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ABSTRACT: 

The increased availability of remote sensing data combined with the wide-ranging applicability of artificial intelligence has enabled 

agriculture stakeholders to monitor changes in crops and their environment frequently and accurately. Applying cutting-edge 

technology in precision agriculture also enabled the prediction of pre-harvest yield from standing crop signals. Forecasting grain 

yield from standing crops benefits high-throughput plant phenotyping and agriculture policymaking with information on where 

crop production is likely to decline. Advanced developments in the Unmanned Aerial Vehicle (UAV) platform and sensor 

technologies aided high-resolution spatial, spectral, and structural data collection processes at a relatively lower cost and shorter 

time. In this study, UAV-based LiDAR and hyperspectral images were collected during the growing season of 2020 over a cornfield 

near Urbana Champaign, Illinois, USA. Hyperspectral imagery-based canopy spectral & texture features and LiDAR point cloud-

based canopy structure features were extracted and, along with their combination, were used as inputs for maize yield prediction 

under the H2O Automated Machine Learning framework (H2O-AutoML). The research results are (1) UAV Hyperspectral imagery 

can successfully predict maize yield with relatively decent accuracies; additionally, LiDAR point cloud-based canopy structure 

features are found to be significant indicators for maize yield prediction, which produced slightly poorer, yet comparable results to 

hyperspectral data; (2) regardless of machine learning methods, integration of hyperspectral imagery-based canopy spectral and 

texture information with LiDAR-based canopy structure features outperformed the predictions when using a single sensor alone; 

(3) the H2O-AutoML framework presented to be an efficient strategy for machine learning-based data-driven model building.

1. INTRODUCTION

Ensuring food security for the ever-increasing population under 

changing climate is a global challenge that requires cutting-edge 

technologies in agriculture management practices. Precision 

agriculture aims to utilize up-to-date solutions to reduce financial 

and environmental costs and improve crop value with limited 

natural resources under variable weather conditions caused by 

global warming. Preharvest yield information at a fine scale is 

essential in precision agriculture and high-throughput plant 

phenotyping (Maimaitijiang et al. 2020c). Foreseeing where 

productivity is likely to decline can help prevent the decrease and 

improve productivity before harvest. Thus, reliable preharvest crop 

yield prediction is imperative for grain policymaking and food 

security. Precision agriculture benefited from the development of 

Unmanned Aerial Vehicles (UAV) based remote sensing systems. 

Up to date, advancements in UAV and sensor technologies enabled 

remote sensing data acquisition with high spatial, spectral, and 

temporal resolution at a relatively low cost and time. In addition to 

the flexible temporal resolution, flying at a low altitude facilitated 

UAV to gain crop images with a high spatial resolution, improving 

monitoring performance (Tsouros et al. 2019). When Machine 
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Learning (ML) techniques are applied to hyperspectral and LiDAR 

data acquired from remote sensing platforms, forecasting crop grain 

yield from canopy signals can be achieved with comparatively low 

cost and decent accuracy.  

The developments in machine learning provide enormous 

opportunities to create remote sensing-based data-driven models 

concerning crop monitoring, plant traits estimation, and grain yield 

prediction (Bhadra et al. 2020; Maimaitijiang et al. 2020b; Sagan et 

al. 2021a; Sagan et al. 2021b). ML conducts efficient identification 

of complex-linear/nonlinear relationships and automatically 

extracts spatiotemporal features from various input variables, 

enabling the estimation of plant traits and grain yield more 

accurately (Babaeian et al. 2021). The recent development of 

automated machine learning frameworks, such as H2O Automated 

Machine Learning (H2O-AutoML) (LeDell and Poirier 2020) etc., 

accelerated the implementation of ML in remote sensing-based 

applications through automated and streamlined feature selection, 

hyperparameter optimization and model evaluation functions 

(Babaeian et al. 2021). However, it has not been broadly employed 
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in remote sensing agricultural applications such as crop yield 

prediction.  

 

This research aims to evaluate the potential of point cloud LiDAR 

data, hyperspectral data, and their combinations in predicting maize 

yield from canopy signals of standing crops captured during the 

reproductive stage. Specific study goals are 1) to evaluate the 

potential of canopy spectra, texture and structure information 

extracted from hyperspectral and LiDAR imagery data in predicting 

maize yield; 2) to investigate the contribution of LiDAR point 

cloud-based canopy structural features in maize yield prediction 

accuracy; 3) to introduce the application of a fully automated 

machine learning-based approach in yield prediction. 

