before
(Ostrand, Weyuker, and Bell 2005) and is well suit-
ed in our case since each release was treated as a
new project. Based on this training-testing strategy,
we assessed the performance of our predictor and
discovered that the deployed model with a naïve
Bayes classifier correctly classifies 90 percent of the
defective files while producing 50 percent false
alarms (Tosun, Bener, and Turhan 2009). Since
false alarms were very high, we included a new
software metric, the version history flag, in addi-
tion to static code attributes, to indicate the latest
activity date on files as inputs to the model. This
flag shows whether a file has been edited at least
once in six months. If a file does not have any
activity for a long time, then it is less likely that the
file contains defects. Using version flags further
improved the prediction performance by decreas-
ing the false alarm rates on an average of 28 per-
cent, from 50 percent to 22 percent (Tosun, Bener,
and Turhan 2009).

Table 3 shows the summary of the prediction
performances in nine releases. We have made pre-
dictions for an average of three projects in every
release and took the mean and the standard devia-
tion of the prediction performances in terms of pd
and pf rates. As seen in table 3, we have successful-
ly achieved an 87 percent detection rate in nine
releases with 26 percent false alarms. Our defect
predictor helps in detecting defective modules
using less time and effort. Furthermore, it guides
testers through specific files and reduces the
inspection effort compared to code reviews and
inspections. The process is less labor intensive if
local data is collected as required.

The practical benefits of using a defect predictor
have been further computed using a cost-benefit
analysis from Arisholm and Briand (2006). The
authors compared the inspection effort suggested
by a defect prediction with a random testing strat-
egy. Based on that, the gain in the effort (GE) can
be calculated with the following formula: 100
((MRT – MDF) / MRT).

In this formula, MRT represents the number of
modules (files in our study) that must be inspected
through a random testing strategy, whereas MDF
represents the number of modules that must be
inspected with a defect predictor. We have con-
ducted the cost-benefit analysis of our predictor to
present the practical benefits for the company. If
we would use a random testing strategy, we would
have to inspect 87 percent of the files (12,750 LOC
out of 15,000 LOC per release on average) to be
able to detect 87 percent of defects. However, our

model highlights only 25 percent of files that con-
tain 88 percent of defects. Therefore, the gain in
the inspection effort is 72 percent. Table 5 shows
that the implemented model reduces the inspec-
tion effort by 72.5 percent on average through
highlighting the critical parts in the software sys-
tem. Rather than looking at 87 percent of the files,
we can inspect only 24 percent of the files (3750
LOC out of 15,000 LOC per release on average) and
detect 87 percent of defects.

Deployment of the Model
The prediction results given above were so satis-
factory that the quality assurance team at the com-
pany decided to integrate the model into the com-
pany’s configuration management system. It
planned to use the prediction model prior to the
testing phase so that the defect-prone files would
be investigated by either the developer before
he/she transfers the project to the test team or the
tester so that his/her effort would be assigned to
the critical parts only. As mentioned previously, we
have implemented Prest (Kocaguneli et al. 2009),
an open-source metrics extraction and defect pre-
diction tool, during this study. This tool not only
extracts code metrics from different granularity
levels of projects written in Java, JSP, C, and C++,
but also includes a defect prediction component in
which a naïve Bayes classifier can be executed on a
new project given a training set.

We have customized the defect prediction com-
ponent of Prest for the company. A graduate stu-
dent from our research laboratory and an engineer
from the company completed the implementation
of this tool on the company’s configuration man-
agement system. A Java program was implemented
to perform the following steps: (1) We wrote a shell
script to call Prest and extract code metrics from a

IAAI Articles

SUMMER 2011 61

Releases pd pf GE

2 77 33 58

3 92 21 81

4 82 23 78

5 75 15 74

6 87 18 83

7 83 21 71

8 98 33 68

9 88 29 72

10 97 41 68

Average 87 26 72.5

(Standard
Deviation)

(8.1) (8.5) (7.6)

Table 3. Performance of the Prediction Model.

specified release of a specified project. (2) Shell
scripts were to retrieve the defects detected for a
specified project from the bug-tracking system and
match those defects with files that already includ-
ed code metrics. (3) We prepared the training set
from the previous release of a specified project. (4)
We prepared the test set from the current release of
a specified project. (5) We called Prest once again
to activate the prediction component, load the
training and test sets, and run the algorithm and
make the prediction. (6) The program returned
defect-prone files of a specified project for its cur-
rent release.

