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Abstract
Purpose  To assess whether a radiomics and machine learning (ML) model combining quantitative parameters and radiomics 
features extracted from simultaneous multiparametric 18F-FDG PET/MRI can discriminate between benign and malignant 
breast lesions.
Methods  A population of 102 patients with 120 breast lesions (101 malignant and 19 benign) detected on ultrasound and/
or mammography was prospectively enrolled. All patients underwent hybrid 18F-FDG PET/MRI for diagnostic purposes. 
Quantitative parameters were extracted from DCE (MTT, VD, PF), DW (mean ADC of breast lesions and contralateral breast 
parenchyma), PET (SUVmax, SUVmean, and SUVminimum of breast lesions, as well as SUVmean of the contralateral 
breast parenchyma), and T2-weighted images. Radiomics features were extracted from DCE, T2-weighted, ADC, and PET 
images. Different diagnostic models were developed using a fine Gaussian support vector machine algorithm which explored 
different combinations of quantitative parameters and radiomics features to obtain the highest accuracy in discriminating 
between benign and malignant breast lesions using fivefold cross-validation. The performance of the best radiomics and ML 
model was compared with that of expert reader review using McNemar’s test.
Results  Eight radiomics models were developed. The integrated model combining MTT and ADC with radiomics features 
extracted from PET and ADC images obtained the highest accuracy for breast cancer diagnosis (AUC 0.983), although its 
accuracy was not significantly higher than that of expert reader review (AUC 0.868) (p = 0.508).
Conclusion  A radiomics and ML model combining quantitative parameters and radiomics features extracted from simultane-
ous multiparametric 18F-FDG PET/MRI images can accurately discriminate between benign and malignant breast lesions.
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Introduction

Breast cancer is the most commonly occurring malignancy 
in women worldwide, representing 11.6% of newly diag-
nosed cancer cases in 2018 [1]. Disease prognosis changes 
dramatically if breast cancer is diagnosed at an early vs 
later stage, with the 5-year survival rate decreasing from 
98 to 100% for the former to 66–98% for the latter [2]. 
Despite the many advantages offered by new surgical 
approaches and targeted drug development, early diagno-
sis remains one of the most effective means to conquer 
breast cancer.

Imaging modalities that are currently used to diagnose 
breast cancer include mammography, ultrasound, and mag-
netic resonance imaging (MRI) [3]. MRI, which is based on 
the depiction of neoangiogenesis as a tumor-specific fea-
ture, is the most sensitive imaging modality for breast cancer 
detection. However, a challenge in the broader use of breast 
MRI is its false-positive findings which lead to unnecessary 
invasive biopsies in benign tumors, along with unnecessary 
financial costs and patient anxiety [4]. Factors that affect 
MRI’s specificity include the image acquisition technique 
and the level of reader experience [4].

Carcinogenesis is a complex, multistep process dur-
ing which cancers develop distinct pathological biologi-
cal properties, i.e., cancer hallmarks, including sustained 
proliferation; evasion of growth suppressors and apoptosis; 
and promotion of angiogenesis, invasion, and metastasis 
[5]. Advanced imaging techniques that provide morpho-
logic, functional, and metabolic information have been 
introduced, allowing the non-invasive depiction of these 
pathophysiological processes at the cellular level. These 
novel imaging data can be used for tumor diagnosis and 
characterization, assessment of treatment response, and 
prediction of patient outcome [6].

Simultaneous multiparametric 18F-fluoro-2-deoxy-
d-glucose (18F-FDG) positron emission tomography/mag-
netic resonance imaging (PET/MRI) is a novel imaging 
technique that combines multiparametric morphologic and 
functional information from MRI with metabolic infor-
mation provided by PET, offering unique insights into 
tumor biology to achieve the ultimate goal of precision 
medicine in oncology [7, 8]. Recent studies support the 
use of 18F-FDG PET/MRI in breast cancer patients for 
different diagnostic purposes [9, 10]. Initial studies using 
the combination of separately acquired MRI and PET data 
indicate an improvement in the discrimination of benign 
and malignant breast lesions [11]. However, at present, the 
role of simultaneous multiparametric 18F-FDG PET/MRI 
for breast cancer diagnosis has not been fully assessed.

Recently, a new paradigm in healthcare has emerged, 
driven by advances in medical imaging technology and 

image analysis as well as the advent of artificial intelli-
gence (AI) and its applications in medical imaging. Radi-
omics is the extraction of large numbers of quantitative 
features from standard-of-care medical images using 
computer algorithms; radiomics features can be corre-
lated with various variables, e.g., patient characteristics 
and outcomes, and pooled in large-scale analyses to cre-
ate decision support models [12–14]. Radiomics has the 
potential to represent “the bridge between medical imag-
ing and personalized medicine” [15].

We hypothesized that an AI-based radiomics model com-
bining quantitative simultaneously acquired 18F-FDG PET/
MRI data will enable an accurate discrimination of benign 
and malignant breast tumors. Therefore, the aim of our study 
was to develop and validate a diagnostic AI model using 
quantitative perfusion, diffusion, and metabolic data as well 
as radiomics features extracted from simultaneous multipar-
ametric 18F-FDG PET/MRI to non-invasively discriminate 
between benign and malignant breast lesions.