 

2. DATA 

 On August 26th,2020, high-resolution remote sensing images were 

acquired from the University of Illinois Urbana-Champaign's 

agriculture research field near Champaign, Illinois (IL), using 

LiDAR and Hyperspectral sensors (Figure1) mounted on UAV 

platforms. The details of the UAV and sensors are listed in Table 1. 

369 plots were sampled as ground truth maize dataset during the 

harvest that was conducted in October of 2020.   

 

LiDAR data processing pipeline LiDARMill (Phoenix LiDAR 

Systems, Los Angeles, California, USA) was provided with the raw 

point clouds, trajectory files and the Novatel GNSS ground 

reference station-based GPS information for LiDAR data 

processing. Point clouds data steps combine IMU and GNSS data 

to generate precise trajectory (SBET) files and then detect flight 

lines to minimize processing time by automatically excluding turns. 

Calibration maneuvers focus on data-collecting flight lines and a 

LiDAR snap process that compares geometric observations made 

across overlapping flight lines to optimize alignment parameters 

and reduce offsets from multiple flight lines (Maimaitijiang et al. 

2020a). The LiDAR mill pipeline delivers classified (ground/non-

ground) point clouds with ± 2 cm position accuracy. The 2D and 

3D visualization of LiDAR point clouds from the cornfield are 

displayed in Figure 2, where the blue color points represent the 

ground primarily. In contrast, the red color points are mostly the 

higher canopy areas. The height dimension values of the point 

clouds are the elevation values, not the canopy height values 

The raw hyperspectral image cubes were processed with the 

SpectralView software (Headwall Photonics, Fitchburg, MA, USA) 

by radiometric calibration, geometric correction and ortho 

mosaicking steps. To convert the raw data displayed as 12-bit 

digital numbers (DN) to radiance values, dark and white reference 

information, taken before each flight,  were used along with the 

factory calibration files; then, by using the imaged reflectance tarp, 

the radiance values were converted to surface reflectance factor 

(Hartling et al. 2021); 3D sensor positional information recorded by 

onboard IMU, and high resolution (10 m) digital elevation model 

(D.E.M.) through relevant functions of the SpectralView tool were 

incorporated for Orthorectification and geometric correction. 

Lastly, the geometrically corrected and orthorectified reflectance 

data cubes were stitched into a single image cube covering the 

whole field (Maimaitiyiming et al. 2020). Atmospheric correction 

was unnecessary due to low flight height, where the effect of the 

atmosphere is inconsiderable.  

 

 

 
Figure 1. Platforms and sensors are used for collecting high-

resolution hyperspectral and multispectral images. 

 

 

 

 

 

 

 

3. METHODS 

3.1 Feature Extraction  

A set of vegetation indices often used for plant traits estimation and 

grain yield prediction and 269 original reflectance bands, and the 

grey co-occurrence matrix (GLCM) canopy texture features, 

introduced by Haralick et al. (1973), were extracted from the 

processed UAV hyperspectral imagery. For the machine learning 

prediction, the plot-level mean values of the above-mentioned 

spectral features' plot level mean values were used as input 

variables.  

 

To remove outliers from the LiDAR data, the statistical outlier 

removal (SOR) algorithm was used. Plot boundary polygons were 

used to attain plot-level point clouds, which resulted in plot-level 

3D point-cloud visualization (Figure3). For each plot-level point-

Sensor Vender/brand Recorded info. Spectral Properties GSD/Point-density 

LiDAR Velodyne HDL-32 
LAS point cloud 

 
/ 900 pts/m2 

Hyperspectral 
Headwall Hyperspec 

 Nano 

269 VNIR spectral 

bands 

400 – 1000 nm with FWHM 

of 6 nm 
3 cm 

*GSD: ground sampling distances. Hyperspectral and LiDAR data were collected at 50 meters; VNIR: visible and near-infrared; FWHM: 
full width at half maximum, nm: nanometer. 

