
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4067  | https://doi.org/10.1038/s41598-022-08048-9

www.nature.com/scientificreports

AI‑enabled photonic smart 
garment for movement analysis
Leticia Avellar1*, Carlos Stefano Filho2, Gabriel Delgado3, Anselmo Frizera1, 
Eduardo Rocon3 & Arnaldo Leal‑Junior1

Smart textiles are novel solutions for remote healthcare monitoring which involve non‑invasive 
sensors‑integrated clothing. Polymer optical fiber (POF) sensors have attractive features for smart 
textile technology, and combined with Artificial Intelligence (AI) algorithms increase the potential of 
intelligent decision‑making. This paper presents the development of a fully portable photonic smart 
garment with 30 multiplexed POF sensors combined with AI algorithms to evaluate the system ability 
on the activity classification of multiple subjects. Six daily activities are evaluated: standing, sitting, 
squatting, up‑and‑down arms, walking and running. A k‑nearest neighbors classifier is employed and 
results from 10 trials of all volunteers presented an accuracy of 94.00 (0.14)%. To achieve an optimal 
amount of sensors, the principal component analysis is used for one volunteer and results showed an 
accuracy of 98.14 (0.31)% using 10 sensors, 1.82% lower than using 30 sensors. Cadence and breathing 
rate were estimated and compared to the data from an inertial measurement unit located on the 
garment back and the highest error was 2.22%. Shoulder flexion/extension was also evaluated. The 
proposed approach presented feasibility for activity recognition and movement‑related parameters 
extraction, leading to a system fully optimized, including the number of sensors and wireless 
communication, for Healthcare 4.0.

In recent years, technologies such as Internet of Things (IoT) have been employed as strategical approaches 
for decentralized decision making through the connection of the digital and physical  worlds1. The IoT concept 
stems from the interconnection of “things” in which the data communication between heterogeneous devices is 
performed without any human  assistance2. The main requirements of IoT include high data rate, real-time (low-
latency) operation, high security, long battery lifetime, connection density and  mobility3,4. Smart Healthcare is 
an IoT application which aims at the improvement of the everyday quality of life in the end-user  community5. 
Sensor devices are employed to collect medical data and vital signs from patients to monitor health conditions, 
track progress and indicate  anomalies2. Moreover, remote healthcare monitoring with high speed and intelligent 
execution can be achieved by increasing the number of devices and using Artificial Intelligence (AI)  algorithms6, 
since the combination of IoT and AI in the healthcare sector has a higher potential of making intelligent decisions 
in real-time for patient medical  records5,7.

Motor activities and physiological condition are important information for individual’s health monitoring. 
Gait-related parameters are useful in fall detection, gait pattern characterization or balance  assessment8. Changes 
in the gait-related parameters can indicate gait abnormalities or even a motor impairment, which can be further 
investigated. The motor impairment caused by injuries or diseases can be regarded as a limitation of muscle 
control function or mobility  limitation9. Bilateral limb analysis can be useful in the evaluation of the changes in 
motor ability, such as in the case of motor impairment after stroke, in which the control of limbs movement of 
one side of the body is affected. Among the gait-related parameters, cadence monitoring (i.e. number of steps per 
minute) can provide valuable information regarding user’s gait and activities in a remote monitoring environ-
ment, where deviations in the cadence can be related to fatigue of the patient or, in some cases, it can be related 
physical and even cognitive  impairment10. Although the cadence can be estimated with different approaches, such 
as accelerometers, camera-based systems and even laser range finders, the use of an integrated and fully port-
able solution such as the one proposed in this work provides benefits for remote healthcare applications, or any 
applications outside a clinical environment, due to the possibility of monitoring the patients in different activities 
of their daily living using portable systems that do not restrict their natural pattern of their  movements11. Besides 
the biomechanical parameters, the acquisition of physiological parameters is indispensable in the physiological 
analysis and provides important information about movement performance. Breathing rate is a physiological 
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parameter that consists of the number of breathing cycles (inhalation and exhalation) per minute. Continuous 
monitoring of the breathing rate can help to detect pulmonary diseases at their early stage or help to evaluate the 
level of physical conditioning and movement  fatigue11. Breathing rate monitoring can be an indicator of different 
clinical conditions such as infections (can result in the increase of carbon oxide concentration, leading to faster 
breathing  rate12), narcotics and even alcohol  abuse12. For this reason, many technologies were developed for 
breathing rate monitoring. Among the wearable ones, there are smart textiles and chest belts based on electronic 
and optical technologies, which provide the breathing rate estimation from vibrations or chest  displacements13. 
However, such sensors not only include another clothing or wearable accessory in addition to the one the 
patient is already using, but also have deviations on the measurement depending on the sensors’ position and 
are sensitive to movements of the  users13. Such drawbacks are mitigated using a smart garment, where there is 
the integration of all sensors in a single clothing accessory, which can also detect the breathing rate at different 
regions under dynamic movements of the user.

Flexible sensors miniaturization and advancements have boosted the development of wearable technologies 
to track health-related parameters or to extract practical features from multi-modal sensors on the wearable 
 device6,14. Wearable sensors play an important role in remote healthcare monitoring, since they allow performing 
a diagnostic evaluation at home with the use of non-invasive and unobtrusive sensors during daily  activities11. 
There are popular wearable devices in the market, such as inertial sensors embedded in elastic bands, smart 
watches and instrumented insoles, for movement and posture analysis, physiological parameters monitoring and 
pressure plantar  detection14. However, simultaneous monitoring of different health-related parameters requires 
the use of several individual devices, which may lead to problems related to devices’ connection and synchroniza-
tion, in addition to a discomfort and a possible skin irritation due to long-term use of these wearable  devices15. 
Sensors integration with clothing, so-called smart textile, is an attractive solution to overcome these drawbacks. 
The smart textiles present the advantages of sensors compactness and higher transparency between the sensor 
and the user, which leads to the monitoring of the natural activity without inhibiting the user’s  movement16. Fur-
thermore, smart textiles are easily handled, with simple installation and removal, which represents an advantage 
in terms of usability. Several approaches have been proposed for the development of smart textile technologies, 
including conventional  electronics17,  photonics18 and optical fiber  sensing19.