Materials and methods

Patient population

This prospective single-institution study was approved by 
the institutional review board, and written informed consent 
was obtained from all participants. From June 2016 to July 
2020, 154 patients were included in the study and under-
went simultaneous multiparametric 18F-FDG PET/MRI of 
the breast for diagnostic purposes. Patients were included 
according to the following inclusion criteria: > 18 years of 
age; not pregnant nor breastfeeding; and imaging abnormal-
ity (i.e., Breast Imaging-Reporting and Data System (BI-
RADS) 0, 4/5) on ultrasound and/or mammography (i.e., 
asymmetries, microcalcifications, architectural distortion, 
breast mass). Exclusion criteria were no histopathology or 
follow-up available; incomplete 18F-FDG PET/MRI exami-
nations; 18F-FDG PET/MRI images not suitable for subse-
quent quantitative and radiomics analysis (e.g., image arti-
facts, incomplete dynamic scans); previous treatments; and 
contraindications for MRI examination. Thus, 102 patients 
(mean age 50 years, age range 23–82 years) with 120 breast 
lesions (101 malignant and 19 benign) were finally included 
in this study. The BI-RADS category distribution of included 
lesions was BI-RADS 0 (n = 8), BI-RADS 4 (n = 16), and 
BI-RADS 5 (n = 96). The flowchart of the patient selection 
process is given in Fig. 1.

Reference standard

Histology was used as the reference standard for lesions 
classified as BI-RADS 4 (n = 22) or 5 (n = 95) at 18F-FDG 
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PET/MRI. In patients with malignant lesions, the reference 
standard was histological analysis of the surgical speci-
men; in patients who received neoadjuvant treatment, the 
biopsy results were considered the reference standard. In 
three lesions classified as BI-RADS 2 (n = 2) or BI-RADS 3 
(n = 1) at 18F-FDG PET/MRI, stable imaging follow-up was 
available for at least 2 years.

Multiparametric PET/MRI acquisition protocol

All patients underwent simultaneous multiparametric 18F-
FDG PET/MRI performed using a Biograph mMR system 
(Siemens, Germany), which is an MRI-compatible PET 
detector integrated with a 3.0 MRI scanner [16].

Patients fasted at least 5 h before receiving an intravenous 
application of 18F-FDG at a dose of 2.5–3.5 MBq/kg body 
weight. All measured blood glucose levels were less than 
150 mg/dL (8.3 mmol/L) prior to tracer injection. The PET/
MRI acquisition started after an uptake time of 60 min. MRI-
based attenuation correction was performed using the stand-
ard Dixon-based attenuation correction method [17, 18]. 
A three-dimensional (3D) acquisition technique was used 
that offered an axial field of view (FOV) of approximately 
26 cm and a transverse FOV of 59 cm with a sensitivity of 
13.2 cps/kBq. Data acquisition was done for 30 min. Static 
PET images were reconstructed using ordinary Poisson 3D 
ordered subset expectation maximization (OP-OSEM) (with 
Gaussian scatter correction) with 3 iterations and 21 subsets 
into a 172-zoom 1.0 image matrix including all standard 
corrections (normalization, scatter, random coincidences, 
and decay).

Multiparametric MRI was performed using a dedicated 
16-channel breast coil (Rapid Biomedical, Germany), and 
the imaging protocol consisted of the following sequences:

1.	 Axial T2-weighted sequence, repetition time/echo time 
(TR/TE) 4820/192 ms, matrix size 640 × 480, FOV 
360 × 360 mm, slice thickness 2.5 mm, gap 3 mm, flip 
angle (FA) 128°.

2.	 Diffusion tensor imaging using a 2D diffusion-weighted 
(DW) single-shot spin-echo-prepared echo-planar imag-
ing (EPI) sequence with parallel imaging and fat sup-
pression, TR/TE 4500/87 ms, matrix size 190 × 112, 
FA 90°, FOV 212 × 360 mm, slice thickness 4 mm, gap 
5.2 mm. Diffusion gradients were applied in twelve 
directions with b values of 0 and 800 s/mm2.

3.	 Dynamic contrast-enhanced (DCE) imaging, obtained 
before and after intravenous administration of a para-
magnetic contrast agent (Dotarem: 0.2  ml/kg body 
weight), at a flow rate of 3.5 ml/s. Five pre-contrast 
axial T1 volumetric interpolated breath-hold exami-
nation (VIBE) sequences (FA 2°, 10°, 20°, 30°, and 
40°) were first acquired for T1 mapping, followed by 
axial T1 Time-resolved angiography With Interleaved 
Stochastic Trajectories (TWIST) dynamic sequences 
(TR/TE 4.7/2.46  ms, matrix size 448 × 4482, FOV 
340 × 340 mm, slice thickness 2 mm, no gap, flip angle 
15°) with 20 measurements and a temporal resolution of 
16.7 s. After an update to the clinical MRI protocol, T1 
TWIST DIXON dynamic sequences were acquired (TR/
TE = 4.7/1.3 ms, matrix 352 × 352, FOV 440 × 440 mm, 
slice thickness 2 mm, no gap, flip angle 10.5°) with 23 
measurements and a temporal resolution of 14 s. Sub-
traction and maximum intensity projection images were 
then obtained.