In figure 1, the architectural schema of deploy-
ment of the prediction model is presented. There
are five major modules: code extractor extracts a
stable version of the source code for a specified
project from the company’s version control system
(VCS). Then, metric extractor 1 is run to trigger
Prest for extracting code metrics from the given
source code version. Metric extractor 2 mines the
bug and issue tracking systems (BITS) as well as

VCS in order to extract in-process and people met-
rics, such as commits, edited LOC, unique com-
mitters. Once metrics are ready for training or test
sets, the defect matcher retrieves bug reports from
BITS to match the bugs with associated modules.
Finally, model calibration calls Prest once more to
build the defect prediction. This module has an AI
component, in which a training set is used to find
the parameters of the selected algorithm and a test
set is used to make predictions.

We formed a more generic system during
deployment such that metric extractors 1 and 2
can be easily updated with new scripts if VCS or
BITS is changed. Then, the prediction model
would still be used within the organization.

The output of the model (see the predictions
node in figure 1) is fed into the configuration man-
agement system (CMS). The CMS lists all source
files of a specified project with their code metrics as
well as predictions on their defect-proneness on a
single web page.

Based on feedback from the software team in the

IAAI Articles

62 AI MAGAZINE

Version Control System (VCS)

Bug and
issue

tracking
system
(BITS)

Con�guration Management System

Defect Matcher:
Matching defect information with
software modules in the source code

Metric Extractor #2:
Extraction of in-process and
people metrics from VCS

Code Extractor:
Source code extraction
from VCS

Metric Extractor #1:
Extraction of static code attributes
from the source code (via Prest)

Model Calibration:
Calibration of learning-based defect predictors
(algorithm selection, experimental setup)

Predictions

Prest: Metric
Extraction

and Defect
Prediction Tool

Figure 1. Architecture of the Deployed Prediction Model.

organization, we updated the output of the predic-
tion model. In figure 1, the output variable is not
only a class label (for example, 1: defect prone or 0:
defect free), but also a probability for defect-prone-
ness (for example, defect prone with 75 percent
probability), since the latter helps the software
team decide “where to start.” Testers would look at
files with the highest probability of defect-prone-
ness when they start testing the system.

The local prediction model has been used on
two major components of the software system for
six months. It lists defect-prone files of these com-
ponents at the beginning of the testing phase so
that testers’ efforts would be assigned to critical
parts. Every 2 weeks, a new release with 10 to 15
work packages and more than 400 interfaces of
these components is being published. Since the
release period is short, each release package con-
tains at most a functionality or two new function-
alities and the rest is modifications/upgrades for
the current system. These work packages are tested
using 1000 to 1500 test cases by a total of 20
testers. Due to time constraints, the testing phase
is limited to five days on average. Thus, each tester
needs to run 10 to 15 automated test cases per day
(in eight hours) in order to inspect 80 percent of
the functionality in total. It is also necessary for
each tester to conduct manual inspections to
ensure 100 percent test coverage.