Table 1. List of Remote Sensing Platforms and Sensors 
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cloud group, the ground elevation (or Digital Elevation Model 

(DEM)) was derived using the 1st percentile of the cumulative 

probability distribution of point clouds' height values; thus, the 

actual height (or canopy height) for each point was derived by 

subtracting the ground elevation (DEM) from Canopy Surface 

Model (CSM) (Maimaitijiang et al. 2020a). LiDAR intensity-based 

metrics were extracted at plot level along with a series of canopy 

height metrics, often representing canopy structural characteristics. 

Preprocessed LiDAR point cloud two-dimensional and three-

dimensional visualization is illustrated in Figure 2 below. 

 
Figure 2. LiDAR Point Cloud Visualization of the maize field. 

 

3.2 Modeling Methods 

To build maize yield prediction models using UAV multisensory-

derived canopy spectral, texture and structure features, this research 

applied the H2O-AutoML framework. H2O-AutoML contains 

supervised algorithms for classification and regression using 

tabular datasets. Feature scaling and selection, hyperparameter 

tuning and optimization through random grid searches, and 

generating several models based on numerous model performance 

metrics are all conducted automatically in H2O-AutoML. 

Therefore, H2O-AutoML permits a time-efficient workflow to find 

the optimal model without manual trial and error H2O-AutoML 

also supports the efficient processing of complicated datasets. 

Powerful machine learning algorithms such as Gradient Boosting 

Machine (GBM), Generalized Linear Model (G.L.M.), Distributed 

Random Forest (DRF), Extremely Randomized Trees (XRT), and 

Deep Neural Network (NN) are available in H2O-

AutoMLframework (LeDell and Poirier 2020).  

 

 

3.2.2 Model Evaluation Metrics 

Randomly selected 80% of the canopy spectral, texture and 

structure features extracted from UAV-based Hyperspectral 

imagery and LiDAR point clouds were used as a training set, 

whereas the rest 20% of those features were used for the model 

testing. The fully automated processing pipeline of H2O-AutoML 

conducted feature scaling, feature selection, along with 

hyperparameter tuning; Therefore, features extracted from UAV 

imagery were directly fed to the AutoML models. The workflow of 

UAV image processing, feature extraction, model building, and 

testing is displayed in Figure 3. 

 

 

 

Figure 3. Workflow of hyperspectral & LiDAR data processing, 

feature extraction, and implementation of automated machine 
learning methods. 

 

The predicted yield values were referenced to the ground truth 

values to evaluate AutoML models performance; three commonly 

used matrices: the coefficients of determination (R2), the root mean 

square error (RMSE), and relative RMSE (RRMSE), were 

calculated to be quantified. Respectively, n is the number of yield 

samples used during the model testing phase, 𝑦̂𝑖, 𝑦𝑖 And𝑦̅  are 

corresponding to the estimated, measured, and mean of measured 

yield values 

 

𝑅2 = 1 −  
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅)2n
i=1

                              (1) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛 − 1
                        (2) 

𝑅𝑅𝑀𝑆𝐸 =
RMSE

y̅
∗ 100                              (3) 
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4. RESULTS AND DISCUSSION 

4.1 Maize yield prediction results analysis 

To predict maize yield with hyperspectral and LiDAR data alone 

and their combination (denoted as Hyper + LiDAR), NN, DRF, 

XRT, GBM and GLM machine learning methods under the H2O-

AutoML framework were applied. The models and model 

validation statistics for the yield are presented in Table 2. 

Regardless of regression methods, hyperspectral and LiDAR data 

fusion produced a superior performance to using single sensor-

based data alone, with R2 ranging from 0.75 to 0.79, and RRMSE 

from 1.73% to 1.59% (Table 2). Canopy spectral and texture 

features extracted from hyperspectral imagery generated prediction 

accuracies (R2) ranging from 0.73 to 0.76 and RRMSE from 1.79% 

to 1.68% (Table 2). Compared to hyperspectral imagery-based 

prediction results, the structure features extracted from LiDAR 

point clouds resulted in lower prediction accuracies with R2 ranging 

from 0.55 to 0.67 and RRMSE from 2.32% to 1.98% (Table 2). 

Regarding the performance of regression methods, NN and GBM 

outperformed other methods when applied to the hyperspectral 

data; in the case of data fusion and LiDAR data, GBM provided the 

best results, DRF resulted in the lowest accuracies when using 

hyperspectral data, and GLM produced the poorest outcome in the 

case of data fusion and LiDAR data (Table 2).  