Optical fiber sensors (OFS) have attractive features for smart textile technology, including compactness, light-
weight and multiplexing capabilities. In addition, OFS are not susceptible to electrical discharges and they are 
immune to electromagnetic  interference15. The polymer optical fiber (POF) sensors have additional advantages 
since they present high flexibility and good biocompatibility with the human  body20. Different sensing techniques 
are used in the development of POF sensors, such as Fiber Bragg gratings (FBGs)21 and  interferometry22, which 
are commonly used in the scientific literature due to their high sensitivity to strain and temperature. Such tech-
nologies are also embedded in textiles for medical parameters monitoring, where sensors for body temperature, 
breathing rate, oximetry, heart rate and movement monitoring were  proposed20. However, these wavelength-
based techniques generally involve non-portable and expensive optical units for the signal  acquisition20,23,24. It 
is also important to mention that portable technologies for FBGs interrogator generally have limitations on the 
number of channels or simultaneous  sensors25. An alternative approach is the transmission-reflection analysis 
(TRA) embedded in textiles which presents portability and low-cost  components26. Nevertheless, this approach 
is also not fully optimized for remote healthcare monitoring since it includes a large number of components and 
it does not enable simultaneous multi-point analysis.

Most of these drawbacks can be addressed using the intensity variation technique, which consists of a light 
source and a photodetector to measure optical transmission losses due to the strain in the POF, resulting in a 
simpler and low-cost technique with compact  components27,28. Such technique is also used in the development 
of optical fiber-embedded  textiles20. However, the intensity variation setup using one light source and one photo-
detector (one at each fiber end) results in one sensor per  fiber29. The employment of many sensors requires a high 
number of fibers, photodetectors, sources and acquisition electronics units, reducing the system compactness 
and limiting the flexibility of the sensor system, which is unfeasible for wearable applications in the remote health 
monitoring. A multiplexing technique was proposed to solve this issue by coupling light-emitting diodes (LEDs) 
to different fiber lateral sections and using temporal modulation to achieve multiplexed sensors positioned in 
different locations in the same  fiber30. Thus, the proposed photonic smart textile combines the advantages of 
multiplexing capabilities for quasi-distributed sensor systems development of FBGs with the low cost and port-
ability of intensity variation-based sensors, which enable the development of a low-cost, textile-integrated and 
fully portable sensor array for simultaneous assessment of multiple parameters.

The fundamental purpose of AI is to create intelligent machines which simulate the human intelligence and 
learn to better mimic the human process to revolutionize the area of decision-making7,31. Machine Learning 
is a branch of AI that learn from existing ”training” data to make predictions about new data  points7. Most 
applications of machine learning in healthcare involve supervised machine learning methods, which consist 
of algorithms that are trained on ”ground truth” labels, e.g. support vector machines (SVM), random forests, 
k-nearest neighbors (kNN)32. Deep Learning is a subclass of Machine Learning that uses artificial neural network 
architectures, containing a large number of layers that resemble the structure of human cognitive functions and 
connect and direct  data33. With more complex models, decision-making can be more accurate when Deep Learn-
ing algorithms are employed. However, Deep Learning is better suited to analysing disordered and complicated 
data, whereas Machine Learning algorithms, such as kNN, are popular methods with simple implementation, 
significant classification performance and real-time implementability for more robust  data34.

Combining the low-cost wearable approach based on multiplexed POF-based sensors with AI algorithms, this 
paper presents a promising remote healthcare monitoring solution based on a scalable photonic garment capa-
ble of accurately identifying activities, by using the kNN classification algorithm, and assess movement-related 
parameters, including physiological and spatio-temporal gait parameters, for application in Smart Healthcare. 
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The photonic smart garment consists of the sensors composite structures, which are made of the light source 
and optical fiber encapsulated with a clear urethane mixture, integrated to a textile and distributed between 
the trunk regions. The proposed approach has compact acquisition electronics with simple processing and the 
possibility of including heterogeneous devices in the system. Moreover, the proposed system includes wireless 
communication which leads to a high potential of making intelligent real-time decisions in a homecare assess-
ment, eventually. This paper also presents an optimization technique of the number of sensors incorporated in 
the garment using the Principal Component Analysis (PCA) technique based on the sensors’ weight during the 
activities performed in the kNN classification process.

Results
The proposed system comprises the photonic smart garment using sensors composite structures based on OFS 
technology. The photonic smart garment consists of 30 intensity variation-based POF sensors distributed in 4 
fibers and integrated in a textile. In order to obtain an uniform distribution of the sensors in the smart garment, 
adjacent sensors are positioned with 10-cm distance between them to evaluate the possibility of identifying and 
classify activities using this sensor arrays. The sensors are numbered as shown in Fig. 1 in sequential order from 
the back to the front of the smart garment. In order to identify the number of sensors required for activity detec-
tion, we implemented a PCA to verify the sensors with the highest impact on the activity classification, i.e., the 
sensors with highest optical signal variation considering all performed activities. This process leads to a sensor 
system with a structure optimized as a function of minimum number of sensors needed to correctly classify the 
movements. In this case, the stress or strain applied on the optical fiber leads to a variation in the transmitted 
optical power. This phenomenon enables to infer the stress or strain in the OFS through the optical power vari-
ation. In addition, as discussed in Methods section, there is a side coupling between the light emitting diode 
(LED) and the optical fiber with a lateral section (exposing its core to the LED) using a clear urethane rubber 
in-between. Thus, a transverse loading (stress or strain) also results in a variation of the distance between the 
LED and optical fiber, which also leads to optical power variation. For the sensors multiplexing, the technique 
proposed in previous  works30 was used, where there is a sequential activation of each LED in which only one 
LED is activated at a time during 1 ms. The optical power detection is synchronized with the LED activation. 
Each LED is attached to the sensitive zone of the fiber (lateral section). Therefore, each LED is related to one 
sensor and the optical signal acquisition when each LED is active results in an acquisition matrix in which each 
column represents the one sensors (i.e., there are 30 columns in this case) and each row represents a sample. The 

