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Abstract

The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in
many parts of the world. Healthcare professionals are not only over-burdened but
also at a high risk of nosocomial transmission from COVID-19 patients. Screening
and monitoring the health of a large number of susceptible or infected individuals is
a challenging task. Although professional medical attention and hospitalization are
necessary for high-risk COVID-19 patients, home isolation is an effective strategy for
low and medium risk patients as well as for those who are at risk of infection and
have been quarantined. However, this necessitates effective techniques for remotely
monitoring the patients’ symptoms. Recent advances in Machine Learning (ML) and
Deep Learning (DL) have strengthened the power of imaging techniques and can be
used to remotely perform several tasks that previously required the physical presence
of a medical professional. In this work, we study the prospects of vital signs mon-
itoring for COVID-19 infected as well as quarantined individuals by using DL and
image/signal-processing techniques, many of which can be deployed using simple
cameras and sensors available on a smartphone or a personal computer, without the
need of specialized equipment. We demonstrate the potential of ML-enabled work-
flows for several vital signs such as heart and respiratory rates, cough, blood pressure,
and oxygen saturation. We also discuss the challenges involved in implementing ML-
enabled techniques.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2 virus) belonging to the family
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Fig. 1 Global Epidemic Curve, February to November 2020 (adapted from [103])

of coronaviridae. It was first reported in Wuhan, China in December 2019 [104],
and continues to wreak havoc globally with 47.9+ million cases detected and 1.2+
million fatalities reported globally at the time of this writing. The number of new
confirmed cases went on increasing from February to November as illustrated in Fig.
1. In comparison with the SARS pandemic of 2003, which infected 8422 people with
916 fatalities [23], this pandemic has turned out to be highly infectious and has a
far greater spread. Age and co-morbidity are the greatest risk factors associated with
COVID-19 [81]. According to some reports in the UK, about 20% of the patients who
were already being treated for another illness also tested positive for COVID-19 [34].
The disease is commonly characterized by fever, dry cough and fatigue [80]. Symptoms
of critical stages of the infection include bluish lips/face, hypoxia, coughing up blood
and acute respiratory distress syndrome (ARDS) [73].

COVID-19 is believed to have arisen through zoonotic transmission [2], i.e.,
animal-to-human transmission, which is usually slow. However, the subsequent
human-to-human spread, which occurs either through community transmission or
nosocomial transmission, is comparatively much faster. Nosocomial infections, also
known as hospital-acquired infections, have always posed a challenge to the biomed-
ical community [42,43], with COVID-19 being no exception. Different categories of
transmissions and their inter-relation are depicted in Fig. 2. Scientists all over the
world are currently focusing on preventive and treatment therapies for COVID-19.
Hundreds of clinical trials are ongoing globally testing various drugs and vaccines,
but so far only select vaccines have been approved for clinical use, which leaves us
with “stay home, stay safe” as the most effective strategy to deal with the ongoing
pandemic, at least until vaccines developed reach a majority of the population.

A great deal of progress is being made in COVID-19 diagnosis. Two types of diag-
nostic testing have been developed—molecular and serological [46]. For the molecular
tests, a sample of mucus and saliva is taken using a nasopharyngeal swab and is tested
for the virus presence using Reverse Transcription- Polymerase Chain reaction (RT-
PCR) [52]. The time taken to get the results varies from a few minutes to a few days,
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Fig. 2 Different categories of transmissions

depending on the assay kit developed. Serological tests detect the presence of spe-
cific antibodies in the blood [56], which is usually collected through a finger prick.
These tests are usually faster than the molecular tests. Although the diagnostic tests
have been proven effective, the major hurdle we currently face is unavailability of
sufficient testing kits. With the exception of a few nations, the healthcare systems of
most countries are under-prepared to face a pandemic of this magnitude. In particular,
many countries have struggled with low testing rates [90], leaving a large number of
people untested. Thus, many governments have adopted a strategy (outlined in Fig. 3)
to prioritize testing for high-risk groups (defined by the WHO as those older than 60
years or who have health conditions like lung or heart disease, diabetes or conditions
that affect their immune system). Improper adherence to quarantine has been seen in
many cases, which burdens the testing system with more candidates to trace and test.
In the current scenario, it is of utmost importance to ‘flatten the curve’ to ensure the
number of cases remain within the capacity of the healthcare systems to handle.

ML and image processing techniques can offer assistance in this scenario by remote
monitoring of vital signs of infected as well as suspected individuals. This work dis-
cusses the application of Artificial Intelligence (AI) to perform contactless screening
and monitoring for the various symptoms of COVID-19. We demonstrate the poten-
tial of machine learning and image/signal processing techniques many of which can
be deployed using simple cameras, without the need of a specialized equipment, for
monitoring of several vital signs such as heart and respiratory rate, cough, blood
pressure, and oxygen saturation. This approach would make the patients much more
aware of their vital signs contributing to increased overall quality of life. Although
these techniques are not fully mature and have certain limitations, this work aims to
unearth the abundant potential of ML-enabled remote monitoring, in turn calling for
a greater effort in this direction by researchers. The main contributions of the paper
are as follows:

– Clearly demonstrate how ML-based remote monitoring can help augment the doc-
tor’s expertise for focused and timely care to the patients.
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Fig. 3 A flowchart detailing COVID-19 testing policy based on symptoms and known exposure. Testing
policy is laid down at the local level by the respective health and governing bodies. Although this figure is
not a universally followed procedure, it is representative of a typical policy that might be expected to be
followed

– Comparing the conventional methods used for remote monitoring and illustrating
how ML-based monitoring can be a viable approach in the context of COVID-19
pandemic.

– Draw a perspective on how effective prioritization based on vital signs can help
the hospital and doctors to reduce the burden on the health infrastructure.

