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Abstract 
In this paper, we focus on providing a narrative review of healthcare 
services in which artificial intelligence (AI) based services are used as 
part of the operations and analyze key elements to create successful 
AI-based services for healthcare. The benefits of AI in healthcare are 
measured by how AI is improving the healthcare outcomes, help 
caregivers in work, and reducing healthcare costs. AI market in 
healthcare sector have also a high market potential with 28% global 
compound annual growth rate. This paper will collect outcomes from 
multiple perspectives of healthcare sector including financial, health 
improvement, and care outcome as well as provide proposals and key 
factors for successful implementation of AI methods in healthcare. It 
is shown in this paper that AI implementation in healthcare can 
provide cost reduction and same time provide better health outcome 
for all.
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Introduction
The healthcare industry is undergoing a revolution. The reasons  

for this revolution are the ever-increasing total spending on  

health care and the growing shortage of health care profession-

als. This drives to situation that healthcare industry wants to  

adopt new Information Technology based solutions and proc-

esses with advanced technology which could reduce costs and  

provide solutions for these emerging problems.

Before 2010, healthcare technology companies were focusing  

on the innovations provided by medical products providing  

historic and evidence-based care. Starting from 2010 development 

has focused on real-time medical platforms and outcome-based 

care. From 2020 technology is moving towards medical solutions 

delivering intelligent solutions for evidence- and outcome-based 

health where focusing is in collaborative and preventative care. 

These intelligent solutions can be achieved by using robotics,  

virtual and augmented reality and AI1. In a recent life science  

executives survey 69% of life science businesses are already  

piloting or adopted AI in their solutions and 22% are evalu-

ating or planning to pilot AI solutions2. The annual savings  

potential by using AI in healthcare can be $150 billion by 2026 

in US alone, and this should be also one of the factors to speed 

up the implementation of AI in healthcare sector3. Future  

studies will give answers if this savings will be achieved. There 

are multiple subdomains in healthcare domain where AI-based  

services are utilized. 

AI applications in healthcare can be classified to the follow-

ing domains: surgery, nursing assistant, medical consultation, 

administration and workflow, treatment design, cybersecu-

rity, machine vision, automatic and preliminary diagnosis,  

health monitoring, medication management, and clinical trials.  

All these domains have applications utilizing AI in their opera-

tions. We have collected some of the AI-utilizing services in the  

healthcare sector and made a comparative analysis of the  

effectiveness and outcome when utilizing AI versus services 

which are not utilizing AI. As a result, in this paper we introduce  

AI-based services for healthcare sector that have a high impact 

in care outcome and propose collection of services which  

could provide best outcome in preventive healthcare and in  

clinical work.

Services utilizing AI in healthcare domain
In this section we review healthcare services which are  

utilizing AI. These services include healthcare services and  

supporting services which are shown in Figure 1. The reviewed 

services are collected from research papers and market analysis  

companies3. Services which are selected for analysis are  

providing instant care or providing direct support for care.  

These are robot-assisted surgery, clinical trial participation,  

virtual assistants for nursing and consultation, image diagnosis,  

dosage error reduction, medication management, preliminary  

diagnosis, and health monitoring. Some of the topics which 

have been recently studied in my research and which provide  

indirect services for healthcare processes but are not affecting  

directly to patient care, such as fraud detection, assistant  

for administration and workflow, cybersecurity, connected  

machines, and drug creation are excluded from this study. We  

also categorized healthcare services and applications based 

Figure 1. Categories of AI applications in Healthcare.
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on degree of AI utilization and human involvement in clinical  

decision making4.

Below we provide a short description of AI-methods which 

are commonly utilized in healthcare applications and services.  

Common applications for AI methods are shown in Figure 2.

Machine learning (ML) is a subfield of AI and presents AI  

solutions that are adaptive. The ML can be roughly catego-

rized to three subareas. Supervised learning algorithms build a  

mathematical model of a set of data containing both the  

desired outputs and the inputs5. In unsupervised learning  

algorithms take a data set containing only inputs and find struc-

ture in the data, such as grouping or clustering of data points.  