Image analysis

Two board-certified radiologists with 10 and 6 years of expe-
rience in breast imaging independently evaluated MRI data. 
A nuclear medicine physician with 10 years of experience 
and a radiologist with 6 years of experience who was trained 
in hybrid imaging under the supervision of a nuclear medi-
cine physician independently evaluated PET images. Read-
ers were blinded from final histopathological results and 
previous examinations. To assess the intraobserver reproduc-
ibility of PET/MRI quantitative parameter measurements, all 

Fig. 1   Flowchart of the patient 
selection process. Pts = patients; 
US = ultrasound; MG = mam-
mography
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lesions were reassessed by the same readers after a washout 
period of 4 weeks.

Quantitative data analysis

Multiparametric MRI

All MR images were imported into an open-source medical 
image viewer (Horos v.3.3.5) for image visualization and the 
extraction of quantitative parameters.

Breast lesions were identified on DCE post-contrast 
subtracted images, and lesion location and size (maximum 
diameter on DCE post-contrast subtracted images in the 
axial plane) were recorded.

•	 For quantitative perfusion analysis, a pixel-by-pixel fast-
deconvolution method was applied using the open-source 
MRI perfusion analysis tool UMMPerfusion (Horos 
plugin) [19]. The arterial input function was selected by 
drawing a 2D region of interest (ROI) in the right ventri-
cle. Breast lesions were identified and segmented on sub-
tracted images at early post-contrast time points, as soon 
as the lesions were clearly visible [20]. Two-dimensional 
ROIs were drawn over the enhancing tumor portion, 
avoiding the inclusion of cystic, hemorrhagic necrotic 
areas or susceptibility artifacts from biopsy markers, and 
then pasted onto the corresponding quantitative maps to 
extract the mean transit time (MTT), plasma flow (PF), 
and volume distribution (VD).

•	 DW images and corresponding quantitative appar-
ent diffusion coefficient (ADC) maps were analyzed. 
First, breast lesions were identified on high b-value DW 
images; thereafter, a 2D ROI for each lesion was posi-
tioned on ADC maps on the qualitatively darkest part of 
the tumor, using DCE images as a reference to identify 
contrast-enhanced regions and also avoiding the inclu-
sion of cystic, hemorrhagic necrotic areas or suscep-

tibility artifacts from biopsy markers [21]. Using this 
approach, ADCmean of primary lesions and as well as 
of the normal appearing contralateral breast parenchyma 
was calculated.

18F‑FDG PET

For PET quantification, a volume of interest (VOI) was 
manually drawn around every suspicious breast lesion to 
acquire their maximum standard uptake value (SUVmax), 
mean SUV (SUVmean), and minimum SUV (SUVmin) 
using the Hermes Hybrid Viewer (Hermes Medical Solu-
tions, Stockholm, Sweden). The VOI was defined using the 
region grown 3D approach with a fixed threshold to capture 
PET metabolic tumor volume but not physiological 18F-FDG 
uptake in the surrounding tissues. For metabolic quantifica-
tion of non-tumoral ipsilateral and contralateral breast tissue, 
a VOI was placed in the normal breast parenchyma to obtain 
its SUVmean away from the nipple and areola. Examples of 
ROI placement over breast lesions on DCE-MRI, ADC, and 
PET images for the extraction of quantitative parameters are 
given in Fig. 2.

Radiomics analysis and model development

PET/MRI images were imported to dedicated software (ITK-
SNAP v. 3.6.0) [22] for lesion segmentation. A radiologist 
with 6 years of experience in breast imaging annotated each 
lesion on DCE, DWI, PET, and T2-weighted images. First, 
whole breast lesions were segmented on DCE-MR images 
using a semi-automated method. The second post-contrast 
time point was chosen for lesion segmentation, in order to 
better depict tumor enhancement compared to the surround-
ing breast parenchyma. The same approach was applied 
to DWI and PET images. Finally, manual segmentation 
was performed to annotate breast lesions on T2-weighted 
images slice by slice. In all steps, care was taken to avoid 

Fig. 2   Region of interest (ROI) placement over breast lesions on dynamic contrast-enhanced magnetic resonance (DCE-MR), apparent diffusion 
coefficient (ADC), and positron emission tomography (PET) images for the extraction of quantitative parameters
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the inclusion of cystic/necrotic areas. When a biopsy marker 
was present, a distance of at least 2 mm was kept. Examples 
of tumor segmentation are given in Fig. 3.