On the other hand, in reality, the development
phase is delayed with frequent requirement
changes due to revisions in government regula-
tions. Thus, testers often have only three days to
complete the verification of a release. During this
period of time, a tester can execute 30 to 45 test
cases. All test cases executed by 20 testers in three
days can cover only 48 percent of the functionali-
ty. Therefore, the company applied our defect pre-
diction model to prioritize critical parts of the code
and assign the company’s few resources to those
parts immediately. The model inspects 24 percent
of the files corresponding to 35 (23 percent) differ-
ent functionalities, and it detects 87 percent of
defects. As a result, each tester is required to run 9
to 13 automated test cases per day to inspect 71
percent of the functionality in total. In other
words, the company has managed to decrease the
effort in person-hours per defect from 1.25 to 1.1
(a decrease of 11.2 percent) with the help of our
defect prediction model. The quality assurance
team also counted the number of postrelease
defects for the last five releases and found that,
since the model successfully catches most of these
defects during the testing phase, postrelease fail-
ures due to a code defect have been decreased from
59 percent to 32 percent (a decrease of 44 percent).
Table 4 also summarizes the benefits after using a
defect prediction model (DPM) in terms of inspec-
tion effort, test cases, and postrelease defects.

Using Defect Prediction to Support
a New Process Implementation
Software organizations have been using different
development methodologies (such as agile devel-
opment, capability maturity models, team soft-
ware process) since the 1990s, in order to produce
superior software systems in terms of improved
code quality, reduced defect rates, and effective
resource allocation.3 Although these methodolo-
gies may seem different, they are most effective
when they are used to complement each other
since they fix problems in different phases of a
software life cycle. Similarly, software defect pre-
dictors are useful tools to complement these
methodologies to improve software quality and
productivity to reduce defect rates.

We have done an additional analysis to examine
whether a new process implementation on its own
is successful at improving the quality of a software
product, that is, decreasing the defect rates and
reducing the testing effort. Recently, a pilot proj-
ect has been conducted for implementing a new
process, team software process (TSP), in the com-
pany.

We first investigated how TSP meets the expec-
tations in terms of effort, schedule, and defect
rates. To accomplish this, we observed estimated
versus actual effort spent on each phase in the
development life cycle. Second, we applied our
defect prediction model on the pilot project after it
was completed and analyzed whether the defect
prediction model could be a complementary
approach to achieve above and beyond the bene-
fits provided by TSP, such as reduced defect rates
and testing efforts.

What�Is�Team�Software�Process? Along with per-
sonal software process (PSP), TSP (see note 3) helps
engineers ensure the quality of software products,
create secure software products, and improve
process management in an organization. Engi-
neering groups often use TSP to apply integrated
team concepts to the development of software-
intensive systems (see note 3). A launch process
leads the teams and managers to establish their
goals, define the roles within the team, assess risks,
and produce a team plan. This process first directs

IAAI Articles

SUMMER 2011 63

Metric Before DPM After DPM
Number of executed test cases per day 10–15 9–13
Prerelease defects found during testing (percent) N/A 87
The amount of functionality inspected (percent) 48 71
Inspection effort (person-hour) 1.25 1.1
Postrelease defects (percent) 59 32

Table 4. Deployment of the Model: Benefits.

the goals and the plans of engineers in the compa-
ny individually. Then it helps create self-directed
teams who take ownership of their plans and
processes and direct their tasks accordingly. Using
PSP, engineers do not only improve the process of
planning and estimating the size and effort related
to their tasks, but they also understand the means
of managing quality and reducing defects. Accord-
ing to case studies carried out in various organiza-
tions such as Motorola, engineers have achieved
less than 0.1 defects per thousand LOC on nearly
18 projects (see note 3). Although the objectives
and claims of applying such a process are very
strong, it is clear that TSP, along with PSP, obliges
engineers individually to ensure that they adopt
good practices in terms of engineering disciplines.

Analysis�on�the�Pilot�TSP�Project.�The manage-
ment selected a software team of four people to
develop a new project by applying fundamental
principles of TSP. The software team was asked to
report all tasks it accomplished and planned. It
also kept actual time and effort required for com-
pleting these tasks and the number of defects
detected and removed during testing activities.

The team’s objectives were to observe the appli-
cability of TSP in its organization and evaluate the
benefits of the process change in terms of produc-
tivity, estimation accuracy, the defects detected in
unit testing, and defect density in the testing and
production phases.