– Discussion of major challenges in monitoring the vital signs and listing the direc-
tion of future work in this direction.
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2 Background

Monitoring the vital signs is an important aspect of patient care. Measuring these is
very important because these signs usually give firsthand information about abnormal
physiology. Even during hospitalization, they enable patient-care providers to monitor
the patient’s prognosis and track recovery as well as any adverse conditions. Tradi-
tionally, four signs are monitored—temperature, blood pressure, respiratory rate and
pulse rate [17]. Often, oxygen saturation is also included as a vital sign. Although
these vary according to several factors including one’s age, gender, weight, time of
the day etc., for an average adult, the following values are considered to be normal:

– Temperature: 97–99 ◦F
– Blood pressure: 120/80 mm of Hg
– Respiratory rate: 12–20 breaths per minute at rest
– Pulse rate: 60–100 beats per minute at rest
– Oxygen saturation: 95–100%

Vital signs are the first to ring the bell in several disease conditions including
COVID-19. Studies currently estimate a period of 1–14 days for incubation of SARS-
CoV-2 in the human body [54]. Only one out of a hundred infected patients develop
symptoms after 14 days. Upon incubation, disruption of specific vital signs is noted.
One of the first symptoms observed is increased fever, technically defined as a body
temperature greater than 100.4 ◦F. Since COVID-19 is associated with inflammation
of lungs [61], the oxygen uptake capacity is attenuated. This leads to decreased oxygen
saturation in the body [81], which in turn results in decreased oxygen supply to the
body cells. To meet the oxygen demands of the body cells, the heart starts pumping
blood at an increased pace which is observed as an increase in heart rate. At the same
time, to restore the normal oxygen levels, the body responds by increasing the number
of breaths per minute leading to increased respiratory rate. In this way, vital signs of
the body are disrupted upon SARS-CoV-2 infection.

Currently, most healthcare systems are not sufficiently equipped to carry out large
scale diagnostic tests. Thus, the criteria to prioritize testing can be based on obser-
vation of vital signs. However, hospital visits for vital sign monitoring can lead to
increased nosocomial transmission. It is particularly important to keep the frontline
healthcare workers safe. Furthermore, hospital visits by an uninfected person would
itself increase the probability of contracting infection. It is necessary to control the
chain of transmissions. Thus, home isolation is being advised for quarantined individ-
uals as well as those infected with COVID-19 but at low or medium risk. Therefore,
the COVID-19 pandemic calls for an extraordinary need for enhancing the technology
for remote vital signs monitoring. The wide spread use and availability of smart-
phones makes camera-based solutions immediately available at no extra cost. Hence,
this work is focused on discussing ML-based solutions for remote monitoring of vital
signs which can be run or deployed using simple cameras available on a smartphone
or laptop.
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Fig. 4 A basic framework for vital signs extraction using video as input

3 The potential of ML for contactless COVID-19 screening

Artificial intelligence has come a long way from being effective in limited appli-
cations [14,47,48], to having a transformative impact across numerous domains
[1,20,26,28,38,49,53,57,58]. Artificial Intelligence (AI) has been revolutionizing mul-
tiple fields like Drones [24],VANETs [36], and IoT Security [35]. Particularly, its
utility in addressing the challenges in healthcare services is being vigorously pursued
by both the industry and government agencies. AI and ML have great potential in dis-
ease prediction using healthcare data [96]. Efforts have also been made on surveying
the role of AI and other technologies in the context of combating COVID-19 [21,22].
Explainable AI for monitoring COVID-19 like pandemics have also been proposed
[40]. Work has been done for efficient management of epidemics using B5G and deep
learning [76].

The use of AI/ML in remote monitoring of collective vital signs has scope for fur-
ther detailed study. The ground-breaking performance improvements by deep learning
techniques for vision-based analysis [11,13,16,75,79,86,105,106] have opened possi-
bilities for the development of non-intrusive or contact-less diagnosis system. Such
systems can be highly useful for early screening and monitoring of easily transmitted
diseases such as COVID-19. Block-chain based approaches have also been proposed
for edge based healthcare monitoring [7]. Use of deep learning based image analysis
has shown tremendous impact in classic medical problems like brain tumor classifica-
tion [66] and endoscopy [67]. The approaches which use video as an input, multiple
operations are involved for vital signs extraction which are shown as a basic framework
given in Fig. 4.

The COVID-19 pandemic is overwhelming the healthcare facilities in the affected
countries. The many unknown factors about COVID-19 are making it dangerous for the
healthcare workers involved in treating the contracted patients. For example, a com-
plete list of symptoms of COVID-19 are yet to be known, the comorbidities increase
disease uncertainty, and finally, the asymptomatic persons further put the nearby peo-
ple vulnerable to contract the disease. To ensure the safety of the valuable healthcare
professionals, contactless screening for COVID-19 offers promising alternatives.

Contactless screening may involve visual inspection through video cameras, X-
ray, MRI imaging, physical check-ups, remote heart-rate monitoring, cough analysis,
respiratory rate monitoring, oxygen saturation monitoring and blood pressure mea-
surement. Recently, there have been efforts on using humanoids and affective systems
for remote healthcare [93]. ML-based algorithms can be used to perform many of
these tasks through remote analysis, although certain tasks may require the use of
specialized equipment.
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Especially in this pandemic scenario, remote monitoring is of immense augmen-
tation to the doctor’s expertise. Vital signs can be monitored continuously using
contactless techniques which enables effective prioritization of patients for doctor
visits. The doctors can devise the order depending on the current resources available
and hence special care and supervision can be given to patients who need it the most.
In a pandemic, there are many instances in which the health of a person deteriorates
rapidly and the person is not aware of it till it gets worse. Here, continuous moni-
toring can be a game-changer helping save lives by providing an accurate feedback
on the changing vital signs, so that medical help can be sought well in advance. The
following sections will discuss some of these tasks which are particularly relevant
to the COVID-19 context and can be achieved with AI and image/signal processing
techniques, without the need of specialized equipment.

