
Journal of Artificial Intelligence Research 48 (2013) 513-582 Submitted 12/12; published 11/13

AI Methods in Algorithmic Composition:
A Comprehensive Survey

Jose David Fernández josedavid@geb.uma.es
Francisco Vico fjv@geb.uma.es
Universidad de Málaga, Calle Severo Ochoa, 4, 119
Campanillas, Málaga, 29590 Spain

Abstract
Algorithmic composition is the partial or total automation of the process of music com-

position by using computers. Since the 1950s, different computational techniques related to
Artificial Intelligence have been used for algorithmic composition, including grammatical
representations, probabilistic methods, neural networks, symbolic rule-based systems, con-
straint programming and evolutionary algorithms. This survey aims to be a comprehensive
account of research on algorithmic composition, presenting a thorough view of the field for
researchers in Artificial Intelligence.

1. Introduction

Many overly optimistic, but ultimately unfulfilled predictions were made in the early days
of Artificial Intelligence, when computers able to pass the Turing test seemed a few decades
away. However, the field of Artificial Intelligence has grown and got matured, developing
from academic research and reaching many industrial applications. At the same time, key
projects and challenges have captivated public attention, such as driverless cars, natural
language and speech processing, and computer players for board games.

The introduction of formal methods have been instrumental in the consolidation of many
areas of Artificial Intelligence. However, this presents a disadvantage for areas whose subject
matter is difficult to define in formal terms, which naturally tend to become marginalized.
That is the case of Computational Creativity (also known as Artificial Creativity), which
can be loosely defined as the computational analysis and/or synthesis of works of art, in a
partially or fully automated way. Compounding the problem of marginalization, the two
communities naturally interested in this field (AI and the arts) speak different languages
(sometimes very different!) and have different methods and goals1, creating great diffi-
culties in the collaboration and exchange of ideas between them. In spite of this, small
and sometimes fragmented communities are active in the research of different aspects of
Computational Creativity.

The purpose of this survey is to review and bring together existing research on a specific
style of Computational Creativity: algorithmic composition. Interpreted literally, algorith-
mic composition is a self-explanatory term: the use of algorithms to compose music. This
is a very broad definition, because for centuries musicians have been proposing methods
that can be considered as algorithmic in some sense, even if human creativity plays a key

1. Related to this problem, it is not uncommon for engineering concepts to become bent in strange ways
when interpreted by artists. See Footnote 28 in page 550 for a particularly remarkable example.



Fernández & Vico

role. Some commonly cited examples include d’Arezzo’s Micrologus, species counterpoint,
Mozart’s dice games, Schoenberg’s twelve-tone technique, or Cage’s aleatoric music. Read-
ers interested in these and other pre-computer examples of algorithmic composition are
referred to the introductory chapters of almost any thesis or book on the subject, such as
Díaz-Jerez’s (2000), Aschauer’s (2008) or Nierhaus’s (2009). In this survey, we will use the
term algorithmic composition in a more restricted way, as the partial or total automation
of music composition by formal, computational means. Of course, pre-computer examples
of algorithmic composition can be implemented on a computer, and some of the approaches
reviewed in this survey implement a classical methodology. In general, the focus will be
on AI techniques, but self-similarity and cellular automata will also be reviewed as modern
computational techniques that can be used for generating music material without creative
human input.

1.1 Motivation

Some useful starting points for researching the past and present of computer music are the
Computer Music Journal, the International Computer Music Conference2 annually orga-
nized by the International Computer Music Association3, and some books such as Machine
Models of Music (Schwanauer & Levitt, 1993), Understanding music with AI (Balaban
et al., 1992), Music and Connectionism (Todd & Loy, 1991), and the anthologies of selected
articles from the Computer Music Journal (Roads & Strawn, 1985; Roads, 1992). However,
these resources are not only about algorithmic composition, but computer music in general.
For more specific information on algorithmic composition, surveys are a better option.

