
 Open access Journal Article DOI:10.1109/TIV.2020.2980758

AI-IMU Dead-Reckoning — Source link

Martin Brossard, Axel Barrau, Silvere Bonnabel

Institutions: PSL Research University

Published on: 13 Mar 2020

Topics: Inertial measurement unit, Odometry, Inertial navigation system, Dead reckoning and Kalman filter

Related papers:

 IONet: Learning to Cure the Curse of Drift in Inertial Odometry

 RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New Methods

 RIDI: Robust IMU Double Integration

 TLIO: Tight Learned Inertial Odometry

 Fusion of sensor signals for navigation on an unmanned land vehicle prototype

Share this paper:

View more about this paper here: https://typeset.io/papers/ai-imu-dead-reckoning-
4qcvbtnmm5

https://typeset.io/
https://www.doi.org/10.1109/TIV.2020.2980758
https://typeset.io/papers/ai-imu-dead-reckoning-4qcvbtnmm5
https://typeset.io/authors/martin-brossard-3d7jhgb6f3
https://typeset.io/authors/axel-barrau-2pde0uvkbp
https://typeset.io/authors/silvere-bonnabel-3lvdhyozx4
https://typeset.io/institutions/psl-research-university-rkwcx9tr
https://typeset.io/topics/inertial-measurement-unit-1wydma7s
https://typeset.io/topics/odometry-3laoxdgb
https://typeset.io/topics/inertial-navigation-system-rwd1zr9r
https://typeset.io/topics/dead-reckoning-22n3tcjr
https://typeset.io/topics/kalman-filter-273vc7a7
https://typeset.io/papers/ionet-learning-to-cure-the-curse-of-drift-in-inertial-2ofxryodzp
https://typeset.io/papers/ronin-robust-neural-inertial-navigation-in-the-wild-6fac2v2ybp
https://typeset.io/papers/ridi-robust-imu-double-integration-bek5wy9s2q
https://typeset.io/papers/tlio-tight-learned-inertial-odometry-57r5alpgbp
https://typeset.io/papers/fusion-of-sensor-signals-for-navigation-on-an-unmanned-land-21nrwzaehy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/ai-imu-dead-reckoning-4qcvbtnmm5
https://twitter.com/intent/tweet?text=AI-IMU%20Dead-Reckoning&url=https://typeset.io/papers/ai-imu-dead-reckoning-4qcvbtnmm5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/ai-imu-dead-reckoning-4qcvbtnmm5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/ai-imu-dead-reckoning-4qcvbtnmm5
https://typeset.io/papers/ai-imu-dead-reckoning-4qcvbtnmm5

HAL Id: hal-02097099
https://hal.archives-ouvertes.fr/hal-02097099v2

Submitted on 20 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AI-IMU Dead-Reckoning
Martin Brossard, Axel Barrau, Silvère Bonnabel

To cite this version:
Martin Brossard, Axel Barrau, Silvère Bonnabel. AI-IMU Dead-Reckoning. IEEE Transactions on In-
telligent Vehicles, Institute of Electrical and Electronics Engineers, 2020, 10.1109/TIV.2020.2980758.
hal-02097099v2

https://hal.archives-ouvertes.fr/hal-02097099v2
https://hal.archives-ouvertes.fr

1

AI-IMU Dead-Reckoning

Martin BROSSARD∗ , Axel BARRAU† and Silvère BONNABEL∗

∗MINES ParisTech, PSL Research University, Centre for Robotics, 60 Bd Saint-Michel, 75006 Paris, France
†Safran Tech, Groupe Safran, Rue des Jeunes Bois-Châteaufort, 78772, Magny Les Hameaux Cedex, France

Abstract—In this paper we propose a novel accurate method
for dead-reckoning of wheeled vehicles based only on an Inertial
Measurement Unit (IMU). In the context of intelligent vehicles,
robust and accurate dead-reckoning based on the IMU may prove
useful to correlate feeds from imaging sensors, to safely navigate
through obstructions, or for safe emergency stops in the extreme
case of exteroceptive sensors failure. The key components of
the method are the Kalman filter and the use of deep neural
networks to dynamically adapt the noise parameters of the filter.
The method is tested on the KITTI odometry dataset, and our
dead-reckoning inertial method based only on the IMU accurately
estimates 3D position, velocity, orientation of the vehicle and
self-calibrates the IMU biases. We achieve on average a 1.10%
translational error and the algorithm competes with top-ranked
methods which, by contrast, use LiDAR or stereo vision. We
make our implementation open-source at:

https://github.com/mbrossar/ai-imu-dr

Index Terms—localization, deep learning, invariant extended
Kalman filter, KITTI dataset, inertial navigation, inertial mea-
surement unit

I. INTRODUCTION

INTELLIGENT vehicles need to know where they are

located in the environment, and how they are moving

through it. An accurate estimate of vehicle dynamics allows

validating information from imaging sensors such as lasers, ul-

trasonic systems, and video cameras, correlating the feeds, and

also ensuring safe motion throughout whatever may be seen

along the road [1]. Moreover, in the extreme case where an

emergency stop must be performed owing to severe occlusions,

lack of texture, or more generally imaging system failure, the

vehicle must be able to assess accurately its dynamical motion.

For all those reasons, the Inertial Measurement Unit (IMU)

appears as a key component of intelligent vehicles [2]. Note

that Global Navigation Satellite System (GNSS) allows for

global position estimation but it suffers from phase tracking

loss in densely built-up areas or through tunnels, is sensitive to

jamming, and may not be used to provide continuous accurate

and robust localization information, as exemplified by a GPS

outage in the well known KITTI dataset [3], see Figure 1.

Kalman filters are routinely used to integrate the outputs

of IMUs. When the IMU is mounted on a car, it is common

practice to make the Kalman filter incorporate side information

about the specificity of wheeled vehicle dynamics, such as

approximately null lateral and upward velocity assumption in

the form of pseudo-measurements. However, the degree of

confidence the filter should have in this side information is

encoded in a covariance noise parameter which is difficult

to set manually, and moreover which should dynamically

0 200 400 600 800

−400

−200

0

200

400

start

GPS outage

end

x (m)

y
(m

)

benchmark IMU proposed

Fig. 1. Trajectory results on seq. 08 (drive #28, 2011/09/30) [3] of the KITTI
dataset. The proposed method (green) accurately follows the benchmark
trajectory for the entire sequence (4.2 km, 9min), whereas the pure IMU
integration (cyan) quickly diverges. Both methods use only IMU signals and
are initialized with the benchmark pose and velocity. We see during the GPS
outage that occurs in this sequence, our solution keeps estimating accurately
the trajectory.

adapt to the motion, e.g., lateral slip is larger in bends than

in straight lines. Using the recent tools from the field of

Artificial Intelligence (AI), namely deep neural networks, we

propose a method to automatically learn those parameters and

their dynamic adaptation for IMU only dead-reckoning. Our

contributions, and the paper’s organization, are as follows:

• we introduce a state-space model for wheeled vehicles as

well as simple assumptions about the motion of the car

in Section II;

• we implement a state-of-the-art Kalman filter [4,5] that

exploits the kinematic assumptions and combines them

with the IMU outputs in a statistical way in Section III-C.