4 Remote heart rate monitoring

Human heart is a mechanical pump which pumps blood throughout our body. There are
minor color changes and subtle motion variations at each heart beat. The color changes
as blood flows in and out of the blood vessels below the skin, while the motion based
effects are caused due to opposite reaction of the blood flow as per the Newton’s 3rd
Law of motion [9]. Vision based heart rate monitoring is done mainly by using remote
Photoplethysmography (rPPG) signals extracted from the color changes and/or the
subtle motions. The reflection that remains from the absorption and scattering in skin
tissue and which varies as blood volume changes is known as diffused reflection. On
the other hand, the pure light reflection from the skin is known as specular reflection.
For analyzing the micro color variations of skin, the variance of red, green, and blue
light reflection changes from the skin are measured, contrasting between diffused and
specular reflection. Changes in light absorption due to the skin is analyzed and the
heart rate is estimated. This technique has far reaching use cases for human computer
interaction and health monitoring. However, relative motion and change in lighting
has direct effect on the performance of this technique.

4.1 Conventional workflow for heart rate measurement

Most heart-rate measurements at hospitals are through contact-based testing methods,
requiring patches to be stuck to skin or fingers clipped to a sensor. Contact-based
workflow may not be ideal for COVID-19 monitoring due to the highly contagious
nature of the disease. Heart rate can be extracted from two information sources: peri-
odic color changes due to blood flow [72], and ballistic forces generated by the heart
[9]. Due to expensive equipment required and electrocardiography(ECG) being easy
and cost-effective, the use of ballistocardiography was reduced. However, it is gaining
traction again in recent years due to its contactless nature [32]. Currently, heart rate
is measured using ECG and photoplethysmograph (PPG) devices in hospitals. For
extracting the ECG signals, electrodes are placed over certain positions on the body
such as arms, chest and legs. Cardiac activity periodically changes the blood volume
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Fig. 5 An illustration of the Photoplethysmography (PPG) technique, which uses the contrast between
emitted and reflected light, indicative of blood volume to estimate heart rate. The variance of red, green,
and blue light reflection changes from the skin are measured using Remote Photoplethysmography (rPPG),
as the contrast between specular and diffused reflection, in a contactless manner. Image Attribution :
Marcus.vollmer / CC BY-SA (Color figure online)

in the micro-vascular tissues. Thus, peripheral body tissues (like palm or finger print)
are used to calculate the blood volume pulse (BVP). PPG works on the principle of
illuminating the skin with a light-emitting diode (LED) and then measuring the amount
of light reflected or transmitted to a photo-diode, as depicted in the Fig. 5. As the blood
volume is a direct function of the light absorbed, BVP can be directly measured [98].

4.2 ML-enabled workflow for remote heart rate monitoring

ML-based heart rate monitoring approaches utilize either of the two information
sources: pulse induced micro-motions and micro color variations due to blood flow
under the skin. Balakrishnan et al. [9] proposed that there are subtle head oscillations
during a cardiac cycle caused by blood flow in the head arteries which can be used to
extract heart rate from videos. This can be especially useful in COVID-19 scenario,
as the head motion cues can be taken even when the face is covered using a mask.
For capturing the micro color variations, an experimental protocol was introduced by
Fukunishi et al. [30] to predict heart rate variability based on a skin optics model. The
skin was modeled in two parts—epidermis and dermis. Then, Lambert Beer Law was
used to model the internal reflection and the movement was compensated using the
LEAR (Local Evidence Aggregation for Regression) feature detector [59]. Using these
feature points, the final region of interest (ROI) was determined. After calculation of
haemoglobin component in the ROIs of each frame, and the heart rate is subsequently
extracted from the waveform.

Another study was done by Alghoul et al. [4] in which independent component
analysis (ICA) was applied on the color channels of the video recordings to get the
PPG signals. On the other hand, Eulerian Video Magnification (EVM) was discovered
to have better performance when motion is involved or high frequency components
are not important. Recently, a two stream convolutional neural network (CNN) was
devised by Wang et al. [99] for heart-rate estimation using rPPG (remote PPG). The
approach is based on fusing the two streams—one stream extracts the feature by
adopting a low-rank constraint, while the other stream focuses on extracting reliable
rPPG signals from facial videos.
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Similarly, a two step CNN was introduced by Špetlík et al. [89] for extraction of
heart rate from a sequence of facial images. The first feature extractor is trained using a
temporal image sequence of faces. Then the extracted features are sent to the heart rate
estimator module and the heart rate is predicted. They also introduced a challenging
dataset of 204 fitness-themed videos (ECG-Fitness) where ground truth heart rate is
measured by ECG. Also, a siamese-based rPPG network for heart-rate estimation using
face videos is proposed by Tsou et al. [94]. For analyzing the temporal periodicity
of rPPG signals, a 3D CNNs network is constructed and the two-branch model is
jointly trained under the negative Pearson loss function. A weight sharing network
(using a siamese type architecture) is employed for learning distinctive, robust, and
complementary features from multiple facial regions.

4.3 Applications of heart rate monitoring in COVID-19

In modern day medical diagnosis, heart rate is one of the most important vital signs.
Remote monitoring of heart rate has far reaching consequences and the correspondence
of cardiovascular diseases and COVID-19 is still under active research [29,44]. It has
been found that cardiovascular disease increases the fatality rate of COVID-19 as
well as the severity of symptoms in patients [44]. Contactless heart-rate monitoring
using a smartphone camera will help in early identification of heart rate anomalies
and a cardiologist can be consulted for the same. Generally, heart rate measured by
Photoplethysmography (PPG) has been found to have high correlation [102] with that
measured by an ECG machine or a contact-based vital signs monitor.