There are many surveys reviewing work on algorithmic composition. Some review both
analysis and composition by computer with AI methods (Roads, 1985), while others discuss
algorithmic composition from a point of view related to music theory and artistic consid-
erations (Collins, 2009), or from the personal perspective of a composer (Langston, 1989;
Dobrian, 1993; Pope, 1995; Maurer, 1999). Some of them provide an in depth and compre-
hensive view of a specific technique for algorithmic composition, as Anders and Miranda
(2011) do for constraint programming, as Ames (1989) does for Markov chains, or as Santos
et al. (2000) do for evolutionary techniques, while some others are specialized in the compar-
ison between paradigms for computational research on music, as Toiviainen (2000). Others
offer a wide-angle (but relatively shallow) panoramic of the field (Papadopoulos & Wiggins,
1999), review the early history of the field (Loy & Abbott, 1985; Ames, 1987; Burns, 1994),
or analyze methodologies and motivations for algorithmic composition (Pearce et al., 2002).
There are also works that combine in depth and comprehensive reviews for a wide range of
methods for algorithmic composition, such as Nierhaus’s (2009) book.

In this context, a natural question arises: why yet another survey? The answer is
that no existing survey article fulfills the following criteria: (a) to cover all methods in
a comprehensive way, but from a point of view primarily focused on AI research, and
(b) to be centered on algorithmic composition.4 Nierhaus’s (2009) book on algorithmic

2. The archives are available at http://quod.lib.umich.edu/i/icmc/
3. http://www.computermusic.org/
4. Many surveys conflate the discussion on algorithmic composition (synthesis of music) with the compu-

tational analysis of music, as in the work of Roads (1985), Nettheim (1997) or Toiviainen (2000). This
can become somewhat distracting if the reader is interested just in algorithmic composition.

514

http://quod.lib.umich.edu/i/icmc/
http://www.computermusic.org/


AI Methods in Algorithmic Composition

composition comes close to fulfilling these criteria with long, detailed expositions for each
method and comprehensive reviews of the state of the art. In contrast, this survey is
intended to be a reasonably short article, without lengthy descriptions: just a reference
guide for AI researchers. With these aims in mind, this survey is primarily structured
around the methods used to implement algorithmic composition systems, though early
systems will also be reviewed separately.

A second, more practical motivation is accessibility. Since Computational Creativity
balances on the edge between AI and the arts, the relevant literature is scattered across
many different journals and scholarly books, with a broad spectrum of topics from computer
science to music theory. As a very unfortunate consequence, there are many different
paywalls between researchers and relevant content, translating sometimes into a lot of hassle,
only partially mitigated by relatively recent trends like self-archiving. This survey brings
together a substantial body of research on algorithmic composition, with the intention of
conveying it more effectively to AI researchers.

2. Introducing Algorithmic Composition

Traditionally, composing music has involved a series of activities, such as the definition of
melody and rhythm, harmonization, writing counterpoint or voice-leading, arrangement or
orchestration, and engraving (notation). Obviously, this list is not intended to be exhaustive
or readily applicable to every form of music, but it is a reasonable starting point, especially
for classical music. All of these activities can be automated by computer to varying degrees,
and some techniques or languages are more suitable for some of these than others (Loy &
Abbott, 1985; Pope, 1993).

For relatively small degrees of automation, the focus is on languages, frameworks and
graphical tools to provide support for very specific and/or monotone tasks in the composi-
tion process, or to provide raw material for composers, in order to bootstrap the composition
process, as a source of inspiration. This is commonly known as computer-aided algorith-
mic composition (CAAC), and constitutes a very active area of research and commercial
software development: many software packages and programming environments can be
adapted to this purpose, such as SuperCollider (McCartney, 2002), Csound (Boulanger,
2000), MAX/MSP (Puckette, 2002), Kyma (Scaletti, 2002), Nyquist (Simoni & Dannen-
berg, 2013) or the AC Toolbox (Berg, 2011). The development of experimental CAAC
systems at the IRCAM5 (such as PatchWork, OpenMusic and their various extensions)
should also be emphasized (Assayag et al., 1999). Ariza’s comprehensive repository of soft-
ware tools and research resources for algorithmic composition6 constitutes a good starting
point (Ariza, 2005a) to explore this ecosystem, as well as algorithmic composition in general.
Earlier surveys (such as Pennycook, 1985 and Pope, 1986) are also useful for understanding
the evolution of the field, especially the evolution of graphical tools to aid composers.