It yields accurate estimates of position, orientation and

velocity of the car, as well as IMU biases, along with

associated uncertainty (covariance);

• we exploit deep learning for dynamic adaptation of co-

https://orcid.org/0000-0002-8320-6121
https://orcid.org/0000-0002-8957-8292
https://orcid.org/0000-0002-6001-7766
https://github.com/mbrossar/ai-imu-dr

2

variance noise parameters of the Kalman filter in Section

IV-A. This module greatly improves filter’s robustness

and accuracy, see Section V-D;

• we demonstrate the performances of the approach on the

KITTI dataset [3] in Section V. Our approach solely

based on the IMU produces accurate estimates and com-

petes with top-ranked LiDAR and stereo camera methods

[6,7]; and we do not know of IMU based dead-reckoning

methods capable to compete with such results;

• the approach is not restricted to inertial only dead-

reckoning of wheeled vehicles. Thanks to the versatility

of the Kalman filter, it can easily be applied for railway

vehicles [8], coupled with GNSS, the backbone for IMU

self-calibration, or for using IMU as a speedometer in

path-reconstruction and map-matching methods [9]–[12].

A. Relation to Previous Literature

Autonomous vehicle must robustly self-localize with their

embarked sensor suite which generally consists of odometers,

IMUs, radars or LiDARs, and cameras [1,2,12]. Simultaneous

Localization And Mapping based on inertial sensors, cameras,

and/or LiDARs have enabled robust real-time localization sys-

tems, see e.g., [6,7]. Although these highly accurate solutions

based on those sensors have recently emerged, they may drift

when the imaging system encounters troubles.

As concerns wheeled vehicles, taking into account vehicle

constraints and odometer measurements are known to increase

the robustness of localization systems [13]–[16]. Although

quite successful, such systems continuously process a large

amount of data which is computationally demanding and

energy consuming. Moreover, an autonomous vehicle should

run in parallel its own robust IMU-based localization algorithm

to perform maneuvers such as emergency stops in case of other

sensors failures, or as an aid for correlation and interpretation

of image feeds [2].

High precision aerial or military inertial navigation systems

achieve very small localization errors but are too costly for

consumer vehicles. By contrast, low and medium-cost IMUs

suffer from errors such as scale factor, axis misalignment and

random walk noise, resulting in rapid localization drift [17].

This makes the IMU-based positioning unsuitable, even during

short periods.

Inertial navigation systems have long leveraged virtual and

pseudo-measurements from IMU signals, e.g. the widespread

Zero velocity UPdaTe (ZUPT) [18]–[20], as covariance adap-

tation [21]. In parallel, deep learning and more generally ma-

chine learning are gaining much interest for inertial navigation

[22,23]. In [22] velocity is estimated using support vector

regression whereas [23] use recurrent neural networks for end-

to-end inertial navigation. Those methods are promising but

restricted to pedestrian dead-reckoning since they generally

consider slow horizontal planar motion, and must infer ve-

locity directly from a small sequence of IMU measurements,

whereas we can afford to use larger sequences. A more

general end-to-end learning approach is [24], which trains

deep networks end-to-end in a Kalman filter. Albeit promising,

the method obtains large translational error > 30% in their

stereo odometry experiment. Finally, [25] uses deep learning

for estimating covariance of a local odometry algorithm that

is fed into a global optimization procedure, and in [26] we

used Gaussian processes to learn a wheel encoders error. Our

conference paper [20] contains preliminary ideas, albeit not

concerned at all with covariance adaptation: a neural network

essentially tries to detect when to perform ZUPT.

Dynamic adaptation of noise parameters in the Kalman filter

is standard in the tracking literature [27], however adaptation

rules are application dependent and are generally the result

of manual “tweaking” by engineers. Finally, in [28] the

authors propose to use classical machine learning techniques

to to learn static noise parameters (without adaptation) of the

Kalman filter, and apply it to the problem of IMU-GNSS

fusion.

II. IMU AND PROBLEM MODELLING

An inertial navigation system uses accelerometers and gyros

provided by the IMU to track the orientation Rn, velocity

vn ∈ R
3 and position pn ∈ R

3 of a moving platform relative

to a starting configuration (R0,v0,p0). The orientation is

encoded in a rotation matrix Rn ∈ SO(3) whose columns

are the axes of a frame attached to the vehicle.

A. IMU Modelling

The IMU provides noisy and biased measurements of the

instantaneous angular velocity vector ωn and specific acceler-

ation an as follows [17]

ωIMU

n = ωn + bω
n +wω

n , (1)

aIMU

n = an + ba
n +wa

n, (2)

where bω
n , ba

n are quasi-constant biases and wω
n , wa

n are zero-

mean Gaussian noises. The biases follow a random walk

bω
n+1 = bω

n +wbω

n , (3)

ba
n+1 = ba

n +wba

n , (4)

where wbω

n , wba

n are zero-mean Gaussian noises.

The kinematic model is governed by the following equations

RIMU

n+1 = RIMU

n exp ((ωndt)×) , (5)

vIMU

n+1 = vIMU

n + (RIMU

n an + g) dt, (6)

pIMU

n+1 = pIMU

n + vIMU

n dt, (7)

between two discrete time instants sampling at dt, where we

let the IMU velocity be vIMU
n ∈ R

3 and its position pIMU
n ∈ R

3

in the world frame. RIMU
n ∈ SO(3) is the 3×3 rotation matrix

that represents the IMU orientation, i.e. that maps the IMU

frame to the world frame, see Figure 2. Finally (y)× denotes

the skew symmetric matrix associated with cross product with

y ∈ R
3. The true angular velocity ωn ∈ R

3 and the true

specific acceleration an ∈ R
3 are the inputs of the system (5)-

(7). In our application scenarios, the effects of earth rotation

and Coriolis acceleration are ignored, Earth is considered flat,

and the gravity vector g ∈ R
3 is a known constant.

All sources of error displayed in (1) and (2) are harmful

since a simple implementation of (5)-(7) leads to a triple

integration of raw data, which is much more harmful that the

3

w

c

◦ i

◦

RIMU
n ,pIMU

n

vc

n

Rc

n,p
c

n

vIMU
n

Fig. 2. The coordinate systems that are used in the paper. The IMU pose
(RIMU

n
,pIMU

n
) maps vectors expressed in the IMU frame i (red) to the world

frame w (black). The IMU frame is attached to the vehicle and misaligned with
the car frame c (blue). The pose between the car and inertial frames (Rc

n
,pc

n
)

is unknown. IMU velocity vIMU
n

and car velocity vc
n

are respectively expressed
in the world frame and in the car frame.

unique integration of differential wheel speeds [12]. Indeed, a

bias of order ǫ has an impact of order ǫt2/2 on the position

after t seconds, leading to potentially huge drift.