In unsupervised learning the algorithms learn from the test  

data that has not been classified, labeled or categorized6. Rein-

forcement learning algorithms do not assume knowledge of an 

exact mathematical model of discrete time stochastic control  

process. Reinforcement learning is used, for example, in situ-

ations where a self-driving car is operating in an environment 

where feedback about good or bad choices is not available in  

real time.

Natural language processing (NLP) is a subfield of AI that  

consist of tools and techniques to enable computers to read, 

understand, and derive meaning from human languages and 

enable natural interaction between computers and humans to 

make computer systems understand and manipulate natural  

Figure 2. AI methods and applications.
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languages to perform desired tasks. In healthcare, NLP is used, for 

example, to predict diseases based on patient’s own speech and  

electronic health records7. 

Neural network (NN) consists of digitized inputs, such as  

an image or speech, which proceed through several hidden  

layers of connected artificial neurons, each layer responding to 

different features progressively detecting features and provide 

an output. Deep NNs (DNN) require special mention because  

as a subcategory of NN with its variations, such as recurrent, 

convolutional, transfer, generative adversarial, reinforcement,  

representation, and transfer, are used in various AI solutions in 

field medicine. Typical use case for DNN is when there is need  

for interpret data to certain patterns from different types of  

clinical images such as pathology, skin lesions, retinal, and 

endoscopy images and to find out patterns from datasets, such as  

medical scans, electrocardiograms, and vital signs.

Deep learning (DL) is a subfield of ML. DL is based on  

artificial NNs (ANNs), inspired by information processing and  

distributed communication nodes in biological systems, that 

use multiple layers to progressively extract higher level features  

from raw input. DL can be semi-supervised, supervised, or  

unsupervised. The term ‘deep’ refers to the number of layers 

(depth) through which the data is transformed. DL is a form of 

AI that enables computers to perform tasks based on existing data  

relationships.

Machine vision/computer vision (MV/CV) include the methods  

and the technology which is used to automatically extract  

information from an image. The extracted information can  

be a i.e. good-part / bad-part signal or a set of data such as the 

identity, orientation, and position of objects in an image.  

Extracted information can be later used for applications like 

automatic inspection, security monitoring, industry robots and  

process guidance, and vehicle guidance.

In the next sections we provide detailed information about  

topics in healthcare AI. Summary of these techniques are  

collected to Table 1 where we provide studied information 

about AI based services which are in use in healthcare business.  

Studied applications / services information is limited to Health-

care domain and include the following information: service / 

application type, category of AI service, application / service type,  

AI features which have been used in application / service,  

outcome as a result of AI utilization, and metrics which have  

been used to present the outcome. 

Robotic-assisted surgical systems (RASS) and 
computer-assisted surgery (CAS)
The RASS have been used since year 19858 in multiple fields of 

surgery including cardiac surgery, thoracic surgery, gastroin-

testinal surgery, gynecology, orthopedic surgery, spine surgery, 

transplant surgery, urology, and general surgery9–16. RASS have 

been categorized to tree types based on the level of autonomous  

activity: supervisory controlled surgery, telesurgical, and shared  

control surgery.

In traditional surgery, surgeons can operate only on what their  

eyes can see and basically the only way to see inside a patient  

is to operate by open surgery. With RASS, surgeon can utilize  

cameras and tools which can be inserted through a small incision 

to perform procedures with exquisite precision. The minimally 

invasive approach is meant to provide faster patient recovery  

times and reduce postoperative complications. RASS can also  

lessen the physical burden of surgery staff. With RASS there 

is also possibility to collect all data and details such as video  

recording of the surgery, all movements and cutting and sewing  

actions of ongoing surgery, and use this collected data for  

further analysis and enhance and lean the surgery process. There 

are RASS manufacturers which are providing robotic surgery  

equipment worldwide. In this paper, we provide details about 

the one of the most used RASS at the time of writing this  

paper, DaVinci, developed by Intuitive Surgical Inc. DaVinci  

had 5406 installed bases in September 201917. 