Our survey, on the other hand, is more concerned with algorithmic composition with
higher degrees of automation of compositional activities, rather than typical CAAC. In other
words, we focus more on techniques, languages or tools to computationally encode human
musical creativity or automatically carry out creative compositional tasks with minimal or

5. http://www.ircam.fr/
6. http://www.flexatone.net/algoNet/

515

http://www.ircam.fr/
http://www.flexatone.net/algoNet/


Fernández & Vico

no human intervention, instead of languages or tools whose primary aim is to aid human
composers in their own creative processes.

Obviously, the divide between both ends of the spectrum of automation (CAAC repre-
senting a low degree of automation, algorithmic composition a high degree of automation) is
not clear, because any method that automates the generation of creative works can be used
as a tool to aid composers, and systems with higher degrees of automation can be custom-
built on top of many CAAC frameworks.7 Furthermore, a human composer can naturally
include computer languages and tools as an integral part of the composition process, such
as Brian Eno’s concept of generative music (Eno, 1996). To conclude these considerations,
this survey is about computer systems for automating compositional tasks where the user
is not expected to be the main source of creativity (at most, the user is expected to set
parameters for the creative process, encode knowledge about how to compose, or to pro-
vide examples of music composed by humans to be processed by the computer). This also
includes real-time automatic systems for music improvisation, such as in jazz performance,
or experimental musical instruments that automate to a certain extent the improvisation
of music.

Finally, a few more considerations, to describe what this survey is not about:

• Although music can be defined as “organized sound”, a composition written in tra-
ditional staff notation does not fully specify how the music actually sounds: when a
piece of music is performed, musicians add patterns of small deviations and nuances in
pitch, timing and other musical parameters. These patterns account for the musical
concept of expressiveness or gesture, and they are necessary for the music to sound
natural. While the problem of automatically generating expressive music is important
in itself, and involves creativity, it is clearly not within the boundaries of algorithmic
composition as reviewed in this survey. The reader is referred to Kirke and Miranda’s
(2009) review of this area for further information.

• The computational synthesis of musical sounds, or algorithmic sound synthesis, can be
understood as the logical extension of algorithmic composition to small timescales; it
involves the use of languages or tools for specifying and synthesizing sound waveforms,
rather than the more abstract specification of music associated with traditional staff
notation. The line between algorithmic composition and algorithmic sound synthesis
is blurred in most of the previously mentioned CAAC systems, but this survey is not
concerned with sound synthesis; interested readers may refer to Roads’s (2004) book
on the subject.

• In computer games (and other interactive settings), music is frequently required to
gracefully adapt to the state of the game, according to some rules. This kind of
music is commonly referred to as non-linear music (Buttram, 2003) or procedural
audio (Farnell, 2007). Composing non-linear music presents challenges of its own, not
specifically related to the problem of algorithmic composition, so we will not review
the literature on this kind of music.

7. This is the case of many of the systems for algorithmic composition described here. For example,
PWConstraints (described in Section 3.2.3) is built on top of PatchWork, as described by Assayag et al.
(1999).

516



AI Methods in Algorithmic Composition

These three scenarios (automated expressiveness, algorithmic sound synthesis and non-
linear music) will be sparingly mentioned in this survey, only mentioned when innovative
(or otherwise notable) techniques are involved.

2.1 The Early Years

In this section, we will review early research published on algorithmic composition with
computers, or with a clear computational approach. While these references might have
been discussed by methodology in the following sections, it is useful to group them together
here, since it is difficult to find a survey discussing all of them.

The earliest use of computers to compose music dates back to the mid-1950s, roughly
at the same time as the concept of Artificial Intelligence was coined at the Darmouth
Conference, though the two fields did not converge until some time later. Computers were
expensive and slow, and also difficult to use, as they were operated in batch mode.

One of the most commonly cited examples is Hiller and Isaacson’s (1958) Illiac Suite,
a composition that was generated using rule systems and Markov chains, late in 1956. It
was designed as a series of experiments on formal music composition. During the following
decade, Hiller’s work inspired colleagues from the same university to further experiment
with algorithmic composition, using a library of computer subroutines for algorithmic com-
position written by Baker (also a collaborator of Hiller), MUSICOMP (Ames, 1987). This
library provided a standard implementation of the various methods used by Hiller and
others.