The pilot project would provide a modification
for one of the four major software components in
the large software system. When compared with
the large system, for which we have implemented
a predictor model, the size of the pilot project can
be viewed as one-fifth of the entire system. At the
end of development life cycle, it contains 107 Java
packages with around 105,925 executable LOC.
The pilot project team executed two launches dur-
ing the project life cycle. Every launch started by
defining the tasks required for completing the proj-
ect, assigning each task to an engineer (or a group
of engineers), estimating the time and size of the
tasks and the number of defects injected and
removed for each phase.

Engineers in the pilot group purposefully
applied the TSP principles for almost six months.
They prepared reports with statistics on estimation
accuracy, productivity, and defect rates. Based on
these reports, we have formed a chart that repre-
sents the actual time spent in software phases (in
percent) aligned with the estimated time periods
in figure 2.

By looking at this figure, we can see that the
team actually applied TSP and made accurate esti-
mations in terms of the time spent in each phase.
It spent 95 percent of its total effort on high-level
design (HLD), detailed design (DLD), DLD review,
implementation, code review, and unit tests.
Specifically, coding and code review took slightly

IAAI Articles

64 AI MAGAZINE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Avg Planned Avg Actual

Ti
m

e
in

 P
h

as
es

Figure 2. Time in Hours Spent for Each Phase.

more than expected. Code reviews, inspections,
and review constitute 25 percent of this effort.

When we observe the defects detected and
removed in each phase (table 5), we see an inter-
esting pattern: 25 percent of all defects were detect-
ed and fixed during code reviews and inspections
in comparison to 28 percent of defects detected
during unit testing.

A panel on IEEE Metrics reports that code
reviews and manual inspections can detect 60 per-
cent of defects on average (Shull et al. 2002). How-
ever, although 17 percent of total time was spent
for code reviews and inspections in the course of
this pilot project, the percentage of the defects
detected during independent testing activities was
still 29 (that is, testing phase). TSP should ideally
increase the number of defects detected in code
reviews and unit testing since it provides a guide
for increasing the quality of the work of engineers
(software developers). Furthermore, TSP argues
that it should decrease the defect density in the
testing phase and increase the software quality.

Defect�Prediction�on�the�TSP�Project. We argue
that when a learning-based defect predictor was
used as complementary to code reviews and
inspections during the pilot TSP project, it would
help reduce both the time and effort spent during
coding and testing. To strengthen our claim, we
have used the local prediction model on the pilot
project data and identified defect-prone modules
during “coding” (including code reviews, inspec-
tion, and unit testing). This was also an after-the-
fact analysis of our prediction model that would
show what such models could provide during a
new process implementation.

In the pilot TSP project, defect logs were kept in
detail, and when possible, they were matched with
a Java package in the project. We used Prest to
extract static code attributes from the Java pack-
ages of the pilot project. Then we matched the
defects detected during “coding” with code metrics
of the packages. We assigned 1 as defective and 0
as defect free to every package in the source code if
there was a minimum of one defect. Finally, we
made package-level predictions on the pilot proj-
ect. Table 6 summarizes the defect ratio in the
package level and the prediction performance of
our predictor. It shows that using a smart and auto-
mated tool, we managed to detect 75 percent of all
defects without spending too much effort on
inspecting the entire code through the use of
labor-intensive checklists. We can decrease the
inspection effort by 10 percent compared to a ran-
dom testing strategy. This gain in the inspection
effort is lower than what we proposed in table 3
due to the granularity level we used in TSP analy-
sis. Matching the files with defects rather than
packages would prove to be more beneficial for
reducing the inspection efforts. Thus, we see that a

process change itself is limited to reduce the
inspection effort or to improve the quality of cod-
ing in terms of the number of defects detected dur-
ing unit testing.

If we used such a tool during the TSP imple-
mentation, it would enable us to save time and
find the defects that were missed during the “cod-
ing” phase but detected during the testing phase.
The rate of false alarms seems to be high—a fact
that would waste the limited testing effort on actu-
al defect-free modules. However, in this analysis,
we only predicted the defects detected during the
“coding” phase, but we did not match the defects
detected during the testing phase with the software
packages. Therefore, the packages that are misclas-
sified as defect prone (false alarms) may also con-
tain a defect detected during the testing phase.