 

In Figure 4, predicted maize yield values resulting from five 

different machine learning methods are plotted against the ground 

truth maize yield values. Maize yield (Figure 4) samples are slightly 

underestimated when using hyperspectral imagery, perhaps 

partially due to the optical saturation problem. With the highest R2, 

0.79 and lowest RRMSE, 21.1, hyperspectral and LiDAR data 

fusion proved to be the best prediction results, which was also 

demonstrated by convergence patterns of the spread points around 

the bisector. 

 

4.2 Comparisons of Hyperspectral and LiDAR Performance  

Canopy spectral and texture information extracted from remote 

sensing-based imagery are the critical features that have been 

widely used in crop monitoring and agricultural applications. In all 

of the prediction models, UAV hyperspectral imagery-based 

canopy spectral & texture features constantly outperformed 

LiDAR-based canopy structure features in maize yield prediction. 

The higher performance of canopy spectral & texture features to 

structure features is established with previous studies on plant 

biochemical and biophysical traits assessment (Maimaitijiang et al. 

2020b). 

 

 
Table 2. Validation statistics of AutoML of maize yield prediction  

 

Hyperspectral-based canopy texture features are correlated with 

spectral features but also provides additional information 

associated with spatial canopy architecture and subtle structure 

characteristics, suppressing the soil-background effect and 

saturation issues while experiencing high spatial heterogeneity 

(Maimaitijiang et al. 2020c; Pacifici et al. 2009). That is probably 

the reason for the decent performance of the hyperspectral imagery-

based yield prediction study.  

 

Nevertheless, as listed in Table 2, canopy structure features 

extracted from LiDAR point cloud data produced lesser yet 

considerably decent prediction values to Hyperspectral imagery-

based features, demonstrating point cloud-based 3D canopy 

structure information is a promising substitute to frequently used 

VIs and texture features. Previous findings have presented the 

competency of point cloud-derived canopy structure features in 

crop biomass, LAI and nitrogen concentration estimation (Luo et 

al. 2019; Maimaitijiang et al. 2020a). Canopy features extracted 

from LiDAR point could data contain great 3D canopy structural 

information and display additional details on canopy internal and 

side profiles, canopy density, distribution, and architectural 

patterns (Maimaitijiang et al. 2020a). Those details often reflect the 

cultivar differences and, canopy health growth status across the 

field. The points mentioned above likely are the cause behind the 

decent performance of LiDAR point cloud produced information 

for yield prediction to some degree.   

 

Operational and processing difficulties (Verma et al. 2016) along 

with the limited canopy penetration capacity (Maimaitijiang et al. 

2020a) obstruct LiDAR's applications for low-stature vegetation 

like maize. In this study, it is worth noting that high-density LiDAR 

point clouds generated decent performance for corn. This can be 

partially attributed to LiDAR's ability to characterize 3D corn 

canopy structure, as displayed in Figure 2a since LiDAR captures 

the median and lower canopy characteristics of corn and the overall 

status of the canopy. This could be attributed to corn having a 

relatively higher crop stand and is possibly easier to penetrate. 

 

 

4.3 Contribution of Multisensory Data Fusion for Maize Yield 

Prediction 

 

Fusion of LiDAR point cloud-based canopy structure features with 

multispectral/hyperspectral imagery-based canopy spectral 

information proved to increase model performance in several 

previous studies about plant traits estimation such as LAI 

(Maimaitijiang et al. 2017), biomass, and N  estimation. A similar 

trend was also observed in this study. As shown in Figure 4, in all 

the prediction methods, the fusion of hyperspectral and LiDAR data 

constantly yielded higher performance than using a single sensor 

and increased R2 and decreased RMSE%. Optical remote sensing 

data such as multispectral/hyperspectral imagery often suffers 

asymptotic saturation issues along with limited canopy 3D structure 

information; thus, the capability of multispectral/hyperspectral for 

plant traits estimation and yield prediction, especially in the case of 

dense or heterogeneous crop canopies, is often limited 

(Maimaitijiang et al. 2017). The addition of point cloud-derived 3D 

canopy structure features can provide vertical profiles concerning 

canopy height and 3D distribution; furthermore, combing LiDAR 

features with hyperspectral data can help with minimizing the 

saturation effect of optical remote sensing and complements 

spectral information to some amount. Consequently, this is likely 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-193-2022 | © Author(s) 2022. CC BY 4.0 License.