Iannis Xenakis, a renowned avant-garde composer, profusely used stochastic algorithms
to generate raw material for his compositions, using computers since the early 1960s to
automate these methods (Ames, 1987). Though his work can be better described as CAAC,
he still deserves being mentioned for being a pioneer. Koenig, while not as well known as
Xenakis, also was a composer that in 1964 implemented an algorithm (PROJECT1) using
serial composition (a musical theory) and other techniques (as Markov chains) to automate
the generation of music (Ames, 1987).

However, there were also several other early examples of algorithmic composition, though
not so profusely cited as Hiller and Xenakis’s. Push Button Bertha, composed in 1956
(Ames, 1987) around the same time as Hiller’s Illiac Suite, is perhaps the third most
cited example: a song whose music was algorithmically composed as a publicity stunt by
Burroughs (an early computer company), generating music similar to a previously analyzed
corpus. However, there is at least one earlier, unpublished work by Caplin and Prinz in 1955
(Ariza, 2011), which used two approaches: an implementation of Mozart’s dice dame and
a generator of melodic lines using stochastic transitional probabilities for various aspects
of the composition. Another commonly cited example by Brooks et al. (1957) explored the
potential of the Markoff 8 chain method.

Several other early examples are also notable. Olson’s (1961) dedicated computer was
able to compose new melodies related to previously fed ones, using Markov processes. While
the work was submitted for publication in 1960, they claimed to have built the machine in
the early 1950s. Also of interest is Gill’s (1963) algorithm, implemented at the request of the

8. “Markov” and “Markoff” are alternative transliterations of the Russian surname Ма́рков. The spelling
“Markov” has been prevalent for decades, but many older papers used “Markoff”.

517



Fernández & Vico

BBC, which represents a hallmark in the application of classical AI techniques to algorithmic
composition: it used a hierarchical search with backtracking to guide a compositional pro-
cess inspired by Schoenberg’s twelve-tone technique. Finally, it is worth mentioning what
may represent the first dissertation on algorithmic composition: Padberg’s (1964) Ph.D.
thesis implemented a compositional framework (based in formal music theory) in computer
code. Her work is unusual in that, instead of using random number generators, she used
raw text input to drive procedural techniques in order to generate all the parameters of the
composition system.

Non-scholarly early examples also exist, though they are difficult to assess because of
the sparsity of the published material, and the fact that they are mostly not peer-reviewed.
For example, Pinkerton (1956) described in Scientific American a “Banal Tune-Maker”, a
simple Markov chain created from several tens of nursery tunes, while Sowa (1956) used
a GENIAC machine9 to implement the same idea (Cohen, 1962), and Raymond Kurzweil
implemented in 1965 (Rennie, 2010) a custom-made device that generated music in the style
of classical composers. Another example, unfortunately shrouded in mystery, is Raymond
Scott’s “Electronium” (Chusid, 1999), an electronic device whose development spanned
several decades, reportedly able to generate abstract compositions. Unfortunately, Scott
never published or otherwise explained his work.

As machines became less expensive, more powerful and in some cases interactive, algo-
rithmic composition slowly took off. However, aside from the researchers at Urbana (Hiller’s
university), there was little continuity in research, and reinventing the wheel in algorithmic
composition techniques was common. This problem was compounded by the fact that ini-
tiatives in algorithmic composition often came from artists, who tended to develop ad hoc
solutions, and the communication with computer scientists was difficult in many cases.

3. The Methods

The range of methodological approaches used to implement algorithmic composition is
notably wide, encompassing many, very different methods from Artificial Intelligence, but
also borrowing mathematical models from Complex Systems and even Artificial Life. This
survey has been structured by methodology, devoting a subsection to each one:

3.1 Grammars
3.2 Symbolic, Knowledge-Based Systems
3.3 Markov Chains
3.4 Artificial Neural Networks
3.5 Evolutionary and Other Population-Based Methods
3.6 Self-Similarity and Cellular Automata

Figure 1 summarizes the taxonomy of the methods reviewed in this survey. Together,
Sections 3.1 and 3.2 describe work using symbolic techniques that can be characterized
as classical “good old-fashioned AI”. Although grammars (Section 3.1) are symbolic and

9. A GENIAC Electric Brain, an electric-mechanic machine promoted as an educational toy. Despite being
marketed as a computer device, all the “computing” was performed by the human operator.