To sum up, TSP aims to find more defects and
improve software quality by guiding developers to
do more code reviews and more inspections.
Defect prediction also aims to find more defects by
optimizing the inspection effort. In other words,
an AI-based defect prediction model finds more
defects with less inspection effort compared to
manual code reviews. In our analysis we have seen
that our model found more defects over and above
the ones found during the TSP project implemen-
tation. Had the AI-based defect prediction model
been used during TSP project, it would have
decreased the manual inspection effort and found
more defects. We have observed that process
change is beneficial to increase planning accuracy
and obtain high-quality software products. How-
ever, they may not provide a solution to all prob-
lems such as decreasing the defects, increasing
quality, or accurate estimation of size and effort in
the software development life cycle. Defect predic-
tors can be used effectively to complement and fur-
ther improve such process models.

Maintenance
Similar to many AI-based models, our model also
requires calibration. The company decided to train
the model with new data in periods of three

IAAI Articles

SUMMER 2011 65

Phase Removed Count
Unit Testing 66

Code Inspection and Reviews 58
DLD Review 38

Design 6
Independent Testing 68

Total 236

Table 5. Number of Defects
Detected and Fixed in Phases.

months and make predictions on new releases.
Since the model has been successfully integrated
with the company’s software system, it is just a few
minutes to form a new training set (using Metric
Extractor and Defect Matcher modules) by running
automatic scripts every three months. The compa-
ny also motivates the teams for making such tools
part of their routine during the development and
testing stages. This way, it will be easier to use the
model in collaboration with the development and
test teams in order to analyze the code quality and
to predict the critical parts of the software. Using
the available training set, the model would calcu-
late the parameters and predict defect-prone files
of a test set without human intervention. Further-
more, we plan to track the prediction performance
and the usage of the model in the company for one
year and will calibrate the algorithm if necessary.
The overall maintenance effort is less than 30 min-
utes per month, and this shows that the cost of
implementing the model is well worth it.

Predicting Final Reliability
Innovative applications of AI techniques have tan-
gible benefits both for academia and industry. In
terms of research opportunities, this project helps
us focus on a new challenge in software engineer-
ing: when to stop testing and release the software.
Building prediction models is quite effective in
estimating the defect-proneness of software sys-
tems before production. They can also be used to
estimate postrelease failures (Nagappan, Ball, and
Murphy 2006; Nagappan, Murphy, and Basili
2008) and fix them prior to the release. However,
it is still an issue in practice to decide when to
release the software. Software managers in large
organizations look for more extensive models to
answer the questions of “when to stop testing” and
“how much reliability will improve with more test-
ing.” In real life, as software systems get more com-
plex, software managers monitor various software
factors related to different phases in the develop-
ment life cycle. They combine their prior knowl-
edge with these facts in order to ensure that the
software has reached a predefined reliability level
and it is ready to be deployed.

As a new research project, we built a compre-

hensive Bayesian network (BN) that would
improve decision making for project managers by
estimating a reliability (confidence) level for the
software before the production phase. We chose
Bayesian networks for various reasons. First, BNs
allow learning causal relations between software
factors (Heckerman 1995), second, BNs combine
data and prior expert knowledge using statistical
techniques (Heckerman 1995), and finally, BNs let
users observe the effects of one variable on anoth-
er or on the final node, and hence, they provide
efficient trade-off analysis for software managers.
The proposed BN includes subnetworks such as
requirements analysis, design, development, test-
ing, and project management. Each subnet con-
sists of various software artifacts whose causal rela-
tionships would represent the reliability of the
corresponding process. Combination of these sub-
nets would estimate the final reliability of a soft-
ware system.