Considering the unbalanced distribution of benign and 
malignant breast lesions, adaptive synthetic sampling was 
employed to equalize class sizes [23]. Data for all four 
image types was initially reduced to 16 grey levels. Radi-
omics features were calculated using the Computational 
Environment for Radiological Research (CERR) [24]. 
DCE, T2-weighted, ADC, and PET images were used for 
radiomics feature extraction. Segmentations performed on 
DWI images were used for the extraction of radiomics 
features from ADC images. Considering that T2-weighted 
and ADC images were not isotropic, feature extraction 
was performed in a 2D fashion for each slice and then 
aggregated over the whole lesion (BTW3 as defined by the 
Image Biomarker Standardisation Initiative) [25]. Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression was then utilized to determine which radiom-
ics features were of most importance. LASSO forces the 
sum of the regression coefficients to be less than a fixed 
value, which in turn forces certain coefficients to be zero, 
thus excluding them from affecting prediction. For this 
work, a maximum of the top 5 most important features 
were selected, to avoid overfitting the limited datasets 
available. LASSO was employed due to its fast nature, 
its ability to avoid overfitting, and the fact that it can be 
applied even when the number of features is greater than 

the number of cases/samples [26, 27]. Diagnostic models 
were then developed in MATLAB using a fine Gaussian 
support vector machine (SVM), one of the most employed 
machine learning (ML) classifiers in medical imaging 
[28]. Since there is a short supply of data to enable a split 
into training, validation, and test sets, the selection of ML 
methodology becomes especially important. An SVM was 
utilized since it is known to work well for small datasets, 
the resulting models are memory efficient (since only the 
coefficients corresponding to the support vectors are non-
zero), they can solve both linear and non-linear problems, 
and they usually provide good performance [29, 30]. An 
SVM algorithm works by creating a hyperplane which 
separates the data into the desired classes. Again, since 
there is insufficient data to split into traditional training 
and test sets, fivefold cross-validation was employed since 
it gives the model the opportunity to train on multiple 
train-test splits. This results in a better indication of how 
well the model will perform on unseen data. Data were 
initially standardized (z-score calculation with mean 0 
and standard deviation 1) to prevent dependence on any 
individual parameter, especially those which contain high 
values. This process was then repeated 1000 times to pro-
vide final diagnostic metrics. Analysis was performed for 
each of the four image types independently and then in 
various combinations to assess potential improvements in 
diagnostic accuracy for the discrimination of benign and 
malignant breast lesion.

Fig. 3   Example of tumor segmentation in a 62-year-old patient with 
a stage IV invasive ductal carcinoma (G3, luminal B) of the right 
breast. Three-dimensional regions of interest (ROIs) were drawn over 
breast lesions on dynamic contrast-enhanced magnetic resonance 

(DCE-MR) (A), T2-weighted (B), diffusion-weighted (DW) (C), and 
positron emission tomography (PET) (D) images using a semi-auto-
mated method
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Clinical 18F‑FDG PET/MRI interpretation

DCE-MRI was assessed according to the fifth edition of 
the BI-RADS lexicon [31]. A BI-RADS category from 2 to 
5 was assigned to each lesion. BI-RADS scores were then 
dichotomized as follows: 2–3 = benign and 4–5 = malignant. 
Subsequently, ADC values were calculated for each lesion, 
as described above. An ADC value of 1.3 × 10−3 mm2/s was 
used as the diagnostic threshold for defining benignity and 
malignancy, as suggested by the European Society of Breast 
Imaging (EUSOBI) consensus statement on DW imaging 
[21]. Lesions showing ADC values equal to or greater than 
1.3 × 10−3 mm2/s were classified as benign, while lesions 
with ADC values lower than 1.3 × 10−3 mm2/s were classi-
fied as malignant. On PET, a lesion was classified as benign 
if it did not show 18F-FDG uptake higher than the above 
background activity; conversely, a lesion showing 18F-FDG 
uptake greater than the surrounding parenchyma was clas-
sified as malignant [32]. To achieve a final diagnosis, the 
following criteria were applied for the combined DCE-MRI, 
DWI, and PET evaluation:

•	 A lesion was classified as malignant if at least two among 
DCE-MRI, DWI, and PET or all of them were positive 
for malignancy.

•	 A lesion was classified as benign if at least two among 
DCE-MRI, DWI, and PET or all of them were negative 
for malignancy.

Statistical analysis

Intra- and interobserver reproducibility of quantitative 
parameter measurements was assessed using intraclass cor-
relation coefficient (ICC) analysis. Agreement was rated as 
follows: poor when ICC is less than 0.5, moderate when 
ranging from 0.5 to 0.75, good when ranging from 0.75 to 
0.90, and excellent when greater than 0.90 [33]. The Kol-
mogorov–Smirnov test was performed to assess whether 
quantitative parameters were distributed normally. The inde-
pendent t-test or Mann–Whitney U test was used to com-
pare quantitative parameters between benign and malignant 
breast lesions. Diagnostic accuracy, sensitivity, specificity, 
and positive and negative likelihood ratio of the radiologists 
and nuclear medicine physician’s performance in classify-
ing breast lesions were also calculated. Receiver operat-
ing characteristic (ROC) curves of the BI-RADS score as 
well as significant quantitative DWI, perfusion, and PET 
parameters for breast cancer diagnosis were also calculated. 
Differences in terms of performance between the different 
radiomics models as well as between the best performing 
radiomics model and clinical interpretation were assessed 
using McNemar’s test. A p value ≤ 0.05 was considered sta-
tistically significant. Statistical analysis was performed using 

SPSS, version 25.0, which was released in 2017 (Armonk, 
NY: IBM Corp) and MedCalc 18 (MedCalc software bvba).

Results

Patient population

Of the 120 included breast lesions, 101 (84%) were malig-
nant and 19 (16%) were benign. Histological features of 
included breast lesions are reported in Tables 1 and 2.