B. Problem Modelling

We distinguish between three different frames, see Figure 2:

i) the static world frame, w; ii) the IMU frame, i, where (1)-

(2) are measured; and iii) the car frame, c. The car frame is an

ideal frame attached to the car, that will be estimated online

and plays a key role in our approach. Its orientation w.r.t. i is

denoted Rc

n ∈ SO(3) and its origin denoted pc

n ∈ R
3 is the

car to IMU level arm. In the rest of the paper, we tackle the

following problem:

IMU Dead-Reckoning Problem. Given an initial known

configuration (RIMU
0 ,vIMU

0 ,pIMU
0), perform in real-time IMU

dead-reckoning, i.e. estimate the IMU and car variables

xn := (RIMU

n , vIMU

n , pIMU

n , bω
n , ba

n, Rc

n, pc

n) (8)

using only the inertial measurements ωIMU
n and aIMU

n .

III. KALMAN FILTERING WITH PSEUDO-MEASUREMENTS

The Extended Kalman Filter (EKF) was first implemented

in the Apollo program to localize the space capsule, and is

now pervasively used in the localization industry, the radar

industry, and robotics. It starts from a dynamical discrete-time

non-linear law of the form

xn+1 = f(xn, un) +wn (9)

where xn denotes the state to be estimated, un is an input, and

wn is the process noise which is assumed Gaussian with zero

mean and covariance matrix Qn. Assume side information

is in the form of loose equality constraints h(xn) ≈ 0

is available. It is then customary to generate a fictitious

observation from the constraint function:

yn = h(xn) + nn, (10)

and to feed the filter with the information that yn = 0 (pseudo-

measurement) as first advocated by [29], see also [13,30] for

application to visual inertial localization and general consid-

erations. The noise is assumed to be a centered Gaussian

nn ∼ N (0,Nn) where the covariance matrix Nn is set by

the user and reflects the degree of validity of the information:

the larger Nn the less confidence is put in the information.

Starting from an initial Gaussian belief about the state,

x0 ∼ N (x̂0,P0) where x̂0 represents the initial estimate and

the covariance matrix P0 the uncertainty associated to it, the

EKF alternates between two steps. At the propagation step, the

estimate x̂n is propagated through model (9) with noise turned

off, wn = 0, and the covariance matrix is updated through

Pn+1 = FnPnF
T
n +GnQnG

T
n , (11)

where Fn, Gn are Jacobian matrices of f(·) with respect to xn

and un. At the update step, pseudo-measurement is taken into

account, and Kalman equations allow to update the estimate

x̂n+1 and its covariance matrix Pn+1 accordingly.

To implement an EKF, the designer needs to determine the

functions f(·) and h(·), and the associated noise matrices Qn

and Nn. In this paper, noise parameters Qn and Nn will be

wholly learned by a neural network.

A. Defining the Dynamical Model f(·)

We now need to assess the evolution of state variables (8).

The evolution of RIMU
n , pIMU

n , vIMU
n , bω

n and ba
n is already given

by the standard equations (3)-(7). The additional variables

Rc

n and pc

n represent the car frame with respect to the IMU.

This car frame is rigidly attached to the car and encodes an

unknown fictitious point where the pseudo-measurements of

Section III-B are most advantageously made. As IMU is also

rigidly attached to the car, and Rc

n, pc

n represent misalignment

between IMU and car frame, they are approximately constant

Rc

n+1 = Rc

n exp((w
Rc

n)×), (12)

pc

n+1 = pc

n +wpc

n . (13)

where we let wRc

n , wpc

n be centered Gaussian noises with small

covariance matrices σRc

I, σpc

I that will be learned during

training. Noises wRc

n and wpc

n encode possible small variations

through time of level arm due to the lack of rigidity stemming

from dampers and shock absorbers.

B. Defining the Pseudo-Measurements h(·)

Consider the different frames depicted on Figure 2. The

velocity of the origin point of the car frame, expressed in the

car frame, writes

vc

n =

vforn

vlatn

vupn

 = RcT
n RIMUT

n vIMU

n + (ωn)×p
c

n, (14)

from basic screw theory, where pc

n ∈ R
3 is the car to IMU

level arm. In the car frame, we consider that the car lateral

and vertical velocities are roughly null, that is, we generate

two scalar pseudo observations of the form (10) that is,

yn =

[

ylatn

yupn

]

=

[

hlat(xn) + nlatn

hup(xn) + nupn

]

=

[

vlatn

vupn

]

+ nn, (15)

4

where the noises n=

[

nlatn , nupn
]T

are assumed centered and

Gaussian with covariance matrix Nn ∈ R
2×2. The filter is

then fed with the pseudo-measurement that ylatn = yupn = 0.

Assumptions that vlatn and vupn are roughly null are common

for cars moving forward on human made roads or wheeled

robots moving indoor. Treating them as loose constraints, i.e.,

allowing the uncertainty encoded in Nn to be non strictly null,

leads to much better estimates than treating them as strictly

null [13].

It should be duly noted the vertical velocity vupn is expressed

in the car frame, and thus the assumption it is roughly null

generally holds for a car moving on a road even if the motion

is 3D. It is quite different from assuming null vertical velocity

in the world frame, which then boils down to planar horizontal

motion.

The main point of the present work is that the validity of

the null lateral and vertical velocity assumptions widely vary

depending on what maneuver is being performed: for instance,

vlatn is much larger in turns than in straight lines. The role

of the noise parameter adapter of Section IV-A, based on AI

techniques, will be to dynamically assess the parameter Nn

that reflects confidence in the assumptions, as a function of

past and present IMU measurements.

C. The Invariant Extended Kalman Filter (IEKF)

Propagation
ωIMU

n

aIMU
n

Nn+1

Update
x̂n+1,

Pn+1

Invariant Extended Kalman Filter

Fig. 3. Structure of the IEKF. The filter uses the noise parameter Nn+1 of
pseudo-measurements (15) to yield a real time estimate of the state x̂n+1

along with covariance Pn+1.

For inertial navigation, we advocate the use of a recent

EKF variant, namely the Invariant Extended Kalman Filter

(IEKF), see [4,5], that has recently given raise to a commercial

aeronautics product [31] and to various successes in the field of

visual inertial odometry [32]–[34]. We thus opt for an IEKF

to perform the fusion between the IMU measurements (1)-

(2) and (15) treated as pseudo-measurements. Its architecture,

which is identical to the conventional EKF’s, is recapped in

Figure 3.

However, understanding in detail the IEKF [4] requires

some background in Lie group geometry. The interested reader

is referred to the Appendix where the exact equations are

provided.