We collected process metrics and postrelease
defect counts from 10 releases of the software sys-
tem in the company and predicted their number
of critical postrelease defects (a range is predicted
rather than a single number) that would probably
occur after the release. Based on the predefined
confidence ranges, we estimated the confidence
levels of these releases. The actual number of
postrelease defects found after these 10 releases
was very high. Thus, in reality, neither of these
releases should have gone into production.

In terms of predicting the defect counts, our
model successfully estimates defect ranges with 70
percent accuracy in the requirements and testing
phases, whereas it estimates all defects with 100
percent accuracy in the development phase. Fur-
thermore, when we observe confidence-level pre-
dictions of our model, it is seen that all releases
have been assigned very low (VL) and low (L) con-
fidence levels according to the company’s prede-
fined thresholds. These results lead to the follow-
ing: If software managers used this kind of a model
previously, all releases should have been improved
or delayed until a desired confidence level was
obtained. Managers can also monitor critical
processes in the development life cycle so that cor-
rective actions would be taken immediately. Final-
ly, such predictive models can provide a funda-

IAAI Articles

66 AI MAGAZINE

Number of
Attributes

Number of
Packages

Defectives (percent) pd pf GE

20 107 15 percent 75 percent 26 percent 10 percent

Table 6. Predictions on the Pilot Project Using Defect Predictor.

mental input for the question of “when to release
the software” as well as affect cost and opportuni-
ty considerations in software organizations.

Lessons Learned
There are certain challenges during the develop-
ment and implementation of predictive models.
During the development process, we easily collect-
ed software metrics using our open-source metric
extraction tool, Prest. However, matching each
defect with its corresponding file in order to form
a training set for the model was a challenging task.
To do this, companies have to store certain data in
their systems. First, it is necessary to keep track of
any bug/defect recorded during the testing phase
through a bug-tracking system. Second, the
changes applied on the source code due to a defect
should be kept in a version history. Then, we can
mine the version history to match every defect
with all the files changed to fix the corresponding
defect. After forming the training set, it is easy to
apply any algorithm, and not necessarily only
naïve Bayes, on the training set to learn the param-
eters. Software metrics required to form the testing
set can be quickly collected with Prest.

During the implementation process, we must
ensure at the beginning that the model yields the
optimal prediction accuracy for the local data col-
lected from the organization. Then, it is important
to decide how and when a defect predictor would
be used within the development life cycle. We sug-
gest that such predictors should be used prior to
the testing phase in order to guide the testers
through defect-prone modules in the software sys-
tem. We have integrated our model into the com-
pany’s configuration management database
(CMDB) system, which displays certain properties
about the source code such as the difference
between two releases, the complexity of the latest
change, and added/deleted LOC during a given a
time period (that is, release). Using our prediction
model, this system also presents the probability of
defect-proneness of any software module selected
from the system. Thus, developers, as well as
testers, can track the defect-proneness of their code
in every release.

The application has been in use at the company
for 12 months now. The company plans to
improve the predictions by adding new metrics
from version management systems.

From a practical point of view, this project led to
new collaborations with global software organiza-
tions. Although AI techniques may be complex for
practitioners, once the problems are identified
carefully and tangible benefits are measured and
monitored, the industry uses AI-based models very
effectively.

Acknowledgements
This research is supported in part by Turkish State
Planning Organization (DPT) under project num-
ber 2007K120610 and Turkcell Inc.

Notes
1. See D. Heeger, 1998, Signal Detection Theory, available
at www.cns.nyu.edu/~david/handouts/sdt/sdt.html.

2. See G. Boetticher, T. Menzies, J. T. Ostrand, The PROM-
ISE Repository of Empirical Software Engineering Data
(promisedata.org/repository).

3. See the Software Engineering Institute (SEI), Team Soft-
ware Process, Carnegie Mellon University
(www.sei.cmu.edu/tsp).

References
Adrian, R. W.; Branstad, A. M.; and Cherniavsky, C. J.
1982. Validation, Verification, and Testing of Computer
Software. ACM Computing Surveys (14)22: 159–192.