518



AI Methods in Algorithmic Composition

Artificial intelligence

Symbolic AI
(Knowledge-based, Rule-based)

Sections 3.1, 3.2

Grammars
Section 3.1

L-systems
Section 3.1.1

Related
methods

Section 3.1.3

Case-based
reasoning

Section 3.2.4

Rule learning

Section 3.2.1

Constraint
satisfaction
Section 3.2.3

Concurrency
models

Section 3.2.5

Optimization

Population-based methods

Evolutionary algorithms
Sections 3.1.2, 3.2.2, 3.4.1, 3.5

Automatic
Section 3.5.1

Interactive
Section 3.5.2

Other population-based methods
Section 3.5.3

Machine learning

Markov chains
Related statistical methods

Section 3.3

Artificial neural networks
Section 3.4

Computational methods
for automatic generation

of music material
(not based on models
of human creativity)

Complex systems

Self-similarity
Section 3.6

Cellular automata
Section 3.6.1

Figure 1: Taxonomy of the methods reviewed in this survey

knowledge-based, and thus should be included as part of Section 3.2, they have been segre-
gated in a separate subsection because of their relative historical importance in algorithmic
composition. Sections 3.3 and 3.4 describe work using various methodologies for machine
learning, and Section 3.5 does the same for evolutionary algorithms and other population-
based optimization methods. Although the methodologies described in Section 3.6 are not
really a form of “Artificial Intelligence”, they have been included because of their impor-
tance in algorithmic composition as automatic sources of music material (i.e., they do not
depend on any model of human creativity for generating music material).

There have been other attempts to systematize algorithmic composition, such as the
taxonomies of Papadopoulos and Wiggins (1999) and Nierhaus (2009). Our taxonomy
is roughly similar to Nierhaus’s, with some differences, such as including L-systems as
grammars instead of self-similar systems. The reader may be surprised to find that many
methods for machine learning and optimization are missing from our taxonomy. There are
several reasons for this. In some cases, some methods are subsumed by others. For example,
in machine learning, many different methods have been formulated in the mathematical
framework of artificial neural networks. In other cases, a method has been used only rarely,
almost always together with other methods. For example, in optimization, this is the case
of tabu search, which has been used a few times in the context of constraint satisfaction
problems (Section 3.2.3), and simulated annealing, which has been occasionally combined
with constraint satisfaction, Markov processes and artificial neural networks.

It is difficult to neatly categorize the existing literature in algorithmic composition with
any hierarchical taxonomy, because the methods are frequently hybridized, giving rise to
many possible combinations. This is specially true for evolutionary methods, which have

519



Fernández & Vico

been combined with almost every other method. Additionally, some papers can be con-
sidered to belong to different methodologies, depending on the selected theoretical frame-
work10, while others are unique in their approaches11, further complicating the issue. Fi-
nally, the lines between some methods (as rule systems, grammars and Markov chains) are
frequently blurred: in some cases, ascribing a work to one of them becomes, in the end, a
largely arbitrary exercise depending on the terminology, intentions and the domain of the
researchers. Each method will be presented separately (but also presenting existing hy-
bridizations with other methods), describing the state of the art in a mostly chronological
order for each method.

Although this classification is not fully comprehensive, we have only found one (arguably
remote) example using a method that is not related to the ones listed above: Amiot et al.
(2006), who applied the Discrete Fourier Transform (DFT) to generate variations of musical
rhythms. Given a rhythm as a sequence of numerical symbols, they represented it in the
frequency domain by computing its DFT. Variations on that rhythm were generated by
slightly perturbing the coefficients of the transform and converting back to the time domain.

3.1 Grammars and Related Methods

In broad terms, a formal grammar may be defined as a set of rules to expand high-level
symbols into more detailed sequences of symbols (words) representing elements of formal
languages. Words are generated by repeatedly applying rewriting rules, in a sequence of
so-called derivation steps. In this way, grammars are suited to represent systems with hierar-
chical structure, which is reflected in the recursive application of the rules. As hierarchical
structures can be recognized in most styles of music, it is hardly surprising that formal
grammar theory has been applied to analyze and compose music for a long time12, de-
spite recurring concerns that grammars fail to capture the internal coherency and subtleties
required for music composition (Moorer, 1972).

