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The application of data science in cancer research has been boosted by major advances

in three primary areas: (1) Data: diversity, amount, and availability of biomedical data; (2)

Advances in Artificial Intelligence (AI) and Machine Learning (ML) algorithms that enable

learning from complex, large-scale data; and (3) Advances in computer architectures

allowing unprecedented acceleration of simulation and machine learning algorithms.

These advances help build in silico ML models that can provide transformative insights

from data including: molecular dynamics simulations, next-generation sequencing,

omics, imaging, and unstructured clinical text documents. Unique challenges persist,

however, in building ML models related to cancer, including: (1) access, sharing, labeling,

and integration of multimodal and multi-institutional data across different cancer types;

(2) developing AI models for cancer research capable of scaling on next generation

high performance computers; and (3) assessing robustness and reliability in the AI

models. In this paper, we review the National Cancer Institute (NCI) -Department of

Energy (DOE) collaboration, Joint Design of Advanced Computing Solutions for Cancer

(JDACS4C), a multi-institution collaborative effort focused on advancing computing and

data technologies to accelerate cancer research on three levels: molecular, cellular,
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and population. This collaboration integrates various types of generated data,

pre-exascale compute resources, and advances in MLmodels to increase understanding

of basic cancer biology, identify promising new treatment options, predict outcomes, and

eventually prescribe specialized treatments for patients with cancer.

Keywords: cancer research, high performance computing, artificial intelligence, deep learning, natural language

processing, multi-scale modeling, precision medicine, uncertainty quantification

INTRODUCTION

Predictive computational models for patients with cancer can
in the future support prevention and treatment decisions
by informing choices to achieve the best possible clinical
outcome. Toward this vision, in 2015, the national Precision
Medicine Initiative (PMI) (1) was announced, motivating
efforts to target and advance precision oncology, including
looking ahead to the scientific, data and computational
capabilities needed to advance this vision. At the same time,
the horizon of computing was changing in the life sciences,
as the capabilities and transformations enabled by exascale
computing were coming into focus, driven by the accelerated
growth in data volumes and anticipated new sources of
information catalyzed by new technologies and initiatives such
as PMI.

The National Strategic Computing Initiative (NSCI) in 2015
named the Department of Energy (DOE) as a lead agency for
“advanced simulation through a capable exascale computing
program” and the National Institutes of Health (NIH) as one
of the deployment agencies to participate “in the co-design
process to integrate the special requirements of their respective
missions.” This interagency coordination structure opened the
avenue for a tight collaboration between the NCI and the DOE.
With shared aims to advance cancer research while shaping the
future for exascale computing, the NCI and DOE established
the JDACS4C in June of 2016 through a 5-year memorandum
of understanding with three co-designed pilot efforts to address
both national priorities. The high-level goals of these three
pilots were to push the frontiers of computing technologies
in specific areas of cancer research: (1) Cellular-level: advance
the capabilities of patient-derived pre-clinical models to identify
new treatments; (2) Molecular-level: further understand the
basic biology of undruggable targets; and (3) Population-
level: gain critical insights on the drivers of population cancer
outcomes. The pilots would also develop new Uncertainty
Quantification (UQ) methods to evaluate confidence in the AI
model predictions.

Using co-design principles, each of the pilots in the JDACS4C
collaboration is based on—and driven by—team science,
which is the hallmark of the collaboration’s success. Enabled
by deep learning, Pilot One (cellular-level) combines data
in innovative ways to develop computationally predictive
models for tumor response to novel therapeutic agents.
Pilot Two (molecular-level) combines experimental data,
simulation, and AI to provide new windows to understand
and explore the biology of RAS-related cancers. Pilot
Three (population-level) uses AI and clinical information

at unprecedented scales to enable precision cancer surveillance
to transform cancer care.

AI AND LARGE-SCALE COMPUTING TO
PREDICT TUMOR TREATMENT
RESPONSE

After years of efforts within the research and pharmaceutical
sectors, many patients with cancer still do not respond
to standard-of-care treatments, and emergence of therapy
resistance is common. Efforts in precision medicine may
someday change this by using a targeted therapeutics approach,
individually tailored to each patient based on predictive models
that use molecular and drug signatures. The Predictive Modeling
for Pre-Clinical Screening Pilot (Pilot One) aims to develop
predictive capabilities of drug response in pre-clinical models of
cancer to improve and expedite the selection and development of
new targeted therapies for patients with cancer. Highlights of the
work done in Pilot One is shown in Figure 1.