Breast carcinomas showed significantly higher maximum 
diameter (28.5 vs 10.68 mm, p = 0.035) and SUVmax (6.22 
vs 3.09, p = 0.003) as well as lower ADCmean (1.42 vs 
9.23 × 10−3 mm2/s, p < 0.001) and MTT (77.17 vs 118.90 s, 
p < 0.001) than benign breast lesions. Mean values of quan-
titative parameters in both benign and malignant breast 
lesions with corresponding significance levels are reported 
in Supplementary Material Table S1. ICC values of all 
quantitative parameters including intra- and interobserver 
reproducibility are shown in Supplementary Material Table 

Table 1   Histological features of included malignant breast lesions

Note: DCIS, ductal carcinoma in  situ; HER2, human epidermal 
growth factor receptor 2; IDC, invasive ductal carcinoma; ILC, inva-
sive lobular carcinoma

Histological diagnosis N %

Apocrine carcinoma 1 1
DCIS 3 3
IDC 79 78
ILC 7 7
IDC + ILC 3 3
Papillary carcinoma 2 2
Invasive tubular carcinoma 1 1
Lymphoma 1 1
Malignant phyllodes tumor 2 2
Mucinous carcinoma 1 1
Metaplastic carcinoma 1 1
Total 101 100
Tumor grade

  G1 7 7
  G2 35 36
  G3 56 57
  Total 98 100

Molecular subtype
  Luminal A 10 10
  Luminal B 51 52
  HER2 +  12 12
  Triple negative 25 26
  Total 98 100
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S2. Intra- and interobserver reproducibility of quantitative 
parameter measurement ranged from moderate to excellent.

Performance of radiomics models

A total of 101radiomic features were extracted in six classes 
(22 first order, 26 based on grey-level co-occurrence matri-
ces, 16 based on run length matrices, 16 based on size zone 
matrices, 16 based on neighborhood grey-level depend-
ence matrices, and five based on neighborhood grey tone 
difference matrices) from DCE, ADC, T2-weighted, and 
PET images, respectively. Eight radiomics models were 
developed to predict breast cancer diagnosis, based on dif-
ferent combinations of multiparametric 18F-FDG PET/MRI 
images. Radiomics models with corresponding selected 
radiomics features are reported in Table 3. Firstly, a radi-
omics model based on quantitative parameters alone was 
built. ADCmean of breast lesions, MTT, and SUVmax were 
selected by the LASSO regression and used by the SVM 
classifier, obtaining an area under the curve (AUC) of 0.981 
for correctly classifying breast lesions.

Thereafter, the accuracy of diagnostic models based 
on radiomics features extracted from individual DCE, 
T2-weighted, ADC, and PET images was explored. 
Among these models, the best performance in discrimi-
nating between benign and malignant breast lesions was 
obtained by an SVM classifier using features extracted 
from ADC images (AUC 0.937, 95% confidence interval 
(CI): 0.901–0.973). The model based on T2-weighted fea-
tures performed worse, with an AUC of 0.793 (95% CI: 
0.732–0.855). Based on these findings, two radiomics mod-
els were built combining (1) radiomics features extracted 
from ADC maps and DCE images, and (2) radiomics fea-
tures extracted from ADC, DCE, and PET images. Of these, 

the latter showed the best performance for breast cancer 
diagnosis (AUC 0.969, 95% CI: 0.947–0.990). Finally, an 
integrated model combining quantitative parameters and 
radiomics features extracted from DCE, PET images, and 
ADC maps was built. MTT and ADCmean of breast lesions 
and radiomics features extracted from ADC maps and PET 
images were selected by LASSO regression. This model 
obtained the highest accuracy in discriminating between 
benign and malignant breast lesions, with an AUC of 0.983 
(95% CI: 0.962–1.000). A summary of all radiomics models 
with corresponding accuracy metrics, including area under 
the receiving operating characteristic curve (AUROC), diag-
nostic accuracy, sensitivity, specificity, and positive and 
negative likelihood ratio is reported in Table 4.

Using McNemar’s test (Table 5), the performance of the 
integrated model combining quantitative parameters and 
radiomics features was higher but not significantly different 
from that of the other radiomics models (p > 0.069).

Performance of radiomics models compared 
to clinical 18F‑FDG PET/MRI interpretation

The distribution of BI-RADS descriptors, ADC values, and 
PET findings in the study population is reported in Supple-
mentary Material Table S3. Clinical interpretation achieved 
a diagnostic accuracy of 0.958 (95% CI: 0.905–0.986), sen-
sitivity and specificity of 100% (95% CI: 96–100%) and 
73.7% (95% CI: 49–91%), positive and negative likelihood 
ratio of 3.80 (95% CI: 1.79–8.06), and 0 in discriminating 
between benign and malignant breast lesions.

All radiomics models but the one based on T2-weighted 
radiomics features achieved greater AUCs than clinical 
interpretation of 18F-FDG PET/MRI. However, this dif-
ference was not significant (p = 0.508). ROC curves of 
BI-RADS scores along with significant quantitative DWI 
(ADCmean), perfusion (MTT) and PET (SUVmax) param-
eters for discriminating between benign and malignant breast 
lesions are illustrated in Supplementary Material Figure S1. 
Accuracy metrics of clinical interpretation, including all 
imaging modalities and the combined evaluation, as well as 
AI assessment, are summarized in Supplementary Material 
Table S4.