CAS is a second approach to assisted surgical systems. Where  

RASS is focusing the physical surgery robot, its controlling 

and applications, and robot assisted surgery technology, CAS  

technology use computer technology for surgical planning and 

enhances surgical guidance to surgeon. CAS involves tech-

niques that can directly participate in surgery or can assist in the  

navigation or positioning of surgical instruments18. CAS contain a 

set of applications used at the surgical workplace preoperatively, 

intraoperatively, as well as improving surgical efficiency and  

efficacy postoperative surgery19. Main CAS features contain  

creation of virtual image from the patient, diagnostic, image  

analysis and processing, preoperative planning, surgical simu-

lations, and surgical navigation. CAS have been major factor  

in the development of RASS.

When evaluating the clinical effectiveness of robotic surgery  

technology, a systematic review from 95 studies made in  

Canada in 2011 indicated that RASS in prostatectomy, hyster-

ectomy, nephrectomy, and cardiac surgery compared to open or  

laparoscopic surgery there are many benefit in clinical  

outcomes which were: reduction of length of hospital stay, 

reduction of blood loss and transfusion rates, and reduction of  

complications20. There are some RASS operations in which  

operation times are reduced such as laparoscopic prostatectomy 

and, in some operations, increased such as open prostatectomy  

and open hysterectomy. In the same review, the economical  

evidence was also evaluated in prostatectomy, cardiac surgery, 

nephrectomy, and hysterectomy. Cost analysis showed that  

shortening the lengths of stay after robotic radical prostatec-

tomy also produced reduction of hospitalization costs relative to  

laparoscopic surgery and open surgery. In other hand, acquir-

ing and operational costs of surgical robots will lead to situation  

that approximately 75% of the surgeries in which robot assisted 

the surgery is more expensive. However, costs can be reduced  

by higher utilization rate of RASS.

A systematic review was made in 2017 to evaluate patient  

benefits, cost, and surgeon conditions when using RASS in 

gynecological oncology21. Using RASS as part of treatment in  
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cervical cancer, endometrial cancer, and ovarian cancer were 

studied by reviewing total of 76 references. Results were that  

safety in oncological surgery is similar compared with previ-

ous surgical methods, but RASS will also increase overall costs  

because of high RASS equipment application, acquisition, and 

maintenance costs.

In the research where cost and efficacy of robotic hepatectomy  

was studied there was indication that in RASS group operative  

time was 20% longer, length of stay was 35% shorter, periopera-

tive costs were 10% higher, and postoperative costs 36% lower  

compared to group with normal open surgery. In the study,  

overall costs of RASS were 22% lower than in open surgery.  

Complications were similar between RASS and open surgery 

patient groups41.

Virtual nurse assistants (VNAs) for healthcare
In modern digitalization, healthcare organizations and actors 

in healthcare processes have taken in use virtual assistants  

which have already been emerged to use in other business  

sectors. With virtual nurse assistants, hospitals can reduce sudden  

hospital visits and reduce the workload of healthcare profes-

sionals. These virtual assistant applications can listen, talk, and  

give advices/recommendations. Over the last two decades  

there have been studies of embodied conversational agents (ECAs) 

use in healthcare which have proven significant improvement 

in healthcare outcome when chatbots or conversational agents 

are in use. A majority of these ECAs have allowed user input  

which is used in common surveys such as multichoice or  

utterance. With latest advance in AI technologies, such as NLP, 

machine learning (ML), and neural networks (NN), have made  

possible to develop virtual assistants or virtual agents which are 

capable of utilizing conversational systems which can mimic  

human conversation42,43.

One widely used platform meeting European Medical Device 

Directives is Your.MD. This virtual health assistant using AI 

and machine learning utilizes United Kingdom National Health  

Service (NHS) data for providing personalized pre-primary care. 

Pre-primary will act before patient makes decision to access  

primary care. With Your.MD patients can perform home diagno-

sis by using mobile app or website. With Your.MD benchmark  

tests in verified test cases from Harvard University and Royal  

College of General Practitioners have shown medical accuracy  

of 85% for 20 most common conditions22.

In another study there was multiple symptom assessment apps  

studied, where the best results for condition coverage, accuracy 

of suggested conditions and urgency advice performance was  

measured with 200 vignettes representing real world scenarios 

and compared to five general practitioners (GPs). The best results 

were received by service ADA getting condition suggestion  

coverage of 99% and top-3 conditions suggestion 70.50% (GPs 

average 82.10%), 97% accuracy for safe urgency advice (GPs  

average, 97%)23. 