Figure 1.  Photonic Smart Garment overview and the sensor response when a force is applied on the top of the 
sensor 10.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4067  | https://doi.org/10.1038/s41598-022-08048-9

www.nature.com/scientificreports/

30 sensors arranged in the garment are presented in Fig. 1. The sensors are characterized by applying different 
forces on each one and all sensors presented similar behavior. Figure 1 (figure inset) illustrates the response of one 
sensor (sensor 10) while forces are loaded and unloaded. The sensor response during the loading and unloading 
presents a determination coefficient ( R2 ) of 0.9941 and 0.9865, which indicates high linearity. Furthermore, the 
loading and unloading curves of the sensors are analyzed to estimate the sensors hysteresis, calculated from the 
deviations between the loading and unloading curves. In this analysis, the estimated hysteresis of the sensors is 
around 1.16% with a standard deviations between sensors of 0.81%. Based on the sensor noise power and the 
signal power, the signal-to-noise ratio (SNR) is estimated as 22dB. The data communication is performed by 
Bluetooth and all the system electronics is powered by a battery, resulting in a fully portable system. The acquisi-
tion frequency of the system is 100 Hz, which reduce the issues of unstable and discontinuous data acquisition. At 
this sample rate the classification algorithm is able of classifying the activity even when there is a minor reduction 
of the samples. In addition, the system has a Secure Digital (SD) card for the data storage for offline analysis. As 
a result, the system is also capable of offline analysis even if there are losses of packages and/or connectivity in 
the Bluetooth device used in the real-time monitoring.

The sensors presented physical differences resulting from the manufacturing process (as mentioned in the 
Methods section), and as a result, they do not present the same sensitivity. To address this issue, the sensors’ 
responses are normalized by their sensitivities, which leads to similar responses on each sensor. The multiplexing 
capability of the sensors is confirmed by sequentially applying the same force on adjacent sensors (27, 28, 29 and 
30). Figure 2 shows a significant difference between the response of the sensor in which the force was applied, 
and the responses of the adjacent sensors that indicate a negligible cross-talk considering the low optical power 
variations of the other sensors. The classification is then performed through machine learning algorithm, where 
the inputs of the algorithm is the normalized optical power variation of each sensor, since the multiplexing 
technique leads to negligible cross-talk between sensors.

Figure 3 shows the responses of 3 arbitrary sensors (1, 26 and 29) positioned on different places of the body 
divided into 6 classes (activities). Differences between some classes, such as the c1 (standing) and c2 (sitting), are 
highly perceptible, which can be verified from the variations on the sensors responses (in ADC units) presented 
at each axis of the graph. Each point of the curve represents the responses of sensors 1, 26 and 29 for each activi-
ties in different tests. The clustering of each movement shown in Fig. 3 represents the repeatability and signal 
robustness of our approach, where there are similar responses for each activity when performed in different 
tests. As the sensors responses are proportional to the strain in the fiber, the variations on the sensors responses 
at each movement (or activity condition) depends on which regions of the user’s body are under strain for the 
performed movements This could be used in clinical scenarios for biomechanical analysis to quantify rehabilita-
tion, surgical intervention and movement-related  pathology5. Some of the classes are completely separated from 
the other ones by using only these 3 sensors’ responses. Standing is a stationary activity, with no movement, 
which does not involve pressure on any sensor. Sitting is also a stationary activity, however it involves the hip 
flexion and the activation of the back sensors. Since Fig. 3 presents the sensors’ responses of two sensors located 
on the back (1 and 29), the variation of these sensors leads to a separation of the data related to the c2 (sitting).

The classes c3 (squatting) and c4 (up-and-down arms), as well as c5 (walking) and c6 (running), present similar 
clusters when the responses of these 3 sensors are evaluated. The activities of the classes c3 (squatting) and c4 

Figure 2.  Response of sensors 27-30 when a predefined loading is applied to each sensor.
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(up-and-down arms) are not similar. Class c3 (squatting) represents the squatting activity, which involves a knee 
flexion/extension and a hip flexion/extension. On the other hand, class c4 (up-and-down arms) represents the 
up-and-down arms, which involves a great shoulder flexion/extension and a short longitudinal rotation. How-
ever, since there are no significant variation in the trunk movement, the responses of the two selected sensors 
(1 and 29) located on the back are similar for both movements. On the other hand, the response of the sensor 
26 (located on the left arm) presents a bigger movement range for c4 (up-and-down arms). The activities that 
represent classes c5 (walking) and c6 (running) comprise gait-related movements, yielding similar movement 
pattern of the limbs (hip, trunk and arms) which influence the smart garment sensors. The significant differences 
consist of the speed and the intensity level of the movement. The analysis of the sensors responses in conjunction 
with their positioning in the body lead to the possibility of estimating the relationship between the human body 
and sensor responses. Considering the sensors presented in Fig. 3 (i.e. sensors 1, 26 and 29), for activity/class 1 
( c1 , standing), all analyzed sensors presented their highest optical power (considering all performed activities), 
which is related to the fact that the sensors are not under bending (or other mechanical loading). This is because 
the bending leads to attenuation in the transmitted optical fiber. For activity c2 (sitting), there is an attenuation 
on the optical signals of sensors 1 and 29, which are the sensors positioned on the back of the user (see Fig. 1), 
which is related to the back support when the volunteer sits on a chair. The sensor 26 (in the arms region) does 
not presented major variations in activity c2 . In activity c3 (squatting), the sensor 26 presents optical power 
attenuation due to the arms movement during this activity represented in Fig. 3. There are minor optical power 
variations in Sensors 1 and 29 (positioned on the user’s back) related to spine movements during squat activ-
ity. Similarly, up-and-down arms movements (activity c4 ) also results in only minor variations in sensors 1 and 
29, whereas the sensor 26 (in the user’s arm) presented higher optical power variation, since the bending and 
displacement occurs directly in the arms region. Walking ( c5 ) and running ( c6 ) activities resulted in the highest 
variations of all sensors, which is related to the movements in the upper and lower limbs in such activities, where 
there are spine movements that lead to bending in sensors 1 and 29 as well as the arms movement during gait, 
resulting in optical power variations in sensor 26.