As omics data continues to accumulate, computational
models integrating multimodal data sources become possible.
Multimodal deep learning (2) aims to enhance learned features
for one task by learning features over multiple modalities.
Early Pilot One work (3) measured performance of multi-
modal deep neural network drug pair response models with 5-
fold cross validation. Using the NCI-ALMANAC (4) data, best
model performance was demonstrated when gene expression,
microRNA, proteome, and Dragon7 drug descriptors (5) were
combined obtaining an R-squared value of 0.944, which indicates
that over 94% of the variation in tumor response is explained
by the variation among the contributing gene expression, micro
RNA expression, proteomics and drug property data.

Mechanistically informed feature selection is an alternative
approach that has the potential to increase predictive model
performance. The LINCS landmark genes (6) for example
has been used to train deep learning models to predict gene
expression of non-landmark genes (7) and to classify drug-target

interactions (8). Ongoing work in Pilot One is exploring the

impact on prediction using gene sets like that of the LINCS
landmark genes and other mechanistically defined gene sets.

The potential of employing mechanistically informed feature
selection extends beyond improving prediction accuracy, to

building models on the basis of existing biological knowledge.
Transfer learning is another area of important research

activity. The goal of transfer learning is to improve learning in
the target learning task by leveraging knowledge from an existing
source task (9). Given challenges in obtaining sufficient data
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FIGURE 1 | Pilot 1 research aims, general workflow, and supporting data.

for target Patient Derived Xenografts (PDXs), where tumors are
grown in mouse host animals, ongoing transfer learning work
holds promise for learning on cell lines as a source for the target
PDX model predictions. Pilot One is first working on generating
models that generalize across cell line studies, a precursor to
transfer learning from cell lines to PDXs.

Using data from the NCI-ALMANAC (4), NCI-60 (10), GDSC
(11), CTRP (12), gCSI (13), and CCLE (14), models can be
constructed that generalize across cell-line studies. Using multi-
task networks which combines additional learning of three
different classification tasks—tumor/normal, cancer type, and
cancer site—with learning of the drug response task, it could
be possible to capture more of the total variance and improve
precision and recall when training on CTRP and predicting on
CCLE for example. Demonstrating cross-study model capability
will provide additional confidence that general models can
be developed for prediction tasks on cell lines and PDXs
and organoids.

Answering questions of howmuch data and what methods are
suitable is a critical part of Pilot One. Although it is generally
held that deep learning methods outperform traditional machine
learning methods when large data sets are used, this has not
yet been explored in the context of drug response prediction
problem. Early efforts underway in Pilot One are exploring the

relationship among sample size, deep learning methods, and
traditional machine learning methods to better characterize the
dependencies on predictive performance. This information of
sample size together with model accuracy metrics will be of
critical importance to future experimental designs for those who
wish to pursue deep learning approaches to the drug response
prediction problem.

Such extensive deep learning and machine learning
investigations require significant computational resources,
such as those available at DOE Leadership Computing
Facilities (LCF) employed by Pilot 1. A recent experiment
searched 23,200 deep neural network models using COXEN
(15) selected features and Bayesian optimization ideas (16)
to find the best model hyperparameters (hyperparameters
generally define the choice of functions and relationship among
functions in a given deep learning model). This produced
the best cross-study validation results to-date, underscoring
the critical need for feature selection and hyperparameter
optimization when building predictive models. Further,
uncertainty quantification (explained in more depth later) adds
a new level of computing demand. Uncertainty quantification
experiments involving over 30 billion predictions from 450 of
the best models generated on the DOE Summit LCF system are
ongoing to understand the relationship to between best model
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uncertainty and the model that performs best in cross-study
validation experiments.

Reflecting on insights from Pilot 1 activities and current gaps
in available literature, future work will focus on exploring new
predictive models to better utilize, ground, and enrich biological
knowledge. Efforts to improve drug representations for response
prediction are expected to benefit from research involving
training semi-supervised networks on millions of compounds. In
efforts to improve understanding of trained models, mechanistic
information is being incorporated into more interpretable deep
learning models. Active learning in response prediction—which
balances uncertainty, accuracy, and lead discovery—will be
used to guide the acquisition of experimental data for animal
models in a cost-effective and timely manner. And finally, a
necessary step toward precision models is gaining a fine-grained
understanding of prediction error, an insight enabled by the
demonstrated capability in large-scale model sweeps.