IV. PROPOSED AI-IMU DEAD-RECKONING

This section describes our system for recovering all the

variables of interest from IMU signals only. Figure 4 illustrates

Invariant Extended

Kalman Filter

ωIMU
n

aIMU
n

x̂n+1,

Pn+1

AI-based Noise

Parameter Adapter

proposed IMU dead-reckoning system

Nn+1

Fig. 4. Structure of the proposed system for inertial dead-reckoning. The
measurement noise adapter feeds the filter with measurement covariance from
raw IMU signals only.

the approach which consists of two main blocks summarized

as follows:

• the filter integrates the inertial measurements (1)-(2) with

dynamical model f(·) given by (3)-(7) and (12)-(13),

and exploits (15) as measurements h(·) with covariance

matrix Nn to refine its estimates;

• the noise parameter adapter determines in real-time the

most suitable covariance noise matrix Nn. This deep

learning based adapter converts directly raw IMU signals

(1)-(2) into covariance matrices Nn without requiring

knowledge of any state estimate nor any other quantity.

The amplitude of process noise parameters Qn are considered

fixed by the algorithm, and are learned during training.

Note that the adapter computes covariances meant to im-

prove localization accuracy, and thus the computed values

may broadly differ from the actual statistical covariance of

yn (15), see Section V-D for more details. In this respect, our

approach is related to [24] but the considered problem is more

challenging: our state-space is of dimension 21 whereas [24]

has a state-space of dimension only 3. Moreover, we compare

our results in the sequel to state-of-the-art methods based on

stereo cameras and LiDARs, and we show we may achieve

similar results based on the moderately precise IMU only.

A. AI-based Measurement Noise Parameter Adapter

The measurement noise parameter adapter computes at each

instant n the covariance Nn+1 used in the filter update, see

Figure 3. The base core of the adapter is a Convolutional

Neural Network (CNN) [35]. The networks takes as input a

window of N inertial measurements and computes

Nn+1 = CNN
(

{ωIMU

i , aIMU

i }
n

i=n−N

)

. (16)

Our motivations for the above simple CNN-like architecture

are threefold:

i) avoiding over-fitting by using a relatively small number of

parameters in the network and also by making its outputs

independent of state estimates;

ii) obtaining an interpretable adapter from which one can

infer general and safe rules using reverse engineering,

5

e.g. to which extent must one inflate the covariance during

turns, for e.g., generalization to all sorts of wheeled and

commercial vehicles, see Section V-D;

iii) letting the network be trainable. Indeed, as reported in

[24], training is quite difficult and slow. Setting the

adapter with a recurrent architecture [35] would make

the training even much harder.

The complete architecture of the adapter consists of a bunch

of CNN layers followed by a full layer outputting a vector

zn =
[

zlatn , zupn
]T

∈ R
2. The covariance Nn+1 ∈ R

2×2 is

then computed as

Nn+1 = diag
(

σ2
lat10

β tanh(zlat
n

), σ2
up10

β tanh(zup
n

)
)

, (17)

with β ∈ R>0, and where σlat and σup correspond to our

initial guess for the noise parameters. The network thus may

inflate covariance up to a factor 10β and squeeze it up to a

factor 10−β with respect to its original values. Additionally,

as long as the network is disabled or barely reactive (e.g.

when starting training), we get zn ≈ 0 and recover the initial

covariance diag (σlat, σup)
2
.

Regarding process noise parameter Qn, we choose to fix it

to a value Q and leave its dynamic adaptation for future work.

However its entries are optimized during training, see Section

IV-C.

B. Implementation Details

We provide in this section the setting and the implementa-

tion details of our method. We implement the full approach

in Python with the PyTorch1 library for the noise parameter

adapter part. We set as initial values before training

P0 = diag
(

σR
0 I2, 0, σ

v
0 I2,04, σ

bω

0 I, σba

0 I, σRc

0 I, σpc

0 I
)2

,

(18)

Q = diag (σωI, σaI, σbωI, σbaI, σRcI, σpcI)
2
, (19)

Nn = diag (σlat, σup)
2
, (20)

where I = I3, σR
0 = 10−3 rad, σv

0 = 0.3m/s, σbω

0 =
10−4 rad/s, σba

0 = 3.10−2 m/s2, σRc

0 = 3.10−3 rad,

σpc

0 = 10−1 m in the initial error covariance P0, σω =
1.4.10−2 rad/s, σa = 3.10−2 m/s2, σbω = 10−4 rad/s,
σba = 10−3 m/s2, σRc = 10−4 rad, σpc = 10−4 m for the

noise propagation covariance matrix Q, σlat = 1m/s, and

σup = 3m/s for the measurement covariance matrix. The zero

values in the diagonal of P0 in (18) corresponds to a perfect

prior of the initial yaw, position and zero vertical speed.

The adapter is a 1D temporal convolutional neural network

with 2 layers. The first layer has kernel size 5, output dimen-

sion 32, and dilatation parameter 1. The second has kernel size

5, output dimension 32 and dilatation parameter 3, thus it set

the window size equal to N = 15. The CNN is followed by

a fully connected layer that output the scalars zlat and zup.

Each activation function between two layers is a ReLU unit

[35]. We define β = 3 in the right part of (17) which allows

for each covariance element to be 103 higher or smaller than

its original values.

1https://pytorch.org/

C. Training

We seek to optimize the relative translation error trel
computed from the filter estimates x̂n, which is the averaged

increment error for all possible sub-sequences of length 100m
to 800m.

Toward this aim, we first define the learnable parameters. It

consists of the 6210 parameters of the adapter, along with the

parameter elements of P0 and Q in (18)-(19), which add 12

parameters to learn. We then choose an Adam optimizer [36]

with learning rate 10−4 that updates the trainable parameters.

Training consists of repeating for a chosen number of epochs

the following iterations:

i) sample a part of the dataset;

ii) get the filter estimates for then computing loss and

gradient w.r.t. the learnable parameters;

ii) update the learnable parameters with gradient and opti-

mizer.

Following continual training [37], we suppose the number of

epochs is huge, potentially infinite (in our application we set

this number to 400). This makes sense for online training

in a context where the vehicle gathers accurate ground-truth

poses from e.g. its LiDAR system or precise GNSS. It requires

careful procedures for avoiding over-fitting, such that we use

dropout and data augmentation [35]. Dropout refers to ignoring

units of the adapter during training, and we set the probability

p = 0.5 of any CNN element to be ignored (set to zero) during

a sequence iteration.

Regarding i), we sample a batch of nine 1min sequences,

where each sequence starts at a random arbitrary time. We

add to data a small Gaussian noise with standard deviation

10−4, a.k.a. data augmentation technique. We compute ii)
with standard backpropagation, and we finally clip the gradient

norm to a maximal value of 1 to avoid gradient explosion at

step iii).
We stress the loss function consists of the relative translation

error trel, i.e. we optimize parameters for improving the filter

accuracy, disregarding the values actually taken by Nn, in the

spirit of [24].