This 3-dimensional evaluation is limited by the analysis of 3 sensors’ responses to illustrate a graphical result, 
which may lead to a weak classification performance if only these 3 sensors are used, since visually some classes 
contain overlapping data. However, in the classification process, the responses of the 30 sensors are initially 
employed until the minimal number of sensors is identified. The kNN dataset was randomly permuted and 
divided into training (70%) and testing (30%). Although it is possible to use other training/testing dataset divi-
sions, such as 80/20 or 90/10, the proposed training/testing division is preferred for the size of the employed 
dataset, since the limit of 70% of the training dataset mitigates overfitting issues resulting in high accuracy for the 
testing data. The training data were the base data to classify the testing data, i.e., each new sample was compared 
with all training data. Thus, the predominant label of the k nearest samples was defined as the label of this new 
sample, and this was applied to all testing data. The euclidean distance was used as distance metric. The kNN 

Figure 3.  Clustering of six classes (activities) using the response of 3 sensors.
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algorithm was chosen mainly due to its lower computational cost (when compared with other classification 
algorithms) that enable its use in real-time monitoring in embedded systems. On top of that, the kNN presents 
high accuracy on the movement classification, which leads to a balance between the accuracy and computational 
cost suitable for fully-integrated systems.

The model evaluation metrics were divided into accuracy, recall and precision. Furthermore, the confusion 
matrix of each trial was analyzed. Accuracy refers to the percentage of samples correctly classified. Recall rep-
resents the percentage of samples of a class correctly classified with respect to all samples of that class, whereas 
precision represents the percentage of samples of a class correctly classified with respect to all samples predicted 
for that class. The results of the classifications for each volunteer are presented in Table 1. The accuracies of 10 
random trials for all the volunteers dataset are higher than 90% . The different classification accuracies may be 
related to the movements performed by each volunteer during the activities of the protocol, since each person 
perform the movements in a particular way. This means that volunteer 1 performs movements more expres-
sive for each activity which facilitates the classification, whereas volunteer 3 presents more error in activities 
classification, mainly involving the walking and running activities which are the movements most similar to 
each other of this protocol. In addition, the recall and precision results are presented in Table 1. It is possible to 
observe that some classes present more success in the classification than others. For all volunteers, the classes c1 
(standing) and c2 (sitting) present a great difference when compared with the other classes. This also confirms 
the previous analysis in which only three sensors (1, 26 and 29) were analyzed. Differently, the data regarding 
classes c3 (squatting) and c4 (up-and-down arms), and the data regarding c5 (walking) and c6 (running) are dif-
ferent for each volunteer, which is related to the individual movement of each person.

By analyzing the volunteer 1, who presented the best classification results, it is possible to notice that the 
walking ( c5 ) and running ( c6 ) classes presented higher classification errors, which resulted in a recall and preci-
sion of 99.87 (0.00)%, for both classes. Gait speeds for walking and running activities are different, and hence the 
intensity level of the movement changes, resulting in a different variation of the sensors’ responses. However, the 
gait cycles for walking and running activities are similar, thereby the sensors’ responses present a similar pattern 
and, for this reason, some samples are misclassified. Similarly, the squatting ( c3 ) and up-and-down arms ( c4 ) 
activities are related to similar upper limbs movements and presented misclassified samples.

Data from each volunteer are combined into a single dataset to analyze overall system classification perfor-
mance, yielding an average accuracy (across participants) of 94.00 (0.14)%. Moreover, by analyzing the confusion 
matrix, it is possible to observe the influence and classification success of each class. Figure 4 shows the confusion 
matrix of the kNN classification for the whole dataset, including all volunteers. On the diagonal of each matrix 
are the percentage of the samples correctly classified. The data that resulted in the confusion matrix of Fig. 4 are 
presented as Supplementary Information, Supplementary Table S1.

Depending on the activity, some sensors are not activated, i.e., they do not present a significant optical power 
variation when compared to the sensors’ response in the standing activity. The activation of different sensors 
for each activity occurs due to the fact that the activities consist of the movement combination of different body 
regions. Figure 5 presents the sensors activation for each activity. The results in Fig. 5 illustrate the variations 
of the transmitted optical powers of the sensors with the highest optical signal variation among the 30 sensors 
in the garment. In this case, the sensors are normalized to compare the optical power variation as a function of 
time for the presented sensors. In the sitting activity there are variations in the response of sensors located on the 
back and lower region of the trunk (sensors 21 and 10), close to the user’s hip, since this activity involves the hip 
flexion of approximately 90◦ and the contact of the user’s back to a chair (sensors 1 and 30), as shown in Fig. 5a. 
Figure 5b shows the temporal response of the most activated sensors during the squatting (sensors 26 and 21) 
and up-and-down arms (sensors 5 and 26). In sitting and squatting activities the sensor positioned on the hip 
region (sensor 21) is activated and this is due to the high hip flexion during both activities. In the same way, the 

Table 1.  Classification results for each volunteer.

Volunteer 1 2 3 4

Accuracy (%) 99.96 (0.04) 92.04 (0.45) 91.34 (0.36) 94.86 (0.25)

Recall (%)

c1 100 (0.00) 98.31 (0.36) 99.50 (0.18) 99.91 (0.03)

c2 100 (0.00) 99.56 (0.19) 100 (0.00) 100 (0.00)

c3 100 (0.00) 89.69 (0.77) 94.25 (0.62) 89.77 (1.17)

c4 100 (0.00) 89.93 (1.40) 99.98 (0.04) 92.98 (0.75)

c5 99.87 (0.00) 93.94 (0.69) 82.62 (1.98) 94.50 (0.66)

c6 99.87 (0.00) 78.69 (1.73) 64.91 (1.61) 91.46 (1.22)

Precision (%)

c1 100 (0.00) 96.02 (0.71) 94.92 (0.60) 98.34 (0.46)

c2 100 (0.00) 96.56 (0.66) 100 (0.00) 100 (0.00)

c3 100 (0.00) 92.08 (1.01) 98.97 (0.20) 91.56 (1.04)

c4 100 (0.00) 91.67 (0.63) 100 (0.00) 93.48 (0.84)

c5 99.87 (0.00) 82.50 (1.21) 69.48 (1.15) 91.77 (1.03)

c6 99.87 (0.00) 92.44 (0.72) 79.53 (1.91) 93.19 (0.44)
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sensor positioned close to the shoulder (sensor 26) is activated during the squatting, since the volunteers used 
the arms to achieve the balance of the body. During the up-and-down arms activity the sensors positioned on 
the right and left shoulders (sensors 5 and 26) presented the highest normalized optical power variation and 
this is due to the flexion and extension of each arm which leads to a high bending in the fiber. The walking and 
running activities comprise the intercalated legs movement, which involves the cyclic hip rotation, and hence, a 
higher optical variation in the response of sensors located on the lateral and close to the hip. Figure 5c presents 
the percentage of the optical power variation of each sensor during walking and running.