Another VNA platform is Sensely. Its digital nurse avatar 

use machine learning algorithms. It utilizes patient’s medical  

history data, and it can monitor the condition of patient.  

Additionally, the VNA can keep track of appointments, fill the 

gap between doctor visits and predict follow-up treatments. Plat-

form was trialed in 2019 with 72 chronic heart failure patients 

in clinical site. Findings indicated that platform was able to  

decrease readmission rate by 75% and patient monitoring costs  

by 66% compared to traditional care process24.

Medication management and medication error 
reduction (MMMER)
The effective MMMER services can provide remarkable health-

care cost expenditure reduction and can minimize unnecessary  

injuries and deaths. The estimated annual costs of drug-related  

mortality and morbidity resulting from nonoptimized medi-

cation therapy was $528 Billion in US. This is equivalent to  

16% of total US health care expenditures in 201644. Prescription 

drug errors cause substantial morbidity, mortality, and waste-

ful health care cost. In a National Audit Commission report  

there was evaluated that there are 7000 deaths annually in 

US due to medicine misuse and due to medication mistakes  

highlighting importance and urgency of preventive measures45.  

AI has multiple use cases in Medication management and  

dosage error reduction, such as improving medication safety,  

preventing drug overdoses, predict health risks and outcomes  

across large populations, reduce time and expenses, and monitor 

medication adherence.

Improving medical safety. MedAware created system for detect-

ing medication errors. In this ML-based system researchers  

concluded that it was clinically useful in flagging 75% of  

potential medication errors or issues, with 18.80% classified as 

having medium clinical value, and 56.20% of the valid alerts as  

having high clinical25.

Monitoring medication nonadherence. Medication nonad-

herence is significant issue in healthcare costs and healthcare  

outcome. Medication nonadherences contribute between $100 

and $300 Billion dollars in US46. One study using AI platform 

on mobile devices in measuring and increasing stroke patients’  

medication adherence when ongoing anticoagulation therapy. 

Study indicated that in the intervention group medical adher-

ence was 100% and in the control groups only 50%. The AI  

application was visually identifying the patient, the medication,  

and the confirmed ingestion. Adherence was later measured  

by plasma sampling and pill counts26. Another adherence  

monitoring AI platform utilizing neural network algorithm in 

machine vision was studied in clinical. Machine vision and  

neural network was used to identify visually patient, the drug,  

and confirm the ingestion of the drug. Study shows that  

adherence was 17.90% higher in AI group than standard-of-care 

modified directly observed therapy protocol27.

Clinical trial participation (CTP)
As described by United States Food and Drug Administra-

tion (FDA) and U.S. National Library of Medicine, in a clinical  

trial, participants are receiving specific interventions based on  

the research plan or protocol which is created by the investiga-

tors or researchers. These interventions may be medical products,  

such as drugs or devices, procedures, or changes to partici-

pants’ behavior, such as diet. Clinical trials have three models.  
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1. Comparing new medical approach to a standard model or 

approach that is already available. 2. comparison new approach 

to a placebo containing no active ingredients. 3 comparison  

to new approach where no intervention is done47. It is also nota-

ble that on average it takes 10 - 15 years and 1.5 - 2.0 Billion US  

dollars to develop and bring a new drug to the market. In drug  

development, approximately 50% of the time and investment  

is used for the clinical trial phases48.

As a background to create more comprehensive clinical trials,  

for example, in one research done in Mayo Clinic participation 

for clinical trials of cancer patients was only 3-5% even though  

up to 20% were eligible28. AI can help in clinical trial design 

and it can be used in finding patterns of meaning automatically  

from large and unstructured datasets such as speech, text, or  

images. Natural language processing NLP understands and  

correlates content in spoken or written language, and in human- 

machine interfaces) allowing natural information exchange  

between humans and computers. These capabilities are used for 

correlating diverse and large datasets such as medical literature, 

electronic health records (EHRs), and databases for improv-

ing patient-trial match and recruitment or persons before starting 

actual trial. During actual clinical trial AI can be used monitor  

patients continuously and automatically. Moreover, AI utiliza-

tion provide improved adherence, efficient endpoint assess-

ment and increased control and yielding reliability. Based on this  

background information and need for enhancing the clinical  

trial participation rate there was a research conducted by 

IBM. In this research IBM utilized Watson artificial intelli-

gence platform resulting 80% increase in oncology clinical trial  

enrollment. This increase was observed at Mayo Clinic. This  

new platform enabled high volume screening very efficiently28.