Discussion

At present, no studies have been published on simulta-
neous AI-enhanced 18F-FDG PET/MRI for breast cancer 
diagnosis. The aim of this study was to investigate whether 
an AI-based radiomics model combining quantitative 
simultaneously acquired 18F-FDG PET/MRI data ena-
bles accurate discrimination between benign and malig-
nant breast tumors. A model including both quantitative 

Table 2   Final diagnosis of included benign breast lesions

Note: FAH, fibroadenomatous hyperplasia; PASH, pseudoangioma-
tous stromal hyperplasia; Follow-up, clinical and instrumental fol-
low-up. *Classified as Breast Imaging-Reporting and Data System 
(BI-RADS) 2 at positron emission tomography/magnetic resonance 
imaging (PET/MRI) and confirmed as benign during the follow-up

Diagnosis N % Reference standard

Sclerosing adenosis 1 5 Histology
FAH 2 11 Histology
Fibroadenoma 6 31 Histology
Fibrocystic parenchyma 1 5 Histology
Epithelial duct proliferation 2 11 Histology
Mastitis 1 5 Histology
Papilloma 2 11 Histology
PASH 1 5 Histology
BI-RADS 2 findings* 3 16 Follow-up
Total 19 100
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parameters and radiomics features was shown to accu-
rately discriminate between benign and malignant breast 
lesions. Our results indicate that AI-enhanced functional 
and metabolic breast imaging had excellent performance 

and outperformed expert readers, thus having the poten-
tial to assist human readers in correctly classifying sus-
picious breast lesions and obviate unnecessary invasive 
breast procedures.

Table 3   Selected features/
quantitative parameters for each 
radiomics model

Note: ADCr, radiomics features extracted from ADC maps; ADCmean, apparent diffusion coefficient mean 
of breast lesions; DCE, radiomics features extracted from dynamic contrast-enhanced images; PET, radi-
omics features extracted from positron emission tomography images; T2-w, radiomics features extracted 
from T2-weighted images; MTT, mean transit time of breast lesions; SUV, standard uptake value of breast 
lesions; FO, first-order parameter; GLCM, grey-level co-occurrence matrix-based parameter; NGLDM, 
neighborhood grey-level dependence matrix-based parameter; NGTDM, neighborhood grey tone difference 
matrix-based parameter; RLM, run length matrix-based parameter; SZM, size zone matrix-based parameter; 
glv, grey-level variance; hgce, high grey-level count emphasis; lzlgle, large zone low grey-level emphasis; 
rln, run length non-uniformity; szlgle, small zone low grey-level emphasis; zln, zone size non-uniformity; 
zp, zone percentage

Radiomics model Selected features/quantitative parameters

ADCr ADC—minimum (FO)
Coefficient of dispersion (FO)
zln (SZM)
Difference variance (GLCM)
Inverse difference moment (GLCM)

DCE Auto correlation (FO)
Strength (NGTDM)
Busyness (NGTDM)
Standard deviation (FO)
szlgle (SZM)

PET Inverse difference moment normalized (GLCM)
glv (NGLDM)
First information correlation (GLCM)
lzlgle (SZM)
Skewness (FO)

T2-w glv (SZM)
Skewness (FO)
glv (NGLDM)
Kurtosis (FO)
Correlation (GLCM)

ADCr, DCE Minimum (FO ADC)
Strength (NGTDM DCE)
zp (SZM ADC)
rln (RLM ADC)
Coefficient of dispersion (FO ADC)

ADCr, DCE, PET Minimum (FO ADC)
lzlgle (SZM PET)
Difference variance (GLCM ADC)
Auto correlation (GLCM DCE)
hgce (NGLDM PET)

ADCmean, MTT, SUVmax ADCmean
MTT
SUVmax

ADCr, DCE, PET + ADCmean, MTT, SUVmax lzlgle (SZM PET)
Minimum (FO ADC)
zln (SZM PET)
MTT
ADCt
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While DCE-MRI is undisputedly the most sensitive test 
for breast cancer detection, with a pooled sensitivity of 99% 
[34], there is still room for improvement in its diagnostic 
accuracy due to factors including overlap in imaging features 
between benign and malignant breast tumors, interpretation-
influencing physiological factors such as background paren-
chymal enhancement, and last but not least human detection 
or interpretation error [35].

To compensate for these limitations, additional func-
tional and metabolic imaging techniques such as DWI, 
perfusion imaging, and PET have been developed that pro-
vide insights into tumor biology and thus improve diagnos-
tic accuracy. Several studies have shown the incremental 

diagnostic value of these individual parameters [36, 37]; 
particularly, their combined application as multiparametric 
MRI or PET/MRI has been shown to improve diagnostic 
accuracy for breast cancer detection and characterization 
[11, 38].