As Fig. 5 shows the sensors with the highest optical power variations, the sitting activity presents a high opti-
cal power variation on the sensors positioned on the back of the user, especially sensors 1 and 30 which are the 
ones closest to the lumbar region of the user’s. This region is exposed to the highest force/stress (when compared 
with the other sensors in the back region). It is important to mention that in the standing activity none of the 
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Figure 4.  Confusion matrix regarding 10 trials including the dataset of all volunteers in the kNN classification.

Figure 5.  Sensors activation for each activity. (a) Optical power variation between the standing and sitting 
activities of sensors 1, 30, 21 and 10. (b) Response of sensors 26 and 21 during the squatting activity and 
response of sensors 5 and 26 during the up-and-down arms activity. (c) Sensors activation during the walking 
and running activities.
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sensors are under bending or stress. The standing activity is used as a comparison with the sitting activity, where 
there is a significant variation in the transmitted optical powers. In contrast, the squatting and up-and-down 
arms activities present major differences between them, such differences are translated in the positions of the 
sensors with the highest optical power variation for these activities. In the squatting activity, sensors 21 and 26 
presented the highest optical power variations (among the ones in the garment). It is important to notice that 
sensors 21 and 26 are positioned in the user’s abdomen and arm, respectively, as shown in Fig. 1). Such regions 
have higher activation since the mechanics of squatting movement include trunk and arm movements, leading 
to the activation of the sensors in these regions. Moreover, the up-and-down arms movements lead to higher 
optical power variations in the sensors positioned in the arms (close to the shoulder, as presented in Fig. 1). 
Thus, the highest optical power variation was obtained in sensors 5 and 26, placed on the shoulders of the 
user. Both sensors followed the periodic movement of the up-and-down arms activity. Finally, for running and 
walking activities, some sensors presented high optical signal variation, as shown in Fig. 5c, where the highest 
variations were found in sensors 8-11 and 29. These sensors are positioned in the abdomen (sensors 8-11) and 
lower back regions (sensor 29), which track the variations related movements in the trunk during the walking 
and especially the running activity.

The behavior of the sensors’ responses (especially the ones presented in Figs. 5 and 3) are related to the move-
ment performed by the body, which leads to reaction forces in the sensors. As the sensors are characterized as a 
function of the applied force (see Fig. 1), it is possible to provide a mechanical analysis of the performed move-
ment with the reaction forces on each sensor. For this reason, additional experimental results are analyzed and 
Fig. 6 presents the sensors’ responses (converted to force) during the four dynamic activities: squatting, up-and-
down arms, walking, and running for the mechanical analysis considering the sensors with the highest activation 
(as previously discussed). Since the sensors are fixed in predefined regions in the garment (as shown in Fig. 1), 
the movements of the body during activities lead to force application on each sensor depending on the activity. 
For example, in the squatting activity, shown in Fig. 6a, there are activation in the lumbar and abdominal regions, 
leading to a force increase on the sensor 21, whereas the adjacent sensors (10, 11 and 20) also presented increase 
in the reaction force. In the up-and-down arms activity, presented in Fig. 6b, there is an expected variation of the 
reaction forces in the sensors positioned on the shoulders (sensors 5 and 26). Moreover, walking (Fig. 6c) and 
running (Fig. 6d) activities involve hip rotation and oscillatory movements on the trunk, where the difference 
between both activities is on the movement amplitude and frequency, which are converted in reaction forces 
in the sensors with similar behavior when compared with trunk dynamics during gait in the coronal  plane35.

Figure 6.  Mechanical analysis of different sensors during body moving in the different dynamic activities. (a) 
Squatting. (b) Up-and-down arms. (c) Walking. (d) Running.
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In order to analyze the demand of the sensors’ amount in the activities classification, the attributes are reduced 
and the classification performance is calculated. By applying the PCA technique to the volunteer 1 dataset, the 
attributes were reduced to 10 new attributes, obtained by the linear combination of the 30 sensors’ response, and 
presented a variance explained of 99.84%. The mean of the classification accuracy for 10 trials using the new 10 
attributes was 99.02 (0.16)%, which demonstrates that a dataset linearly uncorrelated and 3 times smaller (with 
better processing performance) still presents a high accuracy (approximately 99%). By analyzing the eigenvec-
tors matrix (V) used by the PCA technique, which represents the coefficients of the linear combination of the 
original attributes to compose this new dataset (10 attributes) and hence represents the weight of each attribute 
(sensor), and considering the most significant coefficients, the original attributes were arranged in descending 
order. By selecting the most significant 14 attributes, the accuracy is 99.71 (0.08)% in 10 trials. By selecting the 
most significant 12 attributes, the accuracy is 99.46 (0.17)% in 10 trials. Finally, when the most significant 10 
attributes are selected the accuracy decreases to 99.05 (0.10)% in 10 trials. It means that the reduction of the smart 
garment to 10 sensors still provides an accuracy close to 99%, since the 10 sensors cover the body regions which 
move effectively in these activities for this volunteer in particular. The selected sensors were: 3, 5, 8, 11, 14, 17, 
20, 23, 26 and 28. In this way, it is possible to optimize the number of smart garment sensors according to each 
volunteer, by analyzing their results in a predefined activity, since each person performs the movement differ-
ently. To verify the behavior of the smart garment with optimized number of sensors for volunteer 1, movement 
classification analyses are performed with the same conditions. Table 2 shows the accuracy, recall and precision 
of the complete structure and the proposed structure with smaller number of sensors in the photonic smart 
garment (i.e., only sensors 3, 5, 8, 11, 14, 17, 20, 23, 26 and 28, positions according with Fig. 1) for the volunteer 
1. Comparing data from volunteer 1 with complete structure and data with optimized sensors in Table 2, there 
is a higher accuracy of the system using the 30 sensors. However, the difference between the complete structure 
(30 sensors) and the optimized one (10 sensors) is only 0.91%, which indicates that the optimized structure 
has similar performance when compared to the complete one even with fewer sensors. In order to verify the 
performance of the optimized structure, the additional experiments result in the confusion matrices presented 
in Fig. 7, where Fig. 7a represents the results with the complete structure and Fig. 7b represents the results with 
the optimized structure. These results show that even with a significant reduction in the number of sensors, the 
optimized structure still provide high accuracy for all classes, where a accuracy higher than 98% was obtained. 
Thus, it is possible to assume that the proposed optimization of the number of sensors does not impose major 
influence on the photonic smart garment repeatability and overall performance and can be performed for the 
on-body optimization of the structure for each user or group of users.