 
196



the reason for improved prediction results. Extensive experiments 

should be done to evaluate the contribution of multisensory data 

fusion in crop yield perdition by considering various crop species 

and development stages, as well as different environmental and 

field conditions. 

 

 

 

 

4.4 Performance of Yield Prediction Models 

Among the five prediction models, GBM generated superior results 

to other models with the highest R2 and lower RRMSE in all data 

input categories; NN equaled GBM when using the hyperspectral 

dataset as the highest prediction model. GBM and NN models are 

followed by DRF and XRT methods with relatively lower R2 and 

higher RRMSE. The deep learning method NN frequently displays 

 

 

 
Figure 4. Scatter Plots of Measured VS Predicted Maize Yield Using Different Models with Hyper-based, LiDAR-based, and 

Hyper + LiDAR-based Features. 
 

 

strong capability in dealing with nonlinear, complex, and large 

datasets (LeCun et al. 2015). It often overcomes other popular 

machine learning algorithms such as random forest, support vector 

machine, and gradient boost machine in classification and 

prediction applications (Cota et al. 2021); however, GBM exhibited 

relatively high performance than NN in the present study, which is 

likely due to the simple data structure and somewhat smaller sample 

size used in this our case. 

 

Tree-based models, GBM, DRF and XRT, have different 

construction and internal evaluation; they often have a higher 

tolerance for data issues such as outliers and noise and can solve 

collinearity and overfitting problems, consequently exhibiting 

superior performance in remote sensing-based plant traits 

estimation and yield prediction in previous studies (Maimaitijiang 

et al. 2020b; Srivastava et al. 2021). The GBM, the boosting 

strategy-based model, is more suitable for the GBM (Talebpour et 

al. 2015) algorithm due to the specific data structure. DRF and XRT 

models are tree-based algorithms and employ a bagging strategy, 

yielding slightly different yet comparable prediction results in most 

cases. GLM model, in almost all instances, provided the lowest R2 

and highest RRMSE (table2). GLM is the extension version of 

linear regression; it supports linear, non-normally distributed 

dependent variables and supposes the independent variables are not 

correlated (Robinson and Schumacker 2009); which potentially 

restrains its ability when working with nonlinear data. That is likely 

caused by the poorer performance of GLM in this research. 

 

5. CONCLUSIONS 

This work demonstrated a comprehensive comparative study on 

maize yield prediction from UAV-based multisensory data 

combination using automated machine learning adds concluded the 

following findings.  

 UAV platform incorporated with multiple sensors can 

provide multi-domain, canopy spectral, texture, structure, 

2D and 3D, etc., crop canopy information, thus proving 

to be a capable tool for maize yield prediction.  

 With slightly lower prediction accuracies than 

hyperspectral data, LiDAR point cloud-based canopy 

structure features are significant indicators for maize 
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yield. Hyperspectral imagery-derived canopy spectral 

and texture features can also successfully predict maize 

yield.  

 UAV-based multisensory data fusion provided superior 

performance in many previous studies concerning plant 

traits estimation and grain yield prediction. This study 

demonstrated the potential of multisensory data fusion in 

maize yield prediction compared to using a single sensor 

alone. Specifically, the inclusion of LiDAR-based 

canopy structure information to hyperspectral-based 

features decreases the optical saturation issues, and 

complementary information improves prediction 

accuracy.  

 The automated machine learning approaches such as 

H2O-AutoML are a valuable and efficient framework 

that substantially facilitated model building and 

evaluation procedures. Regarding the specific algorithm 

under H2O-AutoML, GBM outperformed other methods 

in most cases and was followed by the NN method; GLM 

generated the poorest results. 

The study validated the enormous potential of UAV-based 

hyperspectral imagery and LiDAR point clouds, particularly 

Hyperspectral and LiDAR data fusion, in predicting maize yield via 

machine learning. Nonetheless, yield estimation via UAV-based 

multisensory data fusion and machine learning should be 

investigated across various crop types and in different field 

environments.  
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