Conventional PPG methods make use of a contact-based light source and detec-
tor, whereas remote PPG (rPPG) makes use of ambient light and a video camera in
place of a light sensor. While the conventional sensor-based approach does provide
greater signal quality than the rPPG approach [95] it requires more expensive dedi-
cated instruments, whereas the rPPG method offers the convenience and accessibility
of monitoring using only a smartphone/laptop camera. Furthermore, for continuous
monitoring, the instrument has to be attached to the person whereas in remote PPG,
all the processes can be done with a camera without any physical contact.

Remote PPG signals captured using a video camera suffer from various artifacts
such as facial structure, lighting difference and a variation in skin tone among individ-
uals. As there is a lack of datasets covering the said artifacts, training on a particular
dataset would not make the method applicable for a larger population. Thus, self-
supervised methods which provide fast adaptability to a varied population would be
more useful. Lee et al. [50] proposed a transductive meta-learner which takes unlabeled
samples during testing itself and does a self-supervised weight adjustment.

Thus, there is an urgent need of design of unsupervised or self-supervised archi-
tectures. Sometimes, measuring heart rate using an ECG or any other contact based
method is infeasible, which has become more common in COVID-19 context. Using
a video camera based approach, variability in the heart rate can be studied using rPPG
and can be addressed by a doctor in case of an anomaly.
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5 Monitoring of respiratory rate

Respiratory rate (RR) is one of the primary vital signs of the human body and is a direct
indicator of potential respiratory dysfunction. Respiratory rate is the rate at which our
breathing occurs. It is usually measured by the number of breaths a person takes per
minute, when a person is at rest. Respiration helps to maintain the oxygen delivery to
various tissues in the body. One of the first signs of deterioration of oxygen delivery
to the body tissues is a change in respiratory rate. Thus, a continuous respiratory rate
monitor is essential, particularly in the context of COVID-19. The various approaches
to respiration monitoring can typically be classified as-: contact or contactless.

5.1 Conventional workflow for respiratory rate measurement

Traditionally, respiratory rate measurement is done using professional medical equip-
ment in hospitals and research facilities; these tend to be complex, heavy and expensive,
putting them out of the reach of most individuals. They also tend to use contact-
based methods of measurement. Contact based systems involve the placement of
sensors on the subject’s body. These include acoustic methods, fiber optic sensors,
chest/abdominal movement detection (using mercury strain gauges or impedance
methods), airflow-based methods, transcutaneous CO2 monitoring, oximetry probe
(SpO2) based and ECG derived [3]. The Spirometer (Fig. 6), used to measure air-
volume intake by a patient, is an example of such a contact-based device. The concern
with these methods is that it could represent a potential avenue for COVID-19 trans-
mission due to congregation of patients with lung disease and the transmission through
contact of sensors with patients.

Contactless methods offer the advantage of not requiring any physical contact with
sensors. Current contactless methods include approaches which are radar-based, ther-
mal imaging based and optical imaging based [3]. Of these, only the optical imaging
technique may be done directly with equipment accessible to most patients such
as a laptop camera. It also addresses the problem of congregation of patients and
transmission through coughing/droplet infection through remote monitoring. Various
approaches to video camera based techniques make use of post-processing of pixel
data such as subtraction of images or analysis of optical flow. For instance, Massaroni
et al. [60] made use of input from a single notebook computer RGB camera by ana-
lyzing the intensity of reflected light at the level of the pit of the neck. This area needs
to be manually defined by the user.

5.2 ML-enabled workflow for respiratory rate monitoring

The detection of a patient in the video frame and selection of the Region of Interest
(ROI) in the above techniques are tasks which have scope to be automated through the
application of ML/DL. An example workflow involves two models to be employed—
one to identify and select the ROI, and the second, which focuses on the selected region
to classify the breathing pattern as normal or abnormal. The performance of these tasks
of selection of ROI and patient detection is essential to the successful estimation of

123



AI-enabled remote monitoring of…

Fig. 6 Spirometer, used for
measuring breathing rate. An
example of a conventional,
contact-based device that
measures the volume and/or the
rate of air intake by the lungs.
Source: National Heart Lung
and Blood Institute (NIH) /
Public domain

vital signs from the video camera [19]. Chaichulee proposed a multi-task convolutional
neural network (CNN) model that automatically detects the presence or absence of
a patient and segments the patient’s skin regions if the patient is found in front of
the camera. In this work, the skin annotation was performed using a semi-automatic
approach to reduce the effort required for labelling the skin regions.

Cho et al. [25] proposes DeepBreath, a deep learning model using a CNN which
automatically recognises people’s psychological stress level (mental overload) from
their breathing patterns. To avoid the issue of patient privacy in using RGB cameras,
this paper proposes using a low-cost thermal camera, to track a person’s breathing
patterns as temperature changes around his/her nostril. DeepFilter (Liu et al. [55])
makes use of a bidirectional recurrent neural network (RNN) for fine-grained breathing
rate monitoring that works on a smartphone. The main idea of this scheme is to infer
breathing events from low signal-to-noise-ratio (SNR) recordings. This currently has
applications in sleep apnoea detection, treatment for asthma and sleep stage detection.

ML based detection of deterioration in vital signs faces challenges such as small
volume of datasets and domain complexity. Small datasets lead to overfitting of the
neural networks. Domain complexity of the disease can lead to inaccurately mapping
causes and stages of disease. Alloghani et al. [5] assess several machine learning based
algorithms for clustering and prediction of vital signs.