Mendel.ai research network has created Clinical trial participa-

tion pre-screening service for identifying patients which were  

potentially eligible for clinical trial. In one research Mendel.

ai was used to retroactively provide pre-screening two oncology  

studies, one for breast cancer and one for lung cancer. In trials  

where Mendel.ai was used it resulted in a 24 - 50% increase 

compared to standard practices to correctly identify the number  

of patients as potentially eligible for clinical trials. All patients 

who were correctly identified by standard practices were also 

identified by Mendel.ai. With standard pre-screening practice 

an average of 263 days for lung cancer and 19 days for breast  

cancer patients elapsed between actual patient eligibility and 

identification. Respectively, detection of potential eligibility  

with Mendel.ai took only minutes29.

Preliminary diagnosis and prediction (PDP)
For decades diagnosis services have been using health history 

data and diagnosis data to provide more accurate diagnosis 

for the patient and more accurate health prognosis. With  

current advances in AI research we have found that AI have  

outperformed physicians in speed and accuracy of medical 

diagnosis in some fields of healthcare sectors as described in  

following example studies from various fields of healthcare.

Diabetes prediction
Diabetes prediction can be performed with four different applica-

tion types: retinal screening, clinical decision support, predictive  

population risk and patient self-management tools. In retinal  

screening application perform detection of diabetic retinopa-

thy, maculopathy, exudates, and other abnormalities from retinal  

scan. In clinical decision support application or service can  

contain detection and monitoring of diabetes and comorbidities  

such as nephropathy, neuropathy, and wounds. In predictive or 

population risk stratification identification focus is on identifica-

tion of diabetes subpopulations at higher risk for complications,  

hospitalization, and readmissions. There are also self-management  

tools in patient use which can consist of artificial pancreas, 

AI-improved glucose sensors and dietary and activity tracking 

devices.

One of the diabetes tracking system is Medtronic’s Guardian  

Connect. It was the first AI-powered and FDA approved  

continuous glucose monitoring (CGM) system. With predic-

tive Machine Learning (ML) algorithm Guardian Connect can 

predict significant changes in blood glucose levels. Changes can  

be predicted up to 60 minutes before the change event. System  

consist also sensor, which is placed on the abdomen. This  

sensor monitors blood glucose levels in 5 minutes interval. System  

was able to give alert of about 98.50% of hypoglycemic events.  

By these alerts, patients could act proactively to normalize  

their blood sugar30.

Cancer prediction
Houston Methodist researchers in the US have developed a  

NLP-based application that can interpret mammography results  

by using free text radiology and pathology reports from 543  

patients and keywords. Application could perform with 99%  

accuracy compared to manual review by clinicians. Time saving  

is remarkable when comparing to manual review taken from  

10% of these 543 patients for application accuracy valida-

tion. This manual validation for 54 patients took approximately  

50 – 70 hours31.

Tuberculosis diagnosis
For diagnosing tuberculosis tests were performed with two  

different DCNNs, AlexNet and GoogLeNet, which are learn-

ing positive and negative X-rays for tuberculosis. The accuracy 

of the models was tested in 150 cases. The most functional AI  

model was achieved by combination of AlexNet and GoogLeNet 

with 96% accuracy. There were differences between the two  

DCNN models in 13 cases of 150. The diagnostic accuracy of 

the radiologist in these cases was 100%. Previously machine  

learning was able to get only 80% results but using deep learn-

ing the accuracy has been increased. Artificial intelligence in  

diagnosing tuberculosis can play very important role in the  

fight against the tuberculosis in the near future32.