To compose music using formal grammars, an important step is to define the set of
rules of the grammar, which will drive the generative process. The rules are traditionally
multi-layered, defining several subsets (maybe even separated in distinct grammars) of rules
for different phases of the composition process: from the general themes of the composition,
down to the arrangement of individual notes. While early authors derived the rules by hand
from principles grounded in music theory, other methods are possible, like examining a cor-
pus of pre-existing musical compositions to distill a grammar able to generate compositions
in the general style of the corpus, or using evolutionary algorithms. Another important
aspect is the mapping between the formal grammar and the musical objects that it gener-
ates, which usually relates the symbols of the derived sequences with elements of the music
composition, as notes, chords or melodic lines. However, other mappings are possible, as
using the derivation tree to define the different aspects of the musical composition. Another
important aspect of the automatic composition process is the election of the grammatical

10. For example, Markov chains can be formulated as stochastic grammars; some self-similar systems can be
characterized as L-system grammars; rule learning and case-based reasoning are also machine learning
methods; etc.

11. For example, Kohonen’s method (Kohonen et al., 1991), which is neither grammatical nor neural nor
Markovian, but can be framed in either way, according to its creator.

12. See, e.g., the survey by Roads (1979).

520



AI Methods in Algorithmic Composition

Reference Composition task Comments

Lidov & Gabura, 1973 melody early proposal

Rader, 1974 melody early proposal,
very detailed grammar

Ulrich, 1977 jazz chord identification integrated in an ad hoc system
(to produce jazz improvisations)

Baroni & Jacoboni, 1978 grammar for Bach chorales early proposal

Leach & Fitch, 1995
(XComposer) structure, rhythm and melody uses chaotic non-linear systems

(self-similarity)

Hamanaka et al., 2008 generate variations on two melodies
(by altering the derivation tree)

inspired by Lerdahl et al.’s (1983)
GTTM

Roads, 1977 structure, rhythm and melody grammar compiler

Holtzman, 1981 structure, rhythm and melody grammar compiler

Jones, 1980 structure space grammars
(uses the derivation tree)

Bel, 1992
(Bol Processor) improvisation of tabla rhythms tool for field research

Kippen & Bel, 1989 improvisation of tabla rhythms grammatical inference

Cruz-Alcázar & Vidal-Ruiz,
1998 melody grammatical inference

Gillick et al., 2009 jazz improvisation

grammatical inference.
Implemented as an extension to
Keller and Morrison’s (2007)

ImprovGenerator

Kitani & Koike, 2010
(ImprovGenerator) real-time drum rhythm improvisation online grammatical inference

Keller & Morrison, 2007
(Impro-Visor) jazz improvisation sophisticated GUI interface

Quick, 2010 classical three-voice counterpoint integrated in a Schenkerian
framework

Chemillier, 2004 jazz chord sequences implemented in OpenMusic and
MAX

Table 1: References for Section 3.1 (algorithmic composition with grammars), in order of
appearance.

rules to be applied. While many approaches are possible, the use of activation probabilities
for the rules (stochastic grammars) is common. In the process of compiling information
for this survey, it has been noted that almost all research has been done on regular and
context-free grammars, as context-sensitive and more general grammars seem to be very
difficult to implement effectively, except for very simple toy systems.

Lidov and Gabura (1973) implemented an early example of a formal grammar to com-
pose simple rhythms. Another early example was implemented by Rader (1974): he defined
a grammar by hand from rather simple music concepts, enriching the rules of the grammar
with activation probabilities. Other early examples used grammars driven by rules from
music theories, either as a small part of a synthesis engine, as Ulrich’s (1977) grammar

521



Fernández & Vico

for enumerating jazz chords, or by inferring the rules from classical works, as Baroni and
Jacoboni’s (1978) grammar to generate melodies. A Generative Theory of Tonal Music
(Lerdahl et al., 1983), a book presenting a grammatical analysis of tonal music, is a rela-
tively early theoretical work that can be said to have influenced the use of grammars for
algorithmic composition, though it is not directly concerned with algorithmic composition,
but with a grammatical approach to the analysis of music. This book has been widely pop-
ular, and has had a lasting impact on the field and high citation rates. Examples of later
work inspired by this book include Pope’s (1991) “T-R Trees”, Leach and Fitch’s (1995)
“event trees”, and Hamanaka et al.’s (2008) “melody morphing”.