5.3 Applications of respiratory rate monitoring in COVID-19

Many DL based techniques suffer from overfitting and hence require special techniques
to boost the training approach. Two main challenges to video-based monitoring are
those of patient detection and ROI selection. Existing literature describes specific
architectures of Artificial Neural Networks (ANNs) for ROI segmentation for specific
applications such as for neo-natal infants.

In the particular case of COVID-19, there is an increasing need to come up with
remote monitoring solutions that are accessible to people for greater reach. Since
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the symptoms of COVID-19 are predominantly respiratory, there is great potential
for aiding quick diagnosis through application of ML in this domain. As hospitals are
placed under the immense stress of handling the influx of patients during the pandemic,
development of such techniques which enable remote monitoring and diagnosis can
help alleviate some of this pressure on the medical system. To this end, the methods
outlined above that make use of a single RGB camera are particularly useful, as they
are easily accessible in the form of a smartphone or laptop webcam. This however
poses two challenges due to patients not being in a controlled environment—firstly, the
patient may not be present in all the video frames. Second, the lighting conditions may
vary thereby making skin colour-based region of interest detection difficult. Hence,
any research that yields fully automatic ROI selection using ML techniques would be
invaluable.

6 Cough analysis

Coughing is a sudden air expulsion from the nasal airways or throat which is char-
acterized by a distinctive sound. Dry cough, which is a characteristic symptom of
COVID-19, is one where no mucus or phlegm is produced with the cough. Prior stud-
ies have shown that cough from distinct respiratory syndromes have distinct latent
features [10]. Recent medical findings [31,51] about the pathological alternations
caused by COVID-19 have shown that the alternations are distinct from those caused
by other common non-COVID-19 respiratory diseases.

6.1 Conventional workflow for cough analysis

Traditionally, analyzing the conditions that affect breathing such as asthma, chronic
obstructive pulmonary disease (COPD) is done using spirometer. The spirometer mea-
sures the forced vital capacity (FVC) which represents the total volume of air exhaled
from the lungs after the deepest possible inhalation and the forced expiratory volume in
the first second (FEV1) [62]. The results obtained from spirometry are then compared
against the reference or predicted measurements. The FEV1/FVC(Tiffeneau-Pinelli
index), FVC and the forced expiratory ratio, help differentiate restrictive, obstructive
and normal breathing patterns [84]. Although spirometry is a non-invasive technique,
it requires large amount of patient coordination and skin contact as shown in Fig. 6.
For maintaining consistency in results, especially among elderly and patients with
significant lung disease, the technique has to be repeated multiple times. This can be
inconvenient and difficult for some subjects such as the elderly or those with significant
lung disease. Further more, the cost of equipment and health care professional time is
an additional overhead. Additionally, the assessment of cough severity by Leicester
cough questionnaire (LCQ) and visual analogue scales (VAS) is currently of subjective
nature and requires health care professionals to supervise them [87].

The existing cough frequency monitors can be divided into two categories : those
that only use an audio signal and the others that use other signals also in addition to
the audio signals. Among the audio signal based methods, the Hull Automatic Cough
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Counter [12] utilizes a free-field microphone to record audio signals throughout the
day. The coughs are detected automatically by the microphone but human supervi-
sion is required for counting the number of coughs. The Pulmo Track-CC [87] takes
multiple signals as input for getting the cough information. A piezoelectric belt is
included for measuring the motion of chest wall, two contact microphones placed on
the trachea and the thorax and a lapel microphone is added for measuring the audio
signal. Nevertheless, Turner et al. [87] in their study found that this device had a sen-
sitivity of only 26% for detecting coughs as compared to those heard through the ear.
Therefore, most of the existing cough analysis solutions either require professional
medical assistance to conduct them or have a very low sensitivity. Additionally, there
is no standard equipment available in different geographical locations. As a result the
tests are extremely expensive and available scarcely. For optimal performance, most
of the above mentioned methods have to be undertaken as in-person in an hospital or
a clinic. This inevitably requires breach of isolation of the suspected patients. Such
visit exposes more members of the public to COVID-19 while the patient is on the
way to the test facility.

In comparison, the recording of cough sounds requires minimal patient cooperation.
Recording of spontaneous coughs is straightforward. Adults can also be asked to pro-
duce voluntary coughs, which can be recorded via a mobile device. These approaches
require no physical contact.

6.2 ML-enabled workflow for cough analysis

The automatic analysis of cough parameters for quick detection of COVID-19 is the
task that has scope to be automated through the application of Machine Learning.
Sharan et al. [84] proposes feature extraction using Mel-frequency Cepstral Coeffi-
cients (MFCC) followed by passing the extracted feature to a support vector regression
(SVR) model. Using the Root Mean Squared Error (RMSE) of the predicted output,
sequential backward feature selection is used to remove irrelevant features and to
select subset of features that minimize RMSE for making predictions. Figure 7 shows
an example workflow of an ML classifier model that can identify and classify cough
patterns as either a COVID positive or COVID negative diagnosis.

Rao et al. [77] proposes extracting MFCC for short overlapping segments of cough
sound sample resulting in a sequence of MFCCs for each cough recording. This is
then converted to single vector by computing average value for each element in MFCC
vectors in sequence. Support Vector regression (SVR) model is used for regression
and final spirometry reading is computed by taking median of predicted values across
all instances. Kosasih et al. [45] proposes using features like format frequencies (FF)
and MFCC for extracting wavelet features from each cough sample followed by nor-
malization of features for removing the effects of sound intensity variations. Logistic
regression model (LRM) and leave-one-out-validation (LOOV) are used for model
designs. This model currently finds usage in pneumonia detection as well.