Alpaydin, E., ed. 2004. Introduction to Machine Learning.
Cambridge, MA: The MIT Press.

Arisholm, E., and Briand, L.C. 2006. Predicting Fault-
Prone Components in a Java Legacy System. In Proceed-
ings of the 2006 ACM/IEEE International Symposium on
Empirical Software Engineering, 8–17. New York: Institute
of Electrical and Electronics Engineers and Association
for Computing Machinery.

Basili, V.; Briand, A.; and Melo, W. L. 1996. Validation of
Object Oriented Design Metrics as Indicators of Quality
Indicators. IEEE Transactions on Software Engineering
(22)10: 751–761.

Brooks, A., ed. 1995. The Mythical Man-Month: Essays on
Software Engineering. Reading, MA: Addison-Wesley.

Chidamber, S. R., and Kemerer, C. F. 1994. A Metrics Suite
for OO Design. IEEE Transactions on Software Engineering
(20)6: 476–493.

Fagan, M. 1976. Design and Code Inspections to Reduce
Errors in Program Development. IBM Systems Journal
(15)3: 182–211.

Fenton, N., and Neil, M. 1999. A Critique of Software
Defect Prediction Models. IEEE Transactions on Software
Engineering (25)(5): 675–689.

Halstead, H. M., ed. 1977. Elements of Software Science.
Amsterdam: Elsevier.

Heckerman, D. 1995. A Tutorial on Learning with
Bayesian Networks. Technical Report. Redmond, WA:
Microsoft Research.

Kocaguneli, E.; Tosun, A.; Bener, A.; Turhan, B.; and
Caglayan, B. 2009. Prest: An Intelligent Software Metrics
Extraction, Analysis, and Defect Prediction Tool. In Pro-
ceedings of the 21st International Conference on Software
Engineering and Knowledge Engineering, 526–529. New
York: Institute of Electrical and Electronics Engineers and
Association for Computing Machinery.

Kuncheva, L. I. 2006. On the Optimality of Naïve Bayes
with Dependent Binary Features. Pattern Recognition Let-
ters (27)7: 830–837.

Lessmann, S.; Baesens, B.; Mues, C.; and Pietsch, S. 2008.
Benchmarking Classification Models for Software Defect

IAAI Articles

SUMMER 2011 67

Prediction: A Proposed Framework and Novel Findings.
IEEE Transactions on Software Engineering (34)4: 1–12.

McCabe, T. 1976. A Complexity Measure. IEEE Transac-
tions on Software Engineering (2)4: 308–320.

Menzies, T.; Greenwald, J.; and Frank, A. 2007. Data Min-
ing Static Code Attributes to Learn Defect Predictors. IEEE
Transactions on Software Engineering (33)1: 2–13.

Moser, R.; Pedrycz, W.; and Succi, G. 2008. A Compara-
tive Analysis of the Efficiency of Change Metrics and Stat-
ic Code Attributes for Defect Prediction. In Proceedings of
the 30th International Conference on Software Engineering,
181–190. New York: Institute of Electrical and Electronics
Engineers and Association for Computing Machinery.

Munson, J. C., and Khoshgoftaar, T. M. 1992. The Detec-
tion of Fault-Prone Programs. IEEE Transactions on Soft-
ware Engineering (18)5: 423–433.

Nagappan, N.; Ball, T.; and Murphy, B. 2006. Using His-
torical In-Process and Product Metrics for Early Estima-
tion of Software Failures. In Proceedings of the IEEE Inter-

national Symposium on Software Reliability Engineering. Pis-
cataway, NJ: Institute of Electrical and Electronics Engi-
neers.

Nagappan, N.; Murphy, B.; and Basili, V. 2008. The Influ-
ence of Organizational Structure on Software Quality: An
Empirical Case Study. In Proceedings of 30th International
Conference on Software Engineering, 521–530. New York:
Institute of Electrical and Electronics Engineers and Asso-
ciation for Computing Machinery.