Psychiatric diagnosis
Researchers at Columbia University’s New York State Psychiat-

ric Institute and the IBM Watson Research Center have developed  

an AI application using automated NLP with ML capable  

of 100% accurate detection of the development of psychosis  

in susceptible individuals. Traditional diagnosis reaches 79%  

accuracy. Research Utilizing artificial intelligence to diagnose  

this disease has proven to be beneficial. Like psychologists, the 

app analyzes speech patterns to differentiate patients who are  

susceptible to psychosis. IBM researchers realized that if the 
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mind of the interviewer (psychologist) began to wander for 

even a moment, they might have missed the signs that were  

essential to the development of psychosis, while the computer 

noticed them. An artificial intelligence diagnostic system elimi-

nates human error and is therefore more accurate in diagnosis  

than experts33.

Medical imaging and image diagnostics (MID)
Medical imaging data is one of the best sources of informa-

tion about patients and at the same time the most complex.  

Traditionally interpreting medical imaging scans is a highly  

skilled, manual job requiring many years of training. In the field 

of medical imaging the AI technologies, such as DNN and DL, 

can produce remarkable improvement in healthcare outcome  

and have proven to provide enhancement in speed, accuracy, 

and cost reduction in interpretation of medical images. MID can  

be utilized in healthcare for multiple cases, such as for identify-

ing cardiovascular abnormalities, detecting musculoskeletal  

injuries, identifying neurological diseases, identifying thoracic 

complications, and common cancers screening. In the business  

perspective AI have high potential in MID and it is estimated 

to rise from $21 billion in 2018 to a value of $265 billion by  

202649.

Medical Imaging with Deep Learning
In one large meta-analysis and systematic review researchers  

compared diagnostic accuracy between DL methods (such as  

ANN, CNN and DCNN and healthcare professionals in medi-

cal imaging. From 31,587 identified studies on DL methods in  

medical imaging researchers included 69 studies. These studies  

provided enough data for calculation of accuracy with sensi-

tivity with mean 79.10% and specificity with mean 88.30%.  

From these studies 14 used same sample for the out-of-sample 

validation between DL methods and healthcare profession-

als. With these 14 studies comparison results between DL  

methods and healthcare professionals was DL methods sys-

tematic review and meta-analysis of the complication rate and  

diagnostic accuracy compared to healthcare professionals 

86.40% and DL models having pooled specificity of 92.50%  

compared to healthcare professionals 90.50%34.

Image diagnosis for oncology
In oncology, lung cancer and breast cancer are the leading  

causes of cancer deaths in the world and therefore there is a  

need for early detection solutions of these cancer types35. Most 

common method in breast cancer screening is digital mam-

mography. Reading mammography images is a difficult task for  

radiologist and can result in both false negatives and false posi-

tives. These inaccuracies can cause delays in cancer detection  

and starting the treatment which lead to higher workload for  

radiologists and unnecessary stress for patients.

McKinney et al. created an AI system with a set of three deep  

learning models. This new system was capable of surpass 

human experts in breast cancer prediction. Researchers evalu-

ated the developed system with two large datasets from UK  

(n=25,856 women) and from USA (n=3097 women). In USA 

new service produced 5.70% reduction of false positives and  

9.40% reduction in false negatives. In UK, new service  

produced 1.20% false positives reduction and 9.40% reduction 

in false negatives. All comparison was made between AI system  

and clinical readers35.

In another research, a Stanford University research group  

taught the neural network with a database of 130,000 cancer 

images to automatically identify cancer and make diagnoses. The  

research team also tested the neural network with a database 

of 14,000 skin lesions. Neural network made valid diagnoses  

with 72% accuracy. The reference was dermatologists who 

were able to diagnose with a diagnosis accuracy of 66%. The 

test was extended to 25 doctors and there were 2000 skin lesion 

images, each with biopsies. The neural network was able to beat  

specialist doctors in all situations37.

Optical coherence tomography (OCT) diagnosis
OCT is one of the most common imaging procedures and in  

US there was 5.4 Million OCT scans performed in 201436.  

DeepMind’s DL was being taught with 14,884 OCT scan images 

from 7621 patients to recognize 50 common eye problems  

including three of the biggest eye diseases (diabetic retinopa-

thy, glaucoma, and age-related macular degeneration). The AI  

correctly identified types of eye disease from OCT scans  

94.50% of the time and 36.