AI AT THE FOREFRONT OF RAS RELATED
CANCERS

Oncogenic mutations in RAS genes are associated with more
than 30% of cancers and are particularly prevalent in those
of the lung, colon and pancreas. Though RAS mutations have
been studied for decades, there are currently no RAS inhibitors
and a detailed molecular mechanism for how RAS engages
and activates proximal signaling proteins (RAF) remains elusive
(17). RAS signaling takes place at and is dependent on cellular
membranes, a complex cellular environment that is difficult to
recapitulate using current experimental technologies.

Pilot Two, Improving Outcomes for RAS-related Cancer, is
focused on delivering a validated multiscale model of RAS
biology on a cell membrane by combining the experimental
capabilities at the Frederick National Laboratory for Cancer
Research with the computational resources of the National
Nuclear Security Administration (NNSA), a semi-autonomous
agency of the DOE. The principal challenge in modeling this
system is the diverse length and time scales involved. Lipid
membranes evolve over a macroscopic scale (micrometers and
milliseconds). Capturing this evolution is critical, as changes
in lipid concentration define the local environment in which
RAS operates. The RAS protein itself, however, binds over
time and length scales which are microscopic (nanometers and
microseconds). In order to elucidate the behavior of RAS proteins
in the context of a realistic membrane, our modeling effort must
span the multiple orders of magnitude between microscopic
and macroscopic behavior. The Pilot Two team has built such
a framework, developing a macroscopic model that captures
the evolution of the lipid environment and which is consistent
with an optimized microscopic model that captures protein-
protein and protein-lipid interactions at the molecular scale.
Macroscopic model components (lipid environment, lipid-lipid
interactions, protein behavior and protein-lipid interactions)
were characterized through close collaboration between the
experimentalists at Frederick National Laboratory and the
computational scientists from the DOE/NNSA. The microscopic

FIGURE 2 | CGMD simulation captures the molecular details of RAS in

complex lipid membranes.

model is based on standard Martini force fields for Coarse-
Grained Molecular Dynamics (CGMD), modified to correctly
capture certain details of lipid phase behavior (18–21). A
snapshot from a typical micro-scale simulation run, showing two
RAS proteins on a 30 nm × 30 nm patch of lipid membrane
(containing∼150,000 particles) is shown in Figure 2.

In order to bring the two scales together, the team
devised a novel workflow whereby microscopic subsections
of a running macroscopic model are scored for uniqueness
using a machine learning algorithm operating in a reduced
order space that has been trained on previous simulations.
The most unique subsections in the macroscopic simulation
are identified and re-created as CGMD simulations, which
explore the microscopic behavior. Information from the (many
thousands of) microscopic simulations is then fed back into the
macroscopic model, so that it is continually improving even as
the simulations are running (22).

This modeling infrastructure was designed to exploit
the Sierra supercomputer at Lawrence Livermore National
Laboratory. The scale and heterogeneous architecture of Sierra
make it ideal for such a workflow that combines AI technology
with predictive simulation. Running on the entire machine,
the team was able to simulate at the macroscopic level a 1 by
1µm, 14-lipid membrane with 300 RAS proteins, generating
over 100,000 microscopic simulations capturing over 200ms of
protein behavior. This unprecedented achievement represents an
almost two orders of magnitude improvement on the previously
state of the art. That being said, the space of all possible lipid
mixtures is huge, requiring tens of thousands of samples for any
meaningful coverage. This type of MUltiple Metrics Modeling
Infrastructure (MuMMI) simulations will always be limited by
the available High Performance Computing (HPC) resources.
With an exascale machine we can substantially increase the
dimensionality of the input space and its coverage, significantly
improving the applicability of future campaigns.