V. EXPERIMENTAL RESULTS

We evaluate the proposed method on the KITTI dataset

[3], which contains data recorded from LiDAR, cameras and

IMU, along with centimeter accurate ground-truth pose from

different environments (e.g., urban, highways, and streets).

The dataset contains 22 sequences for benchmarking odometry

algorithms, 11 of them contain publicly available ground-truth

trajectory, raw and synchronized IMU data. We download the

raw data with IMU signals sampled at 100Hz (dt = 10−2 s)
rather than the synchronized data sampled at 10Hz, and

discard seq. 03 since we did not find raw data for this

sequence. The RT30032 IMU has announced gyro and ac-

celerometer bias stability of respectively 36 deg /h and 1mg.

The KITTI dataset has an online benchmarking system that

ranks algorithms. However we could not submit our algorithm

for online ranking since sequences used for ranking do not

2https://www.oxts.com/

https://pytorch.org/
https://www.oxts.com/

6

test

seq.
environment

IMLS [6] ORB-SLAM2 [7] IMU proposed

length duration trel rrel trel rrel trel rrel trel rrel
(km) (s) (%) (deg/km) (%) (deg/km) (%) (deg/km) (%) (deg/km)

01 2.6 110 highway 0.82 1.0 1.41 1.9 5.35 1.2 1.56 1.2

03 - 80 country - - - - - - - -

04 0.4 27 country 0.33 1.2 0.47 2.2 0.97 1.0 1.22 0.4

06 1.2 110 urban 0.33 0.8 0.73 2.2 5.78 1.9 1.57 1.9

07 0.7 110 urban 0.33 1.5 0.91 4.9 12.6 3.0 1.32 3.0

08 3.2 407 urban, country 0.80 1.8 1.03 3.0 549 5.6 1.08 3.2

09 1.7 159 urban, country 0.55 1.2 0.81 2.3 23.4 3.5 0.82 2.2

10 0.9 120 urban, country 0.53 1.7 0.66 3.1 4.58 2.5 1.05 2.5

average scores 0.64 1.2 0.99 2.6 171 3.1 0.97 2.3

Table 1. Results on [3]. IMU integration tends to drift or diverge, whereas the proposed method may be used as an alternative to LiDAR based (IMLS) and
stereo vision based (ORB-SLAM2) methods, using only IMU information. Indeed, on average, our dead-reckoning solution performs better than ORB-SLAM2
and achieves a translational error being close to that of the LiDAR based method IMLS, which is ranked 3rd on the KITTI online benchmarking system. Data
from seq. 03 was unavailable for testing algorithms, and sequences 00, 02 and 05 are discussed separately in Section V-C. It should be duly noted IMLS,
ORB-SLAM2, and the proposed AI-IMU algorithm, all use different sensors. The interest of ranking algorithms based on different information is debatable.
Our goal here is rather to evidence that using data from a moderately precise IMU only, one can achieve similar results as state of the art systems based on
imaging sensors, which is a rather surprising feature.

contain IMU data, which is reserved for training only. Our

implementation is made open-source at:

https://github.com/mbrossar/ai-imu-dr.

A. Evaluation Metrics and Compared Methods

To assess performances we consider the two error metrics

proposed in [3]:

1) Relative Translation Error (trel): which is the aver-

aged relative translation increment error for all possible sub-

sequences of length 100m, . . . , 800m, in percent of the

traveled distance;

2) Relative Rotational Error (trel): that is the relative

rotational increment error for all possible sub-sequences of

length 100m, . . . , 800m, in degree per kilometer.

We compare four methods which alternatively use LiDAR,

stereo vision, and IMU-based estimations:

• IMLS [6]: a recent state-of-the-art LiDAR-based ap-

proach ranked 3rd in the KITTI benchmark. The author

provided us with the code after disabling the loop-closure

module;

• ORB-SLAM2 [7]: a popular and versatile library for

monocular, stereo and RGB-D cameras that computes

a sparse reconstruction of the map. We took the open-

source code, disable loop-closure capability and evaluate

the stereo algorithm without modifying any parameter;

• IMU: the direct integration of the IMU measurements

based on (4)-(5), that is, pure inertial navigation;

• proposed: the proposed approach, that uses only the IMU

signals and involves no other sensor.

B. Trajectory Results

We follow the same protocol for evaluating each sequence:

i) we initialize the filter with parameters described in Section

IV-B; ii) we train then the noise parameter adapter following

Section IV-C for 400 epochs without the evaluated sequence

−100 −50 0 50 100 150 200

0

50

100

150

200

endstart

5 s car

stop

x (m)

y
(m

)
ground-truth IMLS ORB-SLAM2

IMU proposed

Fig. 5. Results on seq. 07 (drive #27, 2011/09/30) [3]. The proposed
method competes with LiDAR and visual odometry methods, whereas the
IMU integration broadly drifts after the car stops.

(e.g. for testing seq. 10, we train on seq. 00-09) so that

the noise parameter has never been confronted with the

evaluated sequence; iii) we run the IMU-based methods on

the full raw sequence with ground-truth initial configuration

(RIMU
0 ,vIMU

0 ,pIMU
0), whereas we initialize remaining variables

at zero (bω
0 = ba

0 = pc

0 = 0, Rc

0 = I); and iv) we get

the estimates only on time corresponding to the odometry

benchmark sequence. LiDAR and visual methods are directly

evaluated on the odometry sequences.

Results are averaged in Table 1 and illustrated in Figures

1, 5 and 6, where we exclude sequences 00, 02 and 05

https://github.com/mbrossar/ai-imu-dr

7

−100 0 100 200 300 400 500

−500

−400

−300

−200

−100

0

100

200

start/end

x (m)

y
(m

)
ground-truth IMLS ORB-SLAM2

IMU proposed

Fig. 6. Results on seq. 09 (drive #33, 2011/09/30) [3]. The proposed
method competes with LiDAR and visual odometry methods, whereas the
IMU integration drifts quickly after the first turn.

which contain problems with the data, and will be discussed

separately in Section V-C. From these results, we see that:

• LiDAR and visual methods perform generally well in

all sequences, and the LiDAR method achieves slightly

better results than its visual counterpart;

• our method competes on average with the latter image

based methods, see Table 1;

• directly integrating the IMU signals leads to rapid drift

of the estimates, especially for the longest sequences but

even for short periods;

• Our method looks unaffected by stops of the car, as in

seq. 07, see Figure 5.

The results are remarkable as we use none of the vision

sensors, nor wheel odometry. We only use the IMU, which

moreover has moderate precision.

We also sought to compare our method to visual inertial

odometry algorithms. However, we could not find open-source

of such method that performs well on the full KITTI dataset.

We tested [38] but the code in still under development (results

sometimes diverge), and the authors in [39] evaluate their not

open-source method for short sequences (≤ 30 s). The paper

[33,40] evaluate their visual inertial odometry methods on

seq. 08, both get a final error around 20m, which is four

times what our method gets, with final distance to ground-

truth of only 5m. This clearly evidences that methods taylored

for ground vehicles [13,15] may achieve higher accuracy and

robustness that general methods designed for smartphones,

drones and aerial vehicles.