Sharan et al. [85] proposes using gammatone filter models which mimic the human
auditory system. The gammatone filter is augmented with linear MFCCs for extracting
the frequency components of cough sound sample. Support vector machine (SVM)
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Fig. 7 A general workflow for an ML classifier system that can identify a cough and appropriately flag
it if symptomatic of COVID-19. The classifier may use deep learning models to make a prediction based
on recordings from a smartphone, thus enabling a user to perform a quick check-up using no specialised
equipment other than a smartphone

and Artificial Neural Network (ANN) models are then used for classifying the cough
as having symptoms of croup (a respiratory disease found in children) or not.

6.3 Applications in COVID-19 for cough analysis

The existing solutions mentioned above face major problems in COVID-19 detection
due to the fact that medical findings [51] about the pathological alternations caused by
COVID-19 have shown that the alternations are distinct from those caused by other
common non-COVID-19 respiratory diseases. Therefore, existing ML models adopted
for other respiratory diseases like pneumonia and croup are not optimal for COVID-19
detection and hence require special techniques to boost their effectiveness. Researchers
at the University of Cambridge are aiming to create a crowd-sourced dataset from
recordings provided by participants through the COVID-19 Sounds App [15]. This
dataset can then be used to build models that can classify as COVID or non-COVID
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based on voice recordings of patients. Brown et al. [15] describe how both handcrafted
features like RMS energy, and features from Transfer learning (using a VGGish pre-
trained network) can be used to generate a feature vector for the classification task.

Further, existing solutions must also be tweaked to give more importance to min-
imizing false negatives which are a more serious problem than false positives in the
medical domain. Some preliminary studies [41] using CNN based models using Mel
spectrogram image of input cough sound samples have shown impressive results for
COVID-19 testing. Parallel and independent classifier systems based on deep learn-
ing and classical machine learning classifiers can be particularly useful in COVID-19
testing. This architecture is helpful in minimizing misdiagnosis by giving a veto to
each classifier and hence giving “COVID negative” result only when all the classifiers
give similar results. If even one classifier disagrees with the others, then results like
“inconclusive” can be given to effectively minimize false negatives. The accuracy of
these models is expected to increase over time with the increase in quality of data.

7 Monitoring of oxygen saturation

Oxygen saturation also known as SpO2, is a measure of the amount of oxygen-carrying
hemoglobin in the blood relative to the amount of hemoglobin not carrying oxygen.
Normal oxygen saturation is between 96% and 98%. Low levels of SpO2 can cause
hypoxemia and warrants immediate oxygen supplementation for the patient’s lung
condition. The methods for monitoring oxygen saturation can be classified into contact
or contactless.

7.1 Conventional workflow of oxygen saturationmeasurement

Traditionally, saturated oxygen (SpO2) levels are measured using arterial blood gases
and pulse oximetry. Monitoring SpO2 levels using arterial blood gases involves obtain-
ing blood samples from an artery such as radial artery in the wrist or femoral artery
in the groin region and are measured in millimeters of mercury which represent how
effectively the human body is exchanging oxygen and carbon dioxide. Whereas, pulse
oximetry relies on detecting the difference in absorption of particular wavelengths of
light by oxygenated and reduced hemoglobin where a sensor is placed on a finger
or earlobe that reads the wavelengths of light reflected from the blood (Fig. 8). This
is possible as oxygenated and reduced hemoglobin have different light absorption at
different wavelengths.

The current contactless methods are optical imaging based, where a convolutional
neural network (CNN) based encoder-decoder architecture is employed to segment the
regions of interest in the image. Then on the segmented image, heart rate and oxygen
saturation are extracted separately from the signal [92]. Estimating oxygen saturation
with RGB cameras is much more difficult with respect to the contact based pulse
oximetry. RGB camera based oximeters use ambient light with unknown intensity
on a large tissue volume and background noise as compared to monochromatic light
with known intensity on a small tissue volume for contact based pulse oximetry.
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Fig. 8 A fingertip oximeter—a non-invasive but contact based method of measuring oxygen saturation by
using a sensor placed on the fingertip. A variant of this technique is also becoming increasingly common
in smartwatches such as devices from Fitbit and Garmin. Source: ©Teutotechnik, Med. Produktions- und
Vertriebs-GmbH, Niedersachsenstr. 7,49186 Bad Iburg / Wikimedia Commons / CC-BY-SA-3.0 / GFDL

This is a great challenge which needs to taken care algorithmically for SpO2 to be
estimated remotely with good accuracy. The section given below describes how ML-
based approaches are currently used for oxygen saturation estimation.

7.2 ML-enabled workflow for oxygen saturationmonitoring

The detection of presence of the patient and accurate segmentation of the region of
interest while handling dynamic movement of the ROI within the frame can be auto-
mated through ML methods. These objectives are paramount in accurately determining
the SpO2 levels in blood of the patient. The main approach for calculating Oxygen
Saturation from camera is from the PPG signals at two different wavelength. Herrmann
et al. [39] proposed an apparatus consisting of three separate monochrome cameras
each with suitable optical filters, the focus is on spectral areas where the extinction
coefficients of oxygenated and reduced hemoglobin are distinct. The region is chosen
to be the hand as peripheral cyanosis can be observed distinctly on this region. For
capturing the signals only from the tissue part of the image, first hand is segmented
using Fully Convolutional Networks (FCN-8s) [37]. After separating heart rate and
oxygen saturation from the signal, ’ratio of ratios’ method [92] is applied to estimate
SpO2 levels.