Researchers in China have developed a convolutional neural  

network-based AI platform that can identify, evaluate, and  

suggest treatment for congenital cataracts. Researchers tested  

the accuracy of CC-cruiser and the result was that the perform-

ance of the CC-Cruiser was comparable to that of an ophthal-

mologist: the CC-Cruiser was able to successfully diagnose all  

potential patients in 50 patients. Ophthalmologists were even 

slightly worse and made misdiagnoses in a few patients. The 

CC-Cruiser provided detailed care instructions to patients who  

needed surgical treatment and no misdiagnosis occurred50.

Patient health monitoring (PHM)
Continuous PHM can reduce patient length of hospital stay  

and can increase recovery time and reduce mortality rate. In 

home use, PHM can provide information, instructions, and  

reminders for preventive care. In this paper, PHM consist of serv-

ices and solutions using AI methods for continuous healthcare  

monitoring, healthcare assessment tools, and symptom checking 

solutions which can be used by patients and healthcare profes-

sionals periodically or continuously. HM services are utilized in  

hospitals or in home. When evaluating the user acceptance  

of HM services in our earlier research we found that AI-based 

health condition monitoring solutions were evaluated as the  

best of 15 as most considerable technologies for healthcare 

and the second-best service among 15 services what healthcare  

professionals are willing to use51.

Heart failure monitoring
In Italy, researchers have developed a prototype of computer  

aided diagnosis, a computer-assisted diagnostic system for  

the diagnosis of heart disease, using artificial intelligence. The  

system is intended to assist general practitioners and nurses 

in clinical decision making that are not specialized in cardiol-

ogy. The system receives anamnestic (pre-information) and  
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instrumental (instrument-related) data and makes a diagnosis and  

prognosis relative to the patient’s current state of health. The  

system also considers the patient’s previous clinical history when 

making diagnoses. In addition, the system builds a database of 

patients’ data with heart failure by providing a valuable data  

repository for future utilization. The best results of all groups 

(mild, moderate, and severe) were obtained by using neural  

networks as the artificial intelligence method, which correctly  

classified the training population of 98/100 patients and the 

test group 31/36. The overall accuracy for the test population  

was 86.10%, which was the best of all technologies in the test38.

Health monitoring after surgery
In one research, ANNs and ML algorithms was utilized to  

predict in-hospital mortality for patients undergoing repair of 

abdominal aortic aneurysm. Researchers used clinical variables  

such as patient history, medications, blood pressure, and length 

of stay as input to ANNs and ML algorithms. As a result,  

prediction system generated predictions of in-hospital mortal-

ity with sensitivity of 87%, specificity of 96.10%, and accuracy  

of 95.40%39.

Health monitoring for oncology patients
Finnish company Kaiku health has developed a health interven-

tion platform for symptom monitoring and management for  

improving cancer patient’s quality of life and survival rate. In  

trial with 766 metastatic cancer patients made to evaluate  

effectiveness of symptom monitoring with Kaiku shows that  

digital symptom monitoring during chemotherapy provide  

patients 5.2 months longer overall lifetime, improve their qual-

ity of life within 31% of patients, and reduces hospitalization by  

4% and ER visits by 7%40. 

Key elements for successful implementation of AI-
based services in healthcare
Our research was using only a fraction of healthcare services  

and applications which has been studied globally. In our  

review we focused on research projects or healthcare services 

which are commonly in use by healthcare service providers and 

from these we also focused to services in areas which are focusing  

on actual care processes. From these areas we found that there 

are thousands of research articles from each area of healthcare  

where AI methods are used to provide enhancement to health-

care. We also selected the services which have been evaluated  

as most considerable AI services by healthcare professionals51  

and by general public52 in earlier studies. Some areas from  

healthcare administration systems, for example, fraud identifica-

tion, connected machines, information management, and data  

security were left out from this review.

Based on this review and our earlier studies we have noticed  

that there are multiple use cases where AI methods can be used 

to provide enhancement to healthcare processes. AI utilization  

can: 1) save time spent in healthcare work 2) give accurate  

diagnosis 3) make findings from medical images and medical  

reports 4) monitor health conditions and predict occurrence or 

progress of diseases 5) provide more quality to care 6) reduce  

complications in surgical operations 7) control medical  

adherence and medication misuse and 8) provide help in  

clinical decision making. Identified benefits are collected in  

Figure 3.