Ostrand, T. J.; Weyuker E. J.; and Bell, R. M. 2005. Pre-
dicting the Location and Number of Faults in Large Soft-
ware Systems. IEEE Transactions on Software Engineering
(31)4: 340–355.

Shull, F.; Boehm, V. B.; Brown, A.; Costa, P.; Lindvall, M.;
Port, D.; Rus, I.; Tesoriero, R.; and Zelkowitz, M. 2002.
What We Have Learned About Fighting Defects. In Pro-
ceedings of the Eighth IEEE International Software Metrics
Symposium, 249–258. Piscataway, NJ: Institute of Electri-
cal and Electronics Engineers.

Tosun, A.; Bener, A.; and Turhan, B. 2009. Practical Con-
siderations in Deploying AI for Defect Prediction: A Case
Study within the Telecommunication Industry. In Pro-
ceedings of the 1st International Conference on Predictor Mod-
els (PROMISE). New York: Association for Computing
Machinery.

Uyar, A.; Bener, A.; Ciray, H. N.; Bahceci, M. 2009. ROC
Based Evaluation and Comparison of Classifiers for IVF
Implantation Prediction. In Proceedings of Second Interna-
tional ICST Conference on Electronic Healthcare for the 21st
Century, Lecture Notes in ICST. Berlin: Springer.

Zimmermann, T.; Weisgerber, P.; Diehl, S.; Zeller, A. 2004.
Mining Version Histories to Guide Software Changes. In
Proceedings of the 26th International Conference on Software
Engineering, 563–572. Los Alamitos, CA: IEEE Computer
Society.

Ayse�Tosun�Misirli is a research assistant and a PhD stu-
dent in the Department of Computer Engineering at
Bogazici University. She received her MS degree from the
same department in 2008. She graduated from the School
of Computer Science and Engineering at Sabanci Univer-
sity, Istanbul, Turkey, in 2006. Her research interests are
software defect prediction, effort estimation, Bayesian
modeling, and statistics. She is a student member of IEEE
Computer Society and ACM SIGSOFT.

Ayse�Bener is an associate professor in the Ted Rogers
School of Information Technology Management at Ryer-
son University. Prior to joining Ryerson, Bener was a fac-
ulty member and vice chair in the Department of Com-
puter Engineering at Bogazici University. Her research
interests are software defect prediction, process improve-
ment, software quality, and software economics. Bener
has a PhD in information systems from the London
School of Economics. She is a member of the IEEE, IEEE
Computer Society, and the ACM.

Resat�Kale is charging and collection unit manager at
Turkcell Technology. Before taking this position, he had
been working as a quality assurance manager at Turkcell
Technology. He has a bacheler’s degree in industrial engi-
neering from Istanbul Technical University. He has been
working in IT since 1992 in numerous positions. He has
experience in software quality and testing. He is a mem-
ber of the Turkish Testing Board (member of ISTQB).

IAAI Articles

68 AI MAGAZINE

Seventh AAAl Artificial Intelligence
and Interactive Digital Entertainment

Conference (AIIDE-11)

Save the Date! October 11–14, 2011

Please join us for AIIDE-11, to be held October 11-14,
2011 at Stanford University in Stanford, California.
AIIDE is the definitive point of interaction between
entertainment software developers interested in AI
and academic and industrial AI researchers. While tra-
ditionally emphasizing commercial computer and
video games, AIIDE invites researchers and developers
to share their insights and cutting-edge results on all
topics at the intersection of all forms of entertainment
and artificial intelligence, including serious games,
entertainment robotics, art, and beyond. The program
will include invited speakers, research and industry
presentations, project demonstrations, interactive
poster sessions, and product exhibits. Registration
information and other program details will be avail-
able on the AIIDE-11 website at www.aiide.org/aiide11
later this summer. Please send inquiries to
aiide11@aaai.org, to conference chair Vadim Bulitko
(University of Alberta), or to program chair Mark Riedl
(Georgia Institute of Technology).