In the coming years, the team will exploit this capability
to explore RAS behavior on lipid membranes and extend the
model in three important directions. First, both the macro and
micro models will be modified to incorporate the RAF kinase,
which binds to RAS as the first step in the MAPK pathway
that leads to growth signaling. Second, we will extend the
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infrastructure to include fully atomistic resolution, creating a
three-level (macro/micro/atomistic) multiscale model. Third, we
will incorporate membrane curvature into the dynamics of the
membrane, which is currently constrained to remain flat. The
improved infrastructure will allow the largest and most accurate
computational exploration of RAS biology to date.

ADVANCING CANCER SURVEILLANCE
USING AI AND HIGH-PERFORMANCE
COMPUTING

The Surveillance, Epidemiology, and End Results (SEER)
program funded by the NCI was established in 1973 for the
advancement of public health and for reducing the cancer burden
in the United States. SEER currently collects and publishes
cancer incidence and survival data from population-based cancer
registries covering ∼34.6% of the U.S. population. The curated,
population-level SEER data provide a rich information source for
data-driven discovery to understand drivers of cancer outcomes
in the real world.

An outstanding challenge of the SEER program is how
to achieve near real-time cancer surveillance. Information
abstraction is a critical step to facilitate data-driven explorations.
However, the process is fully manual to ensure high quality
data. As the SEER program increases the breadth of information
captured, the manual process is no longer scalable. By partnering
computational and data scientists from DOE with NCI SEER
domain experts, Pilot Three, Population Information Integration,
Analysis, andModeling for Precision Surveillance, aims to leverage
high-performance computing and artificial intelligence to meet
the emerging needs of cancer surveillance. Moreover, Pilot
Three envisions a fully integrated data-driven modeling and
simulation framework to enable meaningful translation of big
SEER data. By collecting and linking additional patient data,
we can generate profiles for patients with cancer that include
information about healthcare delivery system parameters and
continuity of care. Such rich data will facilitate data-driven
modeling and simulation of patient-specific health trajectories to
support precision oncology research at the population level.

To date, Pilot Three has mainly focused on the development,
scaling, and deployment of cutting-edge AI tools to semi-
automate information abstraction from unstructured pathology
text reports, the main source of information of cancer registries.
In partnership with the Louisiana Tumor Registry and the
Kentucky Cancer Registry, several AI-based Natural Language
Processing (NLP) tools have been developed and benchmarked
for abstraction of fundamental cancer data elements such
as cancer site, laterality, behavior, histology, and grade (23–
29). The NLP tools rely on the latest AI advances including
multi-task learning and attention mechanisms. Scalable training
and hyperparameter optimization of the tools is managed
by relying on pre-exascale computing infrastructure available
within the DOE laboratory complex (30). Following an iterative
optimization protocol, the most computationally efficient and
clinically effective tools are deployed for evaluation across
participating SEER registries. Based on preliminary testing the

NLP tools have been able to accurately classify all five data
elements for 42.5% of cancer cases. Further refinement of this
accuracy level is underway in subsequent versions as well as
incorporation of an uncertainty quantification component to
ease and increase user confidence.

Although the patient information currently collected across
SEER registries is mainly clinical (clin-omics), increasingly
other -omics type of information is expected to become part
of cancer surveillance. Specifically, radiomics (i.e., biomarkers
automatically extracted from histopathological and radiological
images via targeted image processing algorithms) as well as
genomics will provide important insight to understand the
effectiveness of cancer treatment choices.

Moving forward, Pilot Three will implement the latest
NLP tools into production application across participating
SEER registries using Application Program Interfaces (APIs) to
determine the most effective human-AI workflow integration for
broad and standardized technology integration across registries.
The APIs will be integrated in the registries’ workflows. In
addition, working collaboratively with domain experts, the team
will extend the information extraction across biomarkers and
capture disease progression such as metastasis and recurrence.
This pilot is engaging in several partnerships with academic
and commercial entities to bring in heterogeneous data sources
for more effective longitudinal trajectory modeling. Efforts to
understand causal inference beyond treatment (social, economic,
and environmental) impact in the real world are also part of
future plans.

LOOKING AHEAD: OPPORTUNITIES AND
CHALLENGES

In addition to large-scale computing as a critical and necessary
element to pursue the many opportunities for AI in cancer
research, other areas must also develop to realize the tremendous
potential. In this section, we list some of these opportunities.