950 1,000 1,050 1,100 1,150 1,200 1,250

−1,800

−1,700

−1,600

−1,500

x (m)

y
(m

)

ground-truth prop. w/o alignment

proposed prop. w/o cov. adapter

Fig. 7. End trajectory results on the highway seq. 01 (drive #42, 2011/10/30)
[3]. Dynamically adapting the measurement covariance and considering mis-
alignment between car and inertial frames enhance the performances of the
proposed method from a translational error of 1.94% to one of 1.11%.

C. Results on Sequences 00, 02 and 05

Following the procedure described in Section V-B, the

proposed method seems to have degraded performances on

seq. 00, 02 and 05, see e.g. Figure 9. However, the behavior

is wholly explainable: data are missing for a couple of seconds

due to logging problems which appear both for IMU and

ground-truth. This is illustrated in Figure 10 for seq. 02 where

we plot available data over time. We observe jump in the

IMU and ground-truth signals, that illustrate data are missing

between t = 1 and t = 3. The problem was corrected manually

when using those sequences in the training phase described in

Section V.

Although those sequences could have been discarded due to

logging problems, we used them for testing without correcting

their problems. This naturally results in degraded performance,

but also evidences our method is remarkably robust to such

problems in spite of their inherent harmfulness. For instance,

the 2 s time jump of seq. 02 results in estimate shift, but no

divergence occurs for all that, see Figure 9.

D. Discussion

The performances are owed to three components: i) the use

of a recent IEKF that has been proved to be well suited for

IMU based localization; ii) incorporation of side information

in the form of pseudo-measurements with dynamic noise

parameter adaptation learned by a neural network; and iii)
accounting for a “loose” misalignment between the IMU frame

and the car frame.

As concerns i), it should be stressed the method is perfectly

suited to the use of a conventional EKF and is easily adapted

if need be. However we advocate the use of an IEKF owing

to its accuracy and convergence properties. To illustrate the

benefits of points ii) and iii), we consider two sub-versions

8

0 20 40 60 80 100 120

−4

−2

0

2

t (s)

lo
g
1
0
(c
ov

(y
n
))

(m
2
/
s2

)
ωz

n ax

n ay

n cov(ylat
n) cov(yup

n)

Fig. 8. Covariance values computed by the adapter on the highway seq.
01 (drive #42, 2011/10/30) [3]. We clearly observe a large increase in the
covariance values when the car is turning between t = 90 s and t = 110 s.

of the proposed algorithm. One without alignment, i.e. where

Rc

n and pc

n are not included in the state and fixed at their

initial values Rc

n = I, pc

n = 0, and a second one that uses the

static filter parameters (18)-(20).

End trajectory results for the highway seq. 01 are plotted

in Figure 7, where we see that the two sub-version methods

have trouble when the car is turning. Therefore their respective

translational errors trel are higher than the full version of

the proposed method: the proposed method achieves 1.11%,

the method without alignment level arm achieves 1.65%, and

the absence of covariance adaptation yields 1.94% error. All

methods have the same rotational error rrel = 0.12 deg /m.

This could be anticipated for the considered sequence since

the full method has the same rotational error than standard

IMU integration method.

As systems with equipped AI-based approaches may be

hard to certify for commercial or industrial use [41], we note

adaptation rules may be inferred from the AI-based adapter,

and encoded in an EKF using pseudo-measurements. To this

aim, we plot the covariances computed by the adapter for seq.

01 in Figure 8. The adapter clearly increases the covariances

during the bend, i.e. when the gyro yaw rate is important.

This is especially the case for the zero velocity measurement

(15): its associated covariance is inflated by a factor of 102

between t = 90 s and t = 110 s. This illustrates the kind

of information the adapter has learned. Interestingly, we see

large discrepancies may occur between the actual statistical

uncertainty (which should clearly be below 100m2/s2) and

the inflated covariances whose values are computed for the

sole purpose of filter’s performance enhancement. Indeed,

such a large noise parameter inflation indicates the AI-based

part of the algorithm has learned and recognizes that pseudo-

measurements have no value for localization at those precise

moments, so the filter should barely consider them.

VI. CONCLUSION

This paper proposes a novel approach for inertial dead-

reckoning for wheeled vehicles. Our approach exploits deep

neural networks to dynamically adapt the covariance of simple

assumptions about the vehicle motions which are leveraged in

an invariant extended Kalman filter that performs localization,

velocity and sensor bias estimation. The entire algorithm is

fed with IMU signals only, and requires no other sensor. The

method leads to surprisingly accurate results, and opens new

perspectives. In future work, we would like to address the

learning of the Kalman covariance matrices for images, and

also the issue of generalization from one vehicle to another.

ACKNOWLEDGMENTS

The authors would like to thank J-E. DESCHAUD for sharing

the results of the IMLS algorithm [6], and Paul CHAUCHAT

for relevant discussions.

REFERENCES

[1] G. Bresson, Z. Alsayed, L. Yu et al., “Simultaneous Localization and
Mapping: A Survey of Current Trends in Autonomous Driving,” IEEE

Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, 2017.
[2] OxTS, “Why it is Necessary to Integrate an Inertial Measurement Unit

with Imaging Systems on an Autonomous Vehicle,” https : / / www . oxts
. com / technical-notes/why-use-ins-with-autonomous-vehicle/, 2018.

[3] A. Geiger, P. Lenz, C. Stiller et al., “Vision meets robotics: The KITTI
dataset,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1231–1237, 2013.

[4] A. Barrau and S. Bonnabel, “The Invariant Extended Kalman Filter as
a Stable Observer,” IEEE Transactions on Automatic Control, vol. 62,
no. 4, pp. 1797–1812, 2017.

[5] ——, “Invariant Kalman Filtering,” Annual Review of Control, Robotics,

and Autonomous Systems, vol. 1, no. 1, pp. 237–257, 2018.
[6] J.-E. Deschaud, “IMLS-SLAM: Scan-to-Model Matching Based on 3D

Data,” in International Conference on Robotics and Automation. IEEE,
2018.

[7] R. Mur-Artal and J. Tardos, “ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras,” Transactions on

Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
[8] F. Tschopp, T. Schneider, A. W. Palmer et al., “Experimental Com-

parison of Visual-Aided Odometry Methods for Rail Vehicles,” IEEE

Robotics and Automation Letters, vol. 4, no. 2, pp. 1815–1822, 2019.
[9] M. Mousa, K. Sharma, and C. G. Claudel, “Inertial Measurement Units-

Based Probe Vehicles: Automatic Calibration, Trajectory Estimation,
and Context Detection,” IEEE Transactions on Intelligent Transportation

Systems, vol. 19, no. 10, pp. 3133–3143, 2018.
[10] J. Wahlstrom, I. Skog, J. G. P. Rodrigues et al., “Map-Aided Dead-

Reckoning Using Only Measurements of Speed,” IEEE Transactions on

Intelligent Vehicles, vol. 1, no. 3, pp. 244–253, 2016.
[11] A. Mahmoud, A. Noureldin, and H. S. Hassanein, “Integrated Po-

sitioning for Connected Vehicles,” IEEE Transactions on Intelligent

Transportation Systems, pp. 1–13, 2019.
[12] R. Karlsson and F. Gustafsson, “The Future of Automotive Localization

Algorithms: Available, reliable, and scalable localization: Anywhere and
anytime,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 60–69,
2017.