Our findings also indicate that different functional and 
metabolic imaging techniques enable the non-invasive 
simultaneous depiction of oncogenic processes such as 
induction of neoangiogenesis, metabolic reprogramming, 
and sustained proliferation. In our study, the clinical inter-
pretation of 18F-FDG PET/MRI showed good diagnostic 
accuracy with an AUC of 0.868 for breast cancer diagnosis, 
in line with previous studies [11, 38, 39].

Table 4   Summary of developed radiomics models with corresponding accuracy metrics

Note: AUROC, area under the receiver operating characteristic curve; ADCr, radiomics features extracted from ADC maps; ADCmean, appar-
ent diffusion coefficient of breast lesion; DCE, radiomics features extracted from dynamic contrast-enhanced images; PET, radiomics features 
extracted from positron emission tomography images; T2-w, radiomics features extracted from T2-weighted images; MTT, mean transit time; 
SUV, standard uptake value. Data in brackets refer to 95% confidence intervals

Images Sensitivity Specificity Positive likelihood ratio Negative likeli-
hood ratio

Accuracy AUROC

ADCr 90.7
(83.8–93.8)

87.4
(79.4–93.1)

7.20
(4.29–11.92)

0.11
(0.05–0.19)

89.0
(84.1–93.1)

0.937
(0.901–0.973)

DCE 77.5
(67.8–85.0)

89.5
(81.7–94.6)

7.38
(4.33–14.33)

0.25
(0.18–0.36)

83.5
(77.5–88.2)

0.889
(0.841–0.937)

PET 79.4
(73.3–89.1)

83.9
(74.9–90.1)

4.93
(3.18–8.01)

0.25
(0.17–0.36)

81.7
(77.0–87.8)

0.898
(0.844–0.941)

T2-w 67.7
(57.3–76.3)

77.2
(68.4–85.3)

2.97
(2.03–4.39)

0.42
(0.31–0.57)

72.4
(65.9–78.6)

0.793
(0.732–0.855)

ADCr DCE 88.9
(81.4–94.4)

83.1
(74.9–90.1)

5.26
(3.45–8.30)

0.13
(0.07–0.23)

86.0
(80.8–90.7)

0.934
(0.901–0.968)

ADCr DCE PET 94.9
(88.8–98.4)

83.2
(74.9–90.1)

5.65
(3.69–8.82)

0.06
(0.03–0.14)

89.0
(84.1–93.1)

0.969
(0.947–0.990)

ADCmean MTT SUVmax 94.5
(87.5–97.8)

91.8
(85.3–96.6)

11.52
(6.22–23.61)

0.06
(0.02–0.13)

93.2
(88.8–96.2)

0.981
(0.966–0.996)

ADCr DCE PET + ADCmean 
MTT SUVmax

95.3
(88.8–98.4)

94.3
(87.6–97.8)

16.72
(7.43–35.16)

0.05
(0.02–0.12)

94.8
(90.5–97.3)

0.983
(0.962–1.000)

Table 5   Results of McNemar’s test for the comparison of area under the curve (AUC) values of the developed radiomics models

Note: DCE, dynamic contrast enhanced; ADC, apparent diffusion coefficient; PET, positron emission tomography; ADCr, radiomics features 
extracted from ADC maps; MTT, mean transit time; SUV, standardized uptake value

Radiomics model ADC DCE PET T2 ADCr/DCE ADCr/DCE/PET ADCmean/
MTT/SUV-
max

DCE 0.178
PET 0.068 0.720
T2-w  < 0.001 0.020 0.062
ADCr/DCE 0.480 0.609 0.321 0.003
ADCr/DCE/PET 1.000 0.178 0.068  < 0.001 0.480
ADCmean/MTT/SUVmax 0.243 0.009 0.002  < 0.001 0.045 0.243
ADCr DCE PET + ADCmean 

MTT SUVmax
0.082 0.002  < 0.001  < 0.001 0.010 0.082 0.689
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To fully leverage the wealth of information provided by 
simultaneous multiparametric 18F-FDG PET/MRI, we aimed 
to develop and validate a diagnostic AI model using quan-
titative perfusion, diffusion, and metabolic data as well as 
radiomics features to non-invasively differentiate benign 
from malignant breast lesions.

The AI model with the best diagnostic accuracy was 
based both on radiomics features extracted from ADC and 
PET images as well as the quantitative parameters DCE 
(MTT) and DWI (ADCmean) of breast lesions, achieving 
an accuracy, sensitivity, and specificity of 94.8%, 95.3, and 
94.3%, respectively. This indicates that in order to enable the 
most accurate breast cancer detection information on tumor 
cellularity, metabolism and permeability are desirable.

It is worth noting that the model based on quantitative 
parameters only (i.e., ADC, MTT, and SUVmax) also 
showed a good performance (accuracy of 93.2%).

Although the multiparametric 18F-FDG PET/MRI AI-
based radiomics model performed best, its performance was 
not statistically different from the clinical interpretation by 
expert readers. It has to be noted, however, that while clini-
cal interpretation achieved similar sensitivities (95.3% vs 
100%), the multiparametric 18F-FDG PET/MRI AI-based 
radiomics model achieved a higher specificity (94.3% vs 
73.7%), highlighting the potential of such a model to reduce 
false-positive findings and obviate unnecessary breast biop-
sies in benign breast tumors [36].