When considering the success factors for implementation of 

AI methods to healthcare services we propose that successful  

implementation to actual healthcare use require at least:

a)     A large clinically validated dataset to teach and validate 

AI methods.

b)     Scientific research where new or existing AI methods 

are validated together with healthcare professionals and  

AI methods developers.

c)     Clinically and scientifically proven enhancement in  

specific healthcare use case.

d)     Medical device certification for target market area.

e)     Clearly inform end users that AI does not make itself  

clinical decisions. It only give recommendations, pro-

vide help in clinical activities or support clinicians in  

decision making.

Conclusion and future work
As a conclusion of our systematic review we found out that  

AI can have remarkable possibilities in reducing healthcare 

costs, providing preventive healthcare, ease the work burden of  

healthcare professionals, and providing more accurate diagno-

sis faster and easier. The need for AI services arises in the facts  

that healthcare costs are continuously increasing. Additionally,  

age structure of population is changing, especially in devel-

oped countries, causing that there will be more chronic diseases 

within aged population needing expensive care. There will be also  

shortness of trained nurses and healthcare professionals.  

Moreover, access to modern and effective healthcare services 

are not available especially to poor and elderly people and for 

most of the population living in developing countries. When AI  

methods are used in healthcare research and IT processes in full 

scale, we can achieve remarkable savings in overall healthcare  

costs and same time improve health outcome and quality of 

life. The need for enhancement provided by AI methods can be  

seen in every studied healthcare service areas. 

Moreover as conclusion we have identified and proven that  

there is very high potential for the state-of-the-art AI solutions 

in almost every healthcare sector to reduce costs, ease healthcare  

professionals workload, improve quality of life for patients,  

provide preventive health and improve overall health outcome. 

There are also AI based solutions which can be utilized for  

population in developing countries. These services include  

preliminary diagnosis, preventive health services, patient health 

monitoring services and virtual nurse assistants. In addition, it 

must also be emphasized that artificial intelligence solutions can  

produce $150 billion savings in global healthcare industry by 

20263. Based on these findings we can express that investing  

to AI in healthcare will pay for itself. We recommend all  

healthcare IT service development companies and research  

organizations to fully adopt scientifically validated AI methods  

in their research and development projects.
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When developing and implementing new applications and  

services for industrial purposes and especially for healthcare  

industry safety and quality of service are also key elements for  

successful new service implementation. To maintain and 

enhance quality AI method developers need to fulfill standards,  

regulations and solve possible emerging legal constraints. Dur-

ing the research we found out that United States Food and  

Drug Administration have proposed a regulatory framework 

for AI and ML-based technologies that consist of new issues in  

utilizing AI in healthcare53. This new framework should be  

utilized when developing new AI based technologies to EU  

markets until EU Medical Device Regulation (MDR) will create 

own regulatory framework for AI and ML-based technologies.

Moreover, one recommended to healthcare AI service devel-

opers in AI methods implementation is to join into interest 

group and evaluation framework. There have been established 

the Focus Group on artificial intelligence for health which  

is a joint initiative of the World Health Organization and  

International Telecommunications Union that brings together 

academia, industry, and governmental stakeholders to drive  

the application of AI in health by establishing an evaluation  

framework54.

In our future work we design a model for novel state-of-the-

art AI platform to be utilized by all healthcare service providers  

and healthcare IT services developers. Encouraged by the results 

of this research and as future work we continue the research  

and design of novel platform where AI methods and pre-trained  

AI methods can be utilized and adopted to healthcare IT serv-

ices by an cloud-based, open access, easily integrated platform  

which use open access and even proprietary health data reposi-

tories, national health databases, hospital information systems  

and imaging databases as learning data and constantly evolving  

AI methods for providing fast, automated, and accurate diagnosis 

& prognosis.

Data availability
All data underlying the results are available as part of the article  

and no additional source data are required.

Figure 3. Benefits of AI methods in healthcare.
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