[13] K. Wu, C. Guo, G. Georgiou et al., “VINS on Wheels,” in International

Conference on Robotics and Automation. IEEE, 2017, pp. 5155–5162.
[14] A. Brunker, T. Wohlgemuth, M. Frey et al., “Odometry 2.0: A Slip-

Adaptive EIF-Based Four-Wheel-Odometry Model for Parking,” IEEE

Transactions on Intelligent Vehicles, vol. 4, no. 1, pp. 114–126, 2019.
[15] F. Zheng and Y.-H. Liu, “SE(2)-Constrained Visual Inertial Fusion for

Ground Vehicles,” IEEE Sensors Journal, vol. 18, no. 23, pp. 9699–
9707, 2018.

[16] M. Buczko, V. Willert, J. Schwehr et al., “Self-Validation for Automotive
Visual Odometry,” in Intelligent Vehicles Symposium. IEEE, 2018, pp.
1–6.

[17] M. Kok, J. D. Hol, and T. B. Schön, “Using Inertial Sensors for
Position and Orientation Estimation,” Foundations and Trends R© in

Signal Processing, vol. 11, no. 1-2, pp. 1–153, 2017.

9

test

seq.
environment

IMLS [6] ORB-SLAM2 [7] IMU proposed

length duration trel rrel trel rrel trel rrel trel rrel
(km) (s) (%) (deg/km) (%) (deg/km) (%) (deg/km) (%) (deg/km)

00 3.7 454 urban 0.50 1.8 0.84 2.9 426 46.8 6.81 24.8

02 5.1 466 urban 0.53 1.4 0.79 2.7 346 8.7 3.37 3.8

05 2.2 278 urban 0.32 1.4 0.55 2.2 189 5.2 3.05 8.7

Table 2. Results on [3] on seq. 00, 02 and 05. The degraded results of the proposed method are wholly explained by a problem of missing data, see Section
V-C and Figure 10.

0 200 400 600 800 1,000

−200

0

200

400

600

start

2 s time

jump in

data

end

x (m)

y
(m

)

ground-truth

IMLS

ORB-SLAM2

IMU

proposed

Fig. 9. Results on seq. 02 (drive #34, 2011/09/30) [3]. The proposed method
competes with LiDAR and visual odometry methods until a problem in data
occurs (2 seconds are missing). It is remarkable that the proposed method be
robust to such trouble causing a shift estimates but no divergence.

3.36 3.37 3.38 3.39

·104

−2

0

2

4

2 s time jump

n (timestamp)

t
(s

),
p
n

(0
.1

m
),
ω

n
(1

0
ra
d
/
s)

t pxn pyn ωx
n ωy

n ωz
n

Fig. 10. Data on seq. 02 (drive #34, 2011/09/30) [3], as function of
timestamps number n. A 2 s time jump happen around n = 33750, i.e. data
have not been recorded during this jump. It leads to jump in ground-truth and
IMU signals, causing estimate drift.

[18] A. Ramanandan, A. Chen, and J. Farrell, “Inertial Navigation Aiding by
Stationary Updates,” IEEE Transactions on Intelligent Transportation

Systems, vol. 13, no. 1, pp. 235–248, 2012.

[19] G. Dissanayake, S. Sukkarieh, E. Nebot et al., “The Aiding of a Low-
cost Strapdown Inertial Measurement Unit Using Vehicle Model Con-
straints for Land Vehicle Applications,” IEEE Transactions on Robotics

and Automation, vol. 17, no. 5, pp. 731–747, 2001.

[20] M. Brossard, A. Barrau, and S. Bonnabel, “RINS-W: Robust Inertial
Navigation System on Wheels,” Submitted to IROS 2019, 2019. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02057117/file/main.pdf

[21] F. Aghili and C.-Y. Su, “Robust Relative Navigation by Integration
of ICP and Adaptive Kalman Filter Using Laser Scanner and IMU,”
IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 2015–
2026, 2016.

[22] H. Yan, Q. Shan, and Y. Furukawa, “RIDI: Robust IMU Double
Integration,” in European Conference on Computer Vision, 2018.

[23] C. Chen, X. Lu, A. Markham et al., “IONet: Learning to Cure the Curse
of Drift in Inertial Odometry,” in Conference on Artificial Intelligence

AAAI, 2018.

[24] T. Haarnoja, A. Ajay, S. Levine et al., “Backprop KF: Learning
Discriminative Deterministic State Estimators,” in Advances in Neural

Information Processing Systems, 2016.

[25] K. Liu, K. Ok, W. Vega-Brown et al., “Deep Inference for Covariance
Estimation: Learning Gaussian Noise Models for State Estimation,” in
International Conference on Robotics and Automation. IEEE, 2018.

[26] M. Brossard and S. Bonnabel, “Learning Wheel Odometry and IMU
Errors for Localization,” in International Conference on Robotics and

Automation. IEEE, 2019.

[27] F. Castella, “An Adaptive Two-Dimensional Kalman Tracking Filter,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-16,
no. 6, pp. 822–829, 1980.

[28] P. Abbeel, A. Coates, M. Montemerlo et al., “Discriminative Training
of Kalman Filters,” in Robotics: Science and Systems, vol. 2, 2005.

[29] M. Tahk and J. Speyer, “Target tracking problems subject to kine-matic
constraints,” IEEE Transactions on Automatic Control, vol. 32, no. 2,
pp. 324–326, 1990.

[30] D. Simon, “Kalman Filtering with State Constraints: A Survey of Linear
and Nonlinear Algorithms,” IET Control Theory & Applications, vol. 4,
no. 8, pp. 1303–1318, 2010.

[31] A. Barrau and S. Bonnabel, “Aligment Method for an Inertial Unit,”
Patent 15/037,653, 2016.

[32] M. Brossard, S. Bonnabel, and A. Barrau, “Unscented Kalman Filter on
Lie Groups for Visual Inertial Odometry,” in International Conference

on Intelligent Robots and Systems. IEEE/RSJ, 2018.

[33] S. Heo and C. G. Park, “Consistent EKF-Based Visual-Inertial Odometry
on Matrix Lie Group,” IEEE Sensors Journal, vol. 18, no. 9, pp. 3780–
3788, 2018.