In order to estimate the cadence, the sensors’ responses during the walking and running activities were ana-
lyzed. An inertial measurement unit (IMU) was incorporated in the upper back of the garment as a reference 
system for the comparison with the proposed smart garment, and the yaw data obtained from the IMU were 
compared with the photonic smart garment (sensor 8, since this sensor is located on the lateral of the body and 
presents a great variation in the response during walking and running). By applying the FFT to the temporal 
response of the yaw data and the one of sensor 8 (positioned on the lower right side of the body), both results 
presented frequency peaks of 35.98 cycles/min and 71.97 cycles/min, as shown in Fig. 8. These frequencies cor-
respond to cycles of stride per minute, which leads to a double value of cycles of steps per minute, since a stride 
consists of two steps. Thus, by analyzing the FFT results, the estimated cadence is 71.96 steps/min (walking) 
and 143.94 steps/min (running), presenting no error between the results of photonic smart garment sensors 
and the IMU.

In order to estimate the breathing rate, the sensors’ responses during the standing test were analyzed. The 
volunteer was in upright position and performed no movement to reduce the influence of artifacts. A 0.3–0.7 

Table 2.  Comparison between the classification results for volunteer 1 with complete structure and optimized 
structure.

Volunteer Complete structure Optimized structure

Accuracy (%) 99.96 (0.04) 99.05 (0.10)

Recall (%)

c1 100 (0.00) 99.46 (0.21)

c2 100 (0.00) 100 (0.00)

c3 100 (0.00) 97.92 (0.51)

c4 100 (0.00) 98.43 (0.30)

c5 99.87 (0.00) 99.38 (0.19)

c6 99.87 (0.00) 99.08 (0.24)

Precision (%)

c1 100 (0.00) 99.64 (0.22)

c2 100 (0.00) 100 (0.00)

c3 100 (0.00) 97.85 (0.26)

c4 100 (0.00) 98.32 (0.44)

c5 99.87 (0.00) 99.09 (0.24)

c6 99.87 (0.00) 99.37 (0.20)
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Hz bandpass filter was applied to attenuate external noises. The pitch data obtained by the IMU were compared 
with the smart garment (sensor 17, since this sensor is positioned on the middle of the body and presents a high 
variation during the breathing task). By applying the FFT on the temporal response of sensor 17 and pitch data, 
results presented peaks of 13.20 and 13.19 cycles/min, respectively, which lead to the estimated breathing rates of 
26.40 and 26.38 cycles in 2 minutes, as presented in Fig. 9. The estimated breathing rates from IMU and photonic 
smart garment data present high correlation (0.08% relative error). Table 3 shows the estimated cadence and 
breathing rate for all volunteers. The errors between the parameters estimated by the photonic smart garment 
sensors and by the IMU occur due to the cross sensitivity of the POF sensors, whereas the IMU is a 3D sensor 
and the parameters extraction involves data from only one dimension, which reduces the interference of the 
data from another axes, decreasing the noise in the FFT analysis.

The assessment of the arms movement was based on the temporal analysis of sensors 5 (right arm) and 
26 (left arm) since these sensors are located close to the shoulders and they present a high optical power vari-
ation during the up-and-down arms. The responses of both sensors were normalized and can be observed in 
Fig. 10. The first curves represent the flexion and extension of each arm. In order to identify the moment of the 
shoulder flexion and extension, an outlier detection algorithm was employed on the derivative of the sensors’ 
temporal responses (5 and 26); results of the outlier detection are presented in the bottom graphics of Fig. 10. 
The shaded areas limited by the dotted lines represent the natural movement range based on the z-score calcula-
tion ( mean± 3 · standard deviation)36, whereas the markers located outside the areas represent the moment of 
flexion and extension of the shoulders (outliers).
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Figure 7.  Results of the confusion matrices for volunteer 1 during activities. (a) Complete structure. (b) 
Optimized structure.

Figure 8.  Results of walking and running tests of the volunteer 1 for cadence estimation: temporal response 
and FFT of the IMU data (yaw) and the response of sensor 8.
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Discussions
In this paper, a photonic smart garment based on 30 multiplexed POF sensors for activity identification and 
movement-related parameters extraction was proposed. The system includes a quasi-distributed sensor system, 
i.e. a system with several measurements points along the POFs, and wireless communication, which leads to a 
fully portable system optimized for IoT applications, including remote healthcare monitoring. In contrast with 
other quasi-distributed optical fiber sensors, the proposed approach has low cost, a compact signal acquisition 
system and a simple sensor fabrication process, differently from FBGs which need specialized equipment for the 
sensor fabrication, in addition to high cost and bulky interrogators for the signal acquisition.