Several studies have been published on the use of AI 
applied to MRI for breast cancer diagnosis, mainly aiming 
at increasing its relatively low specificity compared to its 
high sensitivity, with accuracy values ranging from 72.8 
to 92.0% [40–44]. Similar to our work, Zhang et al. also 
explored the possibility to improve the accuracy of the ML 
classifier combining radiomics features extracted from both 
morphological and functional DCE and diffusion kurtosis 
(DK) images of 207 histologically proven breast lesions. 
They found that the model based on radiomics features from 
T2-weighted, DKI, and quantitative DCE pharmacokinetic 
parameter maps had the best discriminatory ability for 
benign and malignant breast lesions (AUC of 0.921) [40]. In 
another study, radiomics coupled with ML analysis applied 
to DCE-MRI, including both radiomics features and clinical 
data, also proved to be accurate in the characterization of 
subcentimeter breast lesions in 96 high-risk BRCA muta-
tion carriers, with a diagnostic accuracy of 81.5%, which 
was significantly higher than qualitative morphological 
assessment with BI-RADS classification (AUC of 53.4%) 
[44]. The usefulness of a multiparametric MRI approach 
was explored in a recent study by Tsarouchi et al. [45]. DCE 
and DW images of 85 breast lesions were analyzed for the 
extraction of first-order and texture features for the assess-
ment of image heterogeneity and breast cancer diagnosis. 
Random forest resulted in the best performing algorithm 

(accuracy of 91.67%), combining both DCE-MRI and DWI 
parameters in a multiparametric assessment [45].

Regarding PET imaging, the role of this functional tech-
nique has been explored in breast cancer mainly for prognos-
tic/therapeutic purposes, particularly in the early prediction 
of the response to neoadjuvant chemotherapy [46–48]. In a 
recently published study, the usefulness of radiomics and 
ML applied to PET/CT to differentiate breast carcinoma 
from lymphoma was investigated in a small number of 
lesions (19 breast lymphoma and 25 breast cancer lesions) 
[49]. Different predictive models were built using combina-
tions of clinical data, quantitative parameters (SUV), radi-
omics features (first- and second-order parameters extracted 
from both PET and CT images), and CT images. Models 
based on clinical data, SUV, and PET radiomics features 
as well as on clinical data and CT radiomics features were 
those that were most accurate (AUC of 0.806 and 0.759 in 
the validation cohort, respectively) [49]. In an experimen-
tal study by Vogl et al. conducted on 34 breast lesions, a 
computer-aided segmentation and diagnosis (CAD) system 
was developed for automated lesion segmentation and clas-
sification (benign vs malignant) using separately acquired 
MRI and 18F-FDG PET/CT images [50]. The CAD system 
achieved a Dice similarity coefficient of 0.665 for lesion 
segmentation and AUC of 0.978 for breast cancer diagnosis. 
While PET and DWI features improved DCE-MRI segmen-
tation performance, such an improvement was not observed 
for lesion characterization [50].

Limitations of our study have to be acknowledged. Firstly, 
our study is limited by the small sample size and the unbal-
anced distribution of benign and malignant breast lesions, 
with relevant implications for specificity. To overcome the 
limitation of the relatively small sample size, especially in 
regard to benign lesions, we opted to perform internal five-
fold cross-validation which has been proven to be robust 
in such cases [51]. The unbalanced distribution of benign 
and malignant lesions is related to the fact that this study is 
conducted at a single tertiary care cancer center and to the 
inclusion criterion of only patients with BI-RADS 0, 4/5 
lesions which provides the clinical indication for performing 
a breast 18F-FDG PET/MRI. We addressed this limitation by 
using a well-established adaptive synthetic sampling to bal-
ance the two classes. Another limitation is the lack of exter-
nal validation of the proposed AI model, which may limit its 
generalizability. To date, there is only a limited number of 
centers worldwide that have clinical simultaneous PET/MRI 
scanners for breast imaging. Collaboration with a different 
institution to validate our models is in development. Further-
more, two dynamic sequences were acquired before and after 
an update to the clinical MRI protocol. However, acquisition 
parameters were similar before and after the update, and 
AI techniques are meant to be applied to images acquired 
with different acquisition protocols; indeed, this issue did 
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not affect the level of accuracy of the ML classifier. Finally, 
several cases had to be excluded from the analysis as at least 
one among DCE-MRI, DWI, or PET images was not suitable 
for the extraction of quantitative parameters or for radiomics 
analysis, in order not to impair the reliability of our data. 
Despite this stringent exclusion criterion, and also consid-
ering the limited access to such an advanced imaging tech-
nique, an adequate number of breast lesions was included in 
the final study sample which allowed the achievement of a 
good performance in the AI discrimination task.

In conclusion, a simultaneous multiparametric 18F-FDG 
PET/MRI AI-based radiomics model was shown to accu-
rately discriminate between benign and malignant breast 
lesions. Our initial data indicate that AI-enhanced functional 
and metabolic breast imaging has the potential to assist 
human readers in correctly classifying suspicious breast 
lesions and therefore obviate unnecessary invasive breast 
procedures. Larger multi-center studies are being planned to 
validate the multiparametric 18F-FDG PET/MRI AI-based 
radiomics model.
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