Recently, smartphone cameras have been proposed to monitor oxygen saturation
level. Ding et al. [27] used SVD (Singular Value Decomposition) to remove motion
artifacts which are prevalent seconds before the saturation level is lowest and thereby
making the original artifact reduction using SVD [78] more robust. While construct-
ing the signal matrix if motion artifacts are deducted in a coming cycle, this data is
not added to the SVD matrix which led to the recreated signal to be visibly natural,
The RGB frames are converted to photoplethysmography (PPG) signals by averaging
pixel values from candidate regions of interest. Reduced hemoglobin absorbs more
red light which results in less red light reaching the camera resulting in a decreased
PPG signal, as this is a valuable feature the signal was decomposed into bandpass
and lowpass filtered versions. These signals are then fed into a convolutional neural
network for SpO2 estimation, where a novel 1D convolutional neural network for
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regressing oxygen saturation which proved superior to the previous state-of-the-art
ratio-of-ratios model is proposed. The CNN model is trained for a particular smart-
phone camera type. Generalization across cameras of various companies is an aspect
to be looked upon.

Gabriella [18] used a see-through mirror provided with a camera to acquire video-
frames. They used the color of the patient’s lips to detect SpO2 levels as lips turning
purple or bluish may indicate low oxygen levels in blood. A pre-trained face detection
model is employed to detect the patient’s face in the video stream, and the facial land-
marks are used so that ROI of the lips is detected and isolated. The ROI is preprocessed
to identify the dominant color and classified as “regular”,“altered” or “purplish”, K-
means clustering with k = 3 is applied to detect dominant color in ROI, Then a
fuzzy-based intelligent system is used and the color of the lips which serves as the
representation of SpO2 level functions as a linguistic variable along with other vital
signs to decide the risk level of the said patient. The MAE of this approach compared
with the standard finger tip oximeter was 1.83 with a standard deviation of 2.43 on
their dataset of 10 individuals. We would like to mention however, due to lack of stan-
dardization of the datasets used in remote oxygen saturation monitoring, it is difficult
to compare multiple methods on their error rates.

7.3 Applications in COVID-19 for oxygen saturation

The advances made in this field suggests that it is growing at a fast pace as contactless
methods to determine SpO2 levels are becoming increasingly desired in the fight
against COVID-19 pandemic. Pulse oximetry units, in spite of their low-price and
affordability, are low in production and COVID-19 has made the demand much higher.
The widespread reach of smartphones makes it an ideally suited medium of detection
of SpO2 levels in the current global scenario. Work done by Herrmann [39] suggests
that three separate monochrome cameras find two spectral areas where extinction
coefficients of oxygenated and reduced hemoglobin are distinct as compared to only
one in normal RGB based approach. If these three different monochromatic filters can
be replicated using one/multiple smartphones then the results of the smartphone based
approach will be more reliable. Artifacts removal through a generative adversarial
network can be employed when an appropriate dataset is made available. This is
expected to perform better than SVD and hence further improves the smartphone SpO2

measuring ability. Further, since the domain and characteristics of the input images
are the same, pre-trained networks like VGG-16 may be surpassed by a superior
attention-based encoder-decoder approach for segmentation.

Another fast developing area has been blood oxygen level monitoring by means of
an oximeter built into many smartwatches such as the Fitbit Versa 2 and the Garmin
Forerunner 245. While there do exist some oximeter apps for smartphones, there have
been questions raised about their accuracy, range of measurement and training datasets
used [91].
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8 Monitoring of blood pressure

The human heart is responsible for circulating blood to the rest of the body. Blood is
pumped into large blood vessels of the circulatory system by the heart. The blood flow
causes pressure on the walls of the vessels. The pressure exerted can be classified into
two types. The pressure exerted when the muscles of the heart contract and blood flows
into the vessels is called Systolic blood pressure, whereas the pressure exerted when
the muscles of heart relax is called Diastolic blood pressure. Systolic blood pressure is
always higher as more blood is flowing through the vessels during a systole. COVID-
19 can damage the heart directly. As high blood pressure has been found to be a
precursor of many diseases, people with high blood pressure are more likely to get
infected, have worse symptoms and die from the infection [69,88]. Thus, a safe and
accurate blood pressure measurement workflow is very important.

8.1 Conventional workflow for blood pressuremeasurement

There are two approaches to measure blood pressure, invasive and non-invasive. Inva-
sive methods are more accurate and are used to measure blood pressure continuously
in critical patients. It involves direct measurement of arterial pressure by inserting
a cannula needle in a suitable artery. There are mainly two instruments currently
used to measure blood pressure in a non-invasive manner. The one used at homes for
self-monitoring and reporting is a digital blood pressure monitor. It can be placed on
a finger, wrist, or the arm. The blood pressure is measured automatically based on
variation in the volume of blood flowing through the vessels.

This device, however, is often inaccurate and unreliable, especially for people with
blocked arteries and heart rhythm problems. Hospitals, thus generally use a far more
accurate device known as sphygmomanometer (Fig. 9). It has a cuff which is wrapped
around the patient’s arm and inflated until blood stops flowing through the brachial
artery. The corresponding pressure is measured on the pressure meter. A stethoscope
is also required, to register the moment at which blood stops flowing [74]. A trained
professional is required for measurement, hence the workload is increased. There are
multiple contact points in this procedure, thus this is not a safe method of measuring
blood pressure in suspected COVID-19 patients. Moreover, none of the non-invasive
methods can be used for continuous monitoring.

Blood pressure can also be derived from vitals other than direct measurement.
Photoplethysmography (PPG), also used for estimating heart rate, works by detecting
the changes in blood volume due to changes in microvascular tissue during a heart beat.
PPG readings along with ECG readings can be used to calculate the Pulse Transit Time
(PTT), from which the blood pressure can be calculated [82]. ECG measurements,
however, require contact with sensors, which adds to the risk of infection.