First, HPC platforms provide high-speed interconnect
between compute nodes that is integral in handling the
communication for data or model parallel training. While
cloud platforms have recently made significant investments
in improving interconnect, this remains a challenge and
would encourage projects like Pilot Three to limit distributed
training to a single node. That said, on-demand nature of
cloud platforms can allow for more efficient resource utilization
of AI workflows, and the modern Linux environments and
familiar hardware configurations available on cloud platforms
offer superior support for AI workflow software which can
increase productivity.

Second, the level of available data currently limits the potential
for AI in cancer research. Developing data resources of sufficient
size, quality, and coherence will be essential for AI to develop
robust models within the domain of the available data resources.

Third, evaluation and validation of data-driven AI models,
and quantifying the uncertainty in individual predictions, will
continue to be an important aspect for the adoption of AI
in cancer research, posing a challenge to the community to
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concurrently develop criteria for evaluation and validation of
models while delivering the necessary data and large-scale
computational resources required.

In the next two subsections, we highlight two efforts within
the JDAC4C collaboration to address these challenges. The first
focuses on scaling the training of the deep neural network
application on HPC systems, and the second quantifies the
uncertainty in the trained models to build a measure of
confidence and limits on how to use them in production.

CANDLE: CANcer Distributed Learning
Environment
CANDLE (16), builds a single, scalable deep neural network
application and is being used to address the challenges in each
of the JDACS4C pilots.

The challenge problem for the CANDLE project is to
enable the most challenging deep learning problems in cancer
research to run on the most capable supercomputers in the
DOE and NIH. Implementations of CANDLE have been
tested on the DOE Titan, Cori, Theta and Summit systems,
and using container technologies on the NIH Biowulf system
(31). The CANDLE software builds on open source deep
learning frameworks including Keras, TesnsorFlow and PyTorch.
Through collaborations with DOE computing centers, HPC
vendors and Exascale Computing Project (ECP) co-design and
software technology projects, CANDLE is being prepared for the
coming DOE exascale platforms.

Features currently supported in CANDLE include feature
selection, hyperparameter optimization, model training,
inferencing and UQ. Future release plans call for supporting
experimental design, model acceleration, uncertainty guided
inference, network architecture search, synthetic data generation
and data modality conversion. These features have been used
to evaluate over 20,000 models in a single run on a DOE
HPC system.

The CANDLE project also features a set of deep learning
benchmarks that are aimed at solving a problem associated
with each of the pilots. These benchmarks embody different
deep learning approaches to problems in cancer biology, and
they are implemented in compliance with CANDLE standards
making them amenable to large-scale model search and
inferencing experiments.

Uncertainty Quantification
UQ is a critical component across all three JDACS4C pilots. It
is a field of analysis that estimates accuracy under multi-modal
uncertainties. UQ allows detecting unreliable model predictions
(32) and provides for improved design of experiments. UQ
quantifies the effects of statistical fluctuations, extrapolation,
overfitting, model misspecification and sampling biases, resulting
in confidence measures for individual model prediction.

Historically, results from computational modeling in the
biological sciences did not incorporate UQ, but measures
of certainty are essential for actionable predictive analytics
(33). The problems are exacerbated as we start addressing
problems with poorly understood causal models using large—but
noisy, multimodal and incomplete—data sets. Methodological

advances are allowing all three pilots to use HPC technology to
simultaneously estimate the uncertainty along with the results.

In addition to providing confidence intervals, the
development of new UQ technology allows assessment and
improvement of data quality (34); evaluation and design of
models appropriate to the data quality and quantity; and
prioritization of further observations or experiments that can
best improve model quality. These developments are currently
being tested in the JDACS4C pilots and are likely to impact the
wider application of large-data-driven modeling.

CONCLUSION

The JDACS4C collaboration continues to provide valuable
insights into the future for AI in cancer research and the essential
role that extreme-scale computing will have in shaping and
informing that future. Concepts have been transformed into
preliminary practice in a short period of time, as a result of
multi-disciplinary teamwork and access to advanced computing
resources. AI is being used to guide experimental design to make
more effective use of valuable laboratory resources, to develop
new capabilities for molecular simulation, and to streamline and
improve efficiencies in the acquisition of clinical data.

The JDACS4C collaboration established a foundation for team
science and is enabling innovation at the intersection of advanced
computing technologies and cancer research. The opportunities
for extreme-scale computing in AI and cancer research extend
well beyond these pilots.
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