A human activity recognition protocol is proposed to evaluate the ability of identifying the human motor 
activity using the photonic smart garment. Six daily living tasks were performed by 4 volunteers for 2 minutes. 
The kNN classifier was used due to its simple implementation and significant classification performance, in addi-
tion to the fact that the data are simple and organized, which did not lead to the need for more advanced tech-
niques such as neural networks. The kNN classifier was based on the dataset randomly permuted and divided into 
training (70%) and testing (30%). This classification approach was repeated and the results of 10 trials presented 
a classification accuracy of 94.00 (0.14)%, across volunteers. The demand of the number of sensors was evaluated 
by using the dimensionality reduction technique PCA in volunteer 1 dataset. New attributes resulting from the 
linear combination of the original dataset were obtained and results showed an average accuracy across subjects 
of 99.02 (0.16)% using only 10 new attributes. From these 10 attributes, the weight of the original features were 
evaluated and the attributes with lowest weights were rejected. Thus, the most significant 10 original attributes 
(covering all the body regions) presented an accuracy of 98.14 (0.31)%, thus maintaining high accuracy even with 
a reduced number of sensors, which facilitates the fabrication process and improves the real-time performance 
in a remote healthcare monitoring.

Finally, movement-related parameters were extracted and validated during the human activity recognition 
protocol. The arms movement was analyzed during the up-and-down arms activity and the flexion and extension 
of left and right arms were identified by using an outlier technique detection of the sensors temporal derivative. 

Figure 9.  FFT of the IMU data (pitch) and the response of sensor 17 during standing activity of the volunteer 1 
for breathing rate estimation.

Table 3.  Estimated parameters from IMU (reference) and Photonic Smart Garment sensors: errors between 
the measurements obtained from the two systems.

Volunteer

IMU Smart Garment Errors

Cadence (steps/min) BR (cycles/min) Cadence (steps/min) BR (cycles/min) Cadence (%) BR (%)

Walking Running Standing Walking Running Standing Walking Running Standing

1 71.96 143.94 13.19 71.96 143.94 13.20 0 0 0.08

2 79.14 155.92 13.79 77.38 156.54 13.9 2.22 0.40 0.80

3 68.36 125.94 13.79 68.60 126.64 14.04 0.35 0.56 1.81

4 73.16 146.34 14.39 72.12 145.98 14.6 1.42 0.27 1.46
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Cadence and breathing rate parameters were validated by using an IMU positioned on the upper back region. The 
cadence was evaluated during the walking and running activities and presented errors of 1.00 (1.01)% and 0.31 
(0.24)%, respectively, when compared with the cadence estimated by the IMU data. The breathing rate parameter 
was evaluated during the standing activity in which no movement is involved and the photonic smart garment 
sensors presented an error of 1.04 (0.76)% from the result of the IMU. The low mean and standard deviation 
of the errors indicate good accuracy and repeatability of the system to measure the different parameters. In 
addition, the proposed system proved to be a feasible option to extract different types of biomedical parameters 
using an instrumented lightweight clothing which can be employed in the daily activities without disturbing the 
user’s movement. Therefore, the proposed approach is an optimized option for remote healthcare applications 
to identify activities and extract different parameters using low cost and compact components integrated in an 
usual clothing. Future works include the application of the whole system in a real-time healthcare monitoring 
to be used in a clinical assessment.

Methods
Smart garment development. The photonic smart garment comprises of 30 multiplexed intensity var-
iation-based POF sensors incorporated in a vest. In addition, an IMU MTi-3 (Xsens Technologies B.V., NL) is 
positioned on the upper region of the smart garment back to estimate the trunk angles. The POF is made of 
polymethyl methacrylate, PMMA (HFBR-EUS100Z, Broadcom Limited) with a core diameter of 980 μm, a 
cladding of fluorinated polymer with 20 μm thickness and a polyethylene coating, resulting in a total diameter of 
2.2 mm. The 30 sensors are divided in 4 POFs and the optical power is acquired by four photodetectors IF-D92 
(Industrial Fiber Optics, Tempe, AZ, USA) positioned at one end of each fiber. To increase the transmitted opti-
cal power, four 3D facets with aluminum foil are positioned at the other end of each fiber, in which the light 
reflects in the aluminum foil towards the photodetector direction.

As shown in Fig. 11, the sensors fabrication process is divided into 3 stages: (i) lateral section creation by 
removing part of the fiber material (see Fig. 11a), (ii) LED coupling to the sensitive zone (see Fig. 11b) and (iii) 
sensor encapsulation using clear urethane rubber mixture in a 3D printed part (see Fig. 11c). The fiber lateral sec-
tion is created through a curved razor blade and afterwards, the fiber is attached to the 3D printed part (diameter 
= 30mm / height = 7mm) with the lateral section pointed towards the LED, which is already attached to the 3D 
part base. With the fiber lateral section coupled to the LED, the clear urethane rubber mixture is spilled into the 
part and reserved for 24h at room temperature to be cured. Figure 11d presents the encapsulated sensor when the 
clear urethane rubber is cured and Fig. 11e shows the sensor incorporated in the textile. The connection between 
the optical fiber is achieved by the clear urethane rubber as shown in Fig. 11d, where the layer between the optical 
fiber and LED is filled with the urethane rubber. The clear rubber has an attenuation of around 0.7dB/cm, which 
leads to a light loss of around 0.35dB in the 5mm distance between the LED and optical fiber. The stages i, ii and 
iii can result in sensor-to-sensor differences. The length and depth of the lateral section are controlled using a 

Figure 10.  Results of the up-and-down arms test of the volunteer 1: temporal response of sensors 5 (right 
arm) and 26 (left arm) and identification of the shoulder flexion and extension by outliers detection using the 
temporal response derivative.
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manufactured mold for the razor blade used in the material removal. Moreover, the 3D-printed part has the 
supports for the optical fiber and the LED to control the coupling distance between the LED and the optical fiber 
to minimize the errors in the lateral section parameters and side-coupling. However, there are minor deviations 
in the lateral section parameters, the coupling distance and the clear urethane rubber mixture that affect the 
sensor sensitivity. In order to mitigate the effect of the different sensors sensitivities in the activity analysis, all 
sensors are characterized in terms of the applied force and each sensor is normalized by its own sensitivity. The 
temperature variations can influence the sensors responses as previously discussed in the  literature30. However, 
the temperature sensitivity (0.0014 a.u./◦C ) of the proposed sensors is smaller than the mean force sensitivity 
(around 0.0089 a.u./N), which leads to lower influence on the temperature response. In addition, the tests are 
performed in room temperature conditions, where the temperature variation dynamics is order of magnitude 
smaller than the dynamic movements, which leads to the possibility of mitigating the temperature influence 
in the sensors responses using filtering  techniques37. Moreover, it is also possible to use some of the sensors in 
the smart garment (e.g. the ones with smaller optical power variation in the activities protocol) for temperature 
compensation of the sensors responses using the temperature sensitivity of all sensors through the direct dif-
ference  method38. However, the sensors are in contact with the human body, which presents almost constant 
temperature. It leads to a low influence of temperature on the sensors.