8.2 ML-enabled workflow for blood pressuremonitoring

Various researchers have attempted to derive Blood Pressure readings solely from
PPG signals, which reduces contact points in measurement as well as the human
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Fig. 9 Sphygmomanometer, a device conventionally used for blood pressure measurement. It consists of an
inflatable cuff which is placed on the upper arm of the patient, and is thus a contact-based system of mea-
surement. Source: OpenStax/CC BY Version 8.25 from the Textbook OpenStax Anatomy and Physiology,
published May 18, 2016

effort required in critical situations. PPG signals can be obtained continuously, using
non-invasive, simple and low cost methods. These signals are divided into 30 sec-
ond intervals and pass through a CNN architecture which extracts relevant features,
which then pass through fully connected (FC) layers to obtain final BP readings. A
siamese network (which takes in the first available 30 second PPG window along with
the corresponding BP reading) is used to calibrate the measurements according to a
particular patient for more accurate results, but even without calibration the results
are extremely accurate for diastolic blood pressure and slightly less, but still quite
accurate for systolic blood pressure [82].

As done in estimating heart rate remotely, the PPG measurements can be designed
to be contactless for blood pressure as well. A robust method for estimating the blood
volume pulse is done by Poh et al. [72] using human face videos captured using a RGB
camera. These blood absorption changes caused by change in blood volume during
a heart beat are measured by a low cost RGB camera. After detecting the face using
Viola-Jones algorithm, the forehead is selected as the region of interest as there is least
disturbance there. The ground truth blood pressure and extracted PPG signals are fed
into a feed forward neural network. The approach currently uses a single layer network
for getting a real time performance on a standard smartphone camera. Although the
results are affected by ambient light due to collection of data during different times of
the day, this algorithm shows satisfactory accuracy of more than 85% [71]. There are
multiple research works on further improving the accuracy of derived BP values from
PPG signals [33,82,83,97].

8.3 Applications of blood pressure in COVID-19

The current research in blood pressure measurement focuses mainly on PPG signals.
Reliability is extremely important for any method to be useful, and while there has
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been some work on contactless measurement via low cost video devices, reliable PPG
readings can currently be taken only via contact based methods like sensors on fingers.
This is a major bottleneck in the establishment of a safer workflow, and thus should
be the focus of any research that aims to work towards the problem of blood pressure
measurement, keeping COVID-19 in mind.

One of the problems faced by researchers is the unreliability of the quality of data
which can be used for training models. Blood pressure measurements are erratic and
unstable in most critical patients (in whom it is continuously measured), which renders
only a small portion of data to be useful. Thus there is a need for techniques that either
refine currently unusable data or create more trainable data using architectures such
as Generative Adversarial Networks.

Moreover, a new workflow can only be accurate if it has multiple sources of informa-
tion, and as such solely depending on the PPG signal can be dangerous. A viable source
can be ECG readings, which can currently be measured only via contact, through sen-
sors placed on the chest and other areas. BP readings can be derived from ECG and
PPG signals combined. Since ECG detects electrical signals in the body, it will be
difficult to obtain the signal solely via video based inputs. Hence, research is required
for contactless ECG [70]. Meanwhile, the focus should also be on direct calculation
of BP from ECG using suitable deep learning models.

9 Conclusion

Use of Machine Learning and Deep Learning techniques has tremendous potential
and advantages for use over the traditional used approaches for vital signs monitoring.
In addition to the advantages given in the below Table 1, these methods are extremely
useful for continuous monitoring without any contact.

Remote monitoring of vital health signs has the potential to be extremely useful in
the scenario of a pandemic. The patient’s vital signs can be monitored regularly by
medical practitioners and attended to when there is any exigency. This work presents
a perspective on how remote monitoring based on ML and imaging can be leveraged
for estimation of vital signs for early detection of COVID-19 and also for regular
monitoring of remote patients. Currently, contact based monitoring instruments are
employed in the hospitals and are difficult to use for continuous monitoring. Many
remote monitoring techniques can also alleviate that issue and facilitate continuous,
non-invasive monitoring. In the current state of affairs, datasets for training such
models is a biggest limitation. Since most of these techniques rely on images or
videos, the lighting of the room needs to be optimum in order to attain good accuracy.
Moreover, since most of the techniques are based upon standard machine learning
and signal processing techniques, these can be easily deployed upon a smartphone.
This helps to alleviate the privacy concerns as all of the processing is happening
on the smartphone itself. Models which require more compute power can be pruned
and a lighter version can be used for inference at the edge itself. There have been
efforts on Software Defined Networks (SDNs) for securing the edge-cloud interplay
[8] which help to alleviate the privacy concerns. Work has also been done on preserving
anonymity [6] and authentication [101] for medical devices deployment. Moreover,
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secure mobile protocols for healthcare [100] have also been proposed which can be
deployed when using these techniques.

Through this work, we hope to draw attention towards this promising field of
research which holds great importance in a COVID-affected world. As the influx
of COVID-19 patients increases, hospitals will have lesser trained professionals than
needed. It is therefore important that any new methods are automated and do not require
much intervention from medical professionals, apart from infrequent monitoring. All
the vital signs can be monitored using a centralised system using intelligent systems
as demonstrated by Muhammad et al. for fire scenes [68] and smoke [65]. In future
work, effective video summarization can be helpful for providing key insights as done
in surveillance networks [63,64]. Once fully deployed, these methods are especially
helpful for the susceptible people in a pandemic scenario such as COVID-19 as they can
get indication of their deteriorating health and seek medical attention . These methods
will also help in the post-COVID world as they are affordable, more accessible than the
conventional instruments and most importantly have the ability to perform continuous
contactless monitoring.
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