[34] R. Hartley, M. G. Jadidi, J. W. Grizzle et al., “Contact-Aided Invariant
Extended Kalman Filtering for Legged Robot State Estimation,” in
Robotics Science and Systems, 2018.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
press, 2016.

[36] D. P. Kingma and J. Ba, “ADAM: A Method for Stochastic Optimiza-
tion,” in International Conference on Learning Representations, 2014.

[37] G. Parisi, R. Kemker, J. Part et al., “Continual Lifelong Learning with
Neural Networks: A Review,” Neural Networks, vol. 113, pp. 54–71,
2019.

[38] T. Qin, J. Pan, S. Cao et al., “A General Optimization-based Framework
for Local Odometry Estimation with Multiple Sensors,” 2019.

[39] M. Ramezani and K. Khoshelham, “Vehicle Positioning in GNSS-
Deprived Urban Areas by Stereo Visual-Inertial Odometry,” IEEE Trans-

actions on Intelligent Vehicles, vol. 3, no. 2, pp. 208–217, 2018.

https://hal.archives-ouvertes.fr/hal-02057117/file/main.pdf

10

[40] S. Heo, J. Cha, and C. G. Park, “EKF-Based Visual Inertial Navigation
Using Sliding Window Nonlinear Optimization,” IEEE Transactions on

Intelligent Transportation Systems, pp. 1–10, 2018.

[41] N. Sünderhauf, O. Brock, W. Scheirer et al., “The limits and potentials
of deep learning for robotics,” The International Journal of Robotics

Research, vol. 37, no. 4-5, pp. 405–420, 2018.

APPENDIX A

The Invariant Extended Kalman Filter (IEKF) [4,5] is an

EKF based on an alternative state error. One must define a

linearized error, an underlying group to derive the exponential

map, and then methodology is akin to the EKF’s.

1) Linearized Error: the filter state xn is given by (8).

The state evolution is given by the dynamics (5)-(7) and (12)-

(13), see Section II. Along the lines of [4], variables χIMU
n :=

(RIMU
n ,vIMU

n ,pIMU
n) are embedded in the Lie group SE2(3) (see

Appendix B for the definition of SE2(3) and its exponential

map). Then biases vector bn =
[

bωT
n ,baT

n

]T
∈ R

6 is merely

treated as a vector, that is, as an element of R
6 viewed as a

Lie group endowed with standard addition, Rc

n is treated as

element of Lie group SO(3), and pc

n ∈ R
3 as a vector. Once

the state is broken into several Lie groups, the linearized error

writes as the concatenation of corresponding linearized errors,

that is,

en =
[

ξIMUT
n ebTn ξR

cT
n ep

cT
n

]T
∼ N (0,Pn) , (21)

where state uncertainty en ∈ R
21 is a zero-mean Gaussian

variable with covariance Pn ∈ R
21×21. As (15) are measure-

ments expressed in the robot’s frame, they lend themselves

to the Right IEKF methodology. This means each linearized

error is mapped to the state using the corresponding Lie group

exponential map, and multiplying it on the right by elements

of the state space. This yields:

χIMU

n = expSE2(3) (ξ
IMU

n) χ̂
IMU

n , (22)

bn = b̂n + ebn, (23)

Rc

n = expSO(3)

(

ξR
c

n

)

R̂c

n, (24)

pc

n = p̂c

n + ep
c

n , (25)

where (̂·) denotes estimated state variables.

2) Propagation Step: we apply (5)-(7) and (12)-(13) to

propagate the state and obtain x̂n+1 and associated covariance

through the Riccati equation (11) where the Jacobians Fn, Gn

are related to the evolution of error (21) and write:

Fn = I21×21+

0 0 0 −Rn 0 03×6

(g)× 0 0 −(vIMU
n)×Rn −Rn 03×6

0 I3 0 −(pIMU
n)×Rn 0 03×6

012×21

dt,
(26)

Gn =

Rn 0 03×12

(vIMU
n)×Rn Rn 03×12

(pIMU
n)×Rn 0 03×12

012×3 012×3 I12×12

dt, (27)

with Rn = RIMU
n , 0 = 03×3, and Qn denotes the classical

covariance matrix of the process noise as in Section IV-B.

3) Update Step: the measurement vector yn+1 is computed

by stacking the motion information

yn+1 =

[

vlatn+1

vupn+1

]

= 0, (28)

with assessed uncertainty a zero-mean Gaussian variable with

covariance Nn+1 = cov (yn+1). We then compute an updated

state x̂+
n+1 and updated covariance P+

n+1 following the IEKF

methodology, i.e. we compute

S =
(

Hn+1Pn+1H
T
n+1 +Nn+1

)

, (29)

K = Pn+1H
T
n+1/S, (30)

e+ = K (yn+1 − ŷn+1) , (31)

χ̂
IMU+
n+1 = expSE2(3)

(

ξIMU+
)

χ̂
IMU

n+1, (32)

b+
n+1 = bn+1 + eb+ (33)

R̂c+
n+1 = expSO(3)

(

ξR
c+
)

R̂c

n+1, (34)

p̂c+
n+1 = p̂c

n+1 + ep
c+, (35)

P+
n+1 = (I21 −KHn+1)Pn+1, (36)

summarized as Kalman gain (30), state innovation (31), state

update (32)-(35) and covariance update (36), where Hn+1 is

the measurement Jacobian matrix with respect to linearized

error (21) and thus given as:

Hn = A
[

0 RIMUT
n 0 − (pc

n)× 0 B C
]

, (37)

where A = [I2 02] selects the two first row of the right part

of (37), B = RcT
n RIMUT

n (vIMU
n)× and C = −(ωIMU

n − bω
n)×.

APPENDIX B

The Lie group SE2(3) is an extension of the Lie group

SE(3) and is described as follows, see [4] where it was first

introduced. A 5× 5 matrix χn ∈ SE2(3) is defined as

χn =

[

Rn vn pn

02×3 I2

]

∈ SE2(3). (38)

The uncertainties ξn ∈ R
9 are mapped to the Lie algebra

se2(3) through the transformation ξn 7→ ξ∧n defined as

ξn =
[

ξRT
n , ξvTn , ξpTn

]T
, (39)

ξ∧n =

[
(

ξRn
)

×
ξvn ξpn

02×5

]

∈ se2(3), (40)

where ξRn ∈ R
3, ξvn ∈ R

3 and ξpn ∈ R
3. The closed-form

expression for the exponential map is given as

expSE2(3) (ξn) = I+ ξ∧n + a(ξ∧n)
2 + b(ξ∧n)

3, (41)

where a =
1−cos(‖ξR

n
‖)

‖ξR
n
‖

and b =
‖ξR

n
‖−sin(‖ξR

n
‖)

‖ξR
n
‖3 , and which

inherently uses the exponential of SO(3), defined as

expSO(3)

(

ξRn
)

= exp
(

(

ξRn
)

×

)

(42)

= I+
(

ξRn
)

×
+ a

(

ξRn
)2

×
. (43)