Human activity recognition protocol. The human activity recognition protocol consists of 4 healthy 
volunteers wearing the smart garment and performing six different daily activities: standing, sitting, squatting, 
up-and-down arms, walking and running. This protocol aims to monitor common daily movements and use the 
smart garment to identify each activity in addition to extract different movement-related parameters during the 
tests.

Standing represents the activity in which the volunteer is in upright position, whereas the sitting activity 
involves the volunteer sitting on a chair. The squatting activity is divided into 5 stages (states and transitions): 
(i) upright position (state), (ii) squatting down (transition between upright to squatting), (iii) squatting (state), 
(iv) squatting up (transition between squatting to upright) and (v) upright position (state), and these stages are 
cyclically repeated. The up-and-down arms activity is divided into 4 stages (states and transitions): (i) moving 
up the right arm (shoulder flexion of 90◦ ), (ii) moving down the right arm (shoulder extension of 90◦ , back 
to neutral position), (iii) moving up the left arm (shoulder flexion of 90◦ ) and (iv) moving down the left arm 
(shoulder extension of 90◦ , back to neutral position), and they are cyclically repeated. Finally, the walking and 
running activities were performed on a treadmill to control the velocities and achieve a movement pattern. The 
walking speed is 0.5 m/s and the running speed is 2.0 m/s. All activities were performed for 2 minutes. The tests 
were performed in accordance with the guidelines of the national health council with the protocols approved by 
Research Ethics Committee through the National Commission in Research Ethics-CONEP-(Certificate of Pres-
entation for Ethical Appreciation-CAAE: 41368820.3.0000.5542) in March, 2020. In addition, written informed 
consent was obtained from each subject prior to data collection.

Data processing and Machine Learning training model. The multiplexing technique proposed  by30 
consists of a sequential activation of the LEDs and the optical power acquisition in a short time interval. After 
the activation and optical power acquisition of the last LED, the optical power of all sensors is transmitted to a 
microcontroller and this process is cyclically repeated. The sensors’ signal results in a matrix with 30 columns 
(corresponding to the 30 sensors) and n rows (corresponding to the n samples).

Figure 11.  Sensors fabrication process. (a) Removal of part of the fiber material creating a lateral section. (b) 
LED coupling to the fiber lateral section in a 3D printed part. (c) Sensor encapsulation using clear urethane 
rubber mixture. (d) Encapsulated sensor. (e) Sensor incorporated in the garment.
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For the activity classification, the kNN classifier was employed. The kNN classifier is a popular method 
with simple implementation and significant classification  performance34. Furthermore, the kNN is a supervised 
method of the machine learning field which does not assume a linear class boundary, since the kNN method 
determines the class based on the k-nearest neighbor training points. For this reason, it has the advantage of 
producing classification fits that adapt to any  boundary39. The kNN input data comprise 30 attributes (response of 
the 30 sensors), six classes (activities) and each sample is labeled according to the respective activity. The classes 
are divided into: standing ( c1 ), sitting ( c2 ), squatting ( c3 ), up-and-down arms ( c4 ), walking ( c5 ) and running 
( c6 ). Thus, all data are randomly permuted and divided into training (70%) and testing (30%). The classification 
processing is repeated for 10 times. Accuracy, recall, precision and confusion matrix are used as model evalua-
tion metrics, comparing the real labels with the labels estimated by the kNN model.

In order to reduce the dimensionality of the model attributes, the PCA technique is employed. PCA is not 
an attribute selection technique, but a technique from the field of linear algebra which converts an attribute set 
to a new dataset linearly uncorrelated, obtained from the linear combination of the original attributes, so-called 
principal components. As the principal components have a sample-like pattern with a weight for each attribute, 
we can use the weights to visualize the influence of each attribute on the  dataset40.

Considering the matrix XnxD , in which the rows represent the samples and the columns represent the attrib-
utes, each sample is normalized by subtracting the attribute mean ( µj ) and dividing by the attribute standard 
deviation ( σj ), as shown in Eq. (1).

With the new matrix X (with mean 0), the correlation matrix C is calculated by using the Eq. (2). From this 
matrix, the eigenvalues ( � ) and eigenvectors (V) are obtained.

For the dimensionality reduction, the k eigenvectors associated to the largest eigenvalues are selected to com-
pose the new dataset ( �x ), calculated by the Eq. (3). The k eigenvectors are defined by analyzing the variance 
explained by each principal component, in which the variance might be higher than 99%, and the number of 
attributes is reduced.

Also, by analyzing the eigenvectors matrix (V), it is possible to obtain the negligible values associated to the 
original attributes (sensors) in the calculation of the new  attributes40, and the possibility of reducing the num-
ber of sensors while maintaining the algorithm classification performance, resulting in an optimized photonic 
sensor system.

Human movement‑related parameters extraction. In addition to the ability of classifying the 
human activities, several movement-related parameters can be extracted by analyzing the sensors’ responses of 
the smart garment. During the walking and running activities, the responses of the smart garment sensors and 
the IMU data (reference) were analyzed. The fast Fourier transform (FFT) of the sensors’ temporal response is 
applied for the cadence estimation. In the up-and-down arms activity, by analyzing the arms movement it is 
possible to monitor the flexion and extension of each shoulder and evaluate the similarity or not between both 
sides. An outlier detection algorithm based on z-score  calculation36 is applied on the derivative of the sensors’ 
temporal responses and the identified outliers represent the moment of flexion and extension of each shoulder. 
During the standing activity, which does not involve movement and the breathing is uniform, the breathing rate 
was estimated using the fast Fourier transform (FFT) of the sensors’ temporal response of IMU data (reference) 
and the photonic smart garment sensors.
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