In the 1980s, some proposed approaches more in line with computer science, abstracting
the process to generate the grammars instead of codifying them by hand, though at the cost
of producing less interesting compositions. Roads (1977) proposed a framework to define,
process and use grammars to compose music, while Holtzman (1981) described a language
to define music grammars and automatically compose music from them. Meanwhile, Jones
(1980) proposed the concept of space grammars, in conjunction with a novel mapping
technique: instead of using the terminal symbols as the building blocks of the composition,
he used the derivation tree of the terminal sequence to define the characteristics of the
composition. This approach was unfortunately not developed far enough to yield significant
results. In spite of these early efforts, most research on grammatical representations of
music was focused on analysis rather than synthesis. Some instances, such as Steedman’s
(1984) influential grammar for the analysis of jazz chord progressions, were later adapted
for synthesis (see below).

The problem with a grammatical approach to algorithmic composition is the difficulty
to manually define a set of grammatical rules to produce good compositions. This problem
can be solved by generating the rules of the grammar (and the way they are applied) auto-
matically. For example, although Bel (1992) implemented the BOL processor to facilitate
the creation by hand of more or less sophisticated music grammars13, he also explored the
automated inference of regular grammars (Kippen & Bel, 1989). Later, Cruz-Alcázar and
Vidal-Ruiz (1998) implemented several methods of grammatical inference: analyze a cor-
pus of pre-existing classical music compositions, represented with a suitable set of symbols,
then inducing stochastic regular grammars (Markov chains) able to parse the compositions
in the corpus, and finally applying these grammars to generate new compositions that are
in a similar style to the compositions in the corpus. Gillick et al. (2009) used a similar
approach (also Markovian) to synthesize jazz solos, but with a more elaborated synthesis
phase. Kitani and Koike (2010) provide another example of grammatical inference, in this
case used for real-time improvised accompaniment.

However, others still designed their grammars by hand, carefully choosing the map-
ping between terminal symbols and musical objects, as Keller and Morrison (2007) did
for jazz improvisations. Another approach is to take a pre-existing music theory with a
strong hierarchical methodology, as designing a grammar inspired in Schenkerian analysis
(Quick, 2010), or using Lerdhal’s grammatical analysis to derive new compositions from two
previously existing ones by altering the derivation tree (Hamanaka et al., 2008), or even de-

13. Initially to represent and analyze informal knowledge about Indian tabla drumming, but later also to
represent other music styles.

522



AI Methods in Algorithmic Composition

Reference Composition task Comments

Prusinkiewicz, 1986 melody mapping turtle graphics to music scores

Nelson, 1996 melody mapping turtle graphics to music scores

Mason & Saffle, 1994 melody (counterpoint is suggested) mapping turtle graphics to music scores

Soddell & Soddell, 2000 aural representations
of biological data L-system modulates pitch intervals

Morgan, 2007 composition for a large
instrumental ensemble ad hoc symbolic mapping

Langston, 1989 melody L-system is interpreted to arrange
pre-specified fragments

Worth & Stepney, 2005 melody several mappings and L-system types

Manousakis, 2006 melody (sound synthesis) complex, multi-dimensional mapping.
Implemented in MAX.

McCormack, 1996 melody, polyphonies contex-sensitive L-systems

DuBois, 2003 real-time accompaniment implemented in MAX

Wilson, 2009 melody mapping turtle graphics to music scores

McGuire, 2006 arpeggiator simple symbolic mapping

Watson, 2008 base chord progression L-systems are used the context of a
larger, multi-stage system

Gogins, 2006 voice leading Musical theory (pitch spaces).
Implemented in Csound

Bulley & Jones, 2011 arpeggiator part of a real-time art installation.
Implemented in MAX

Pestana, 2012 real-time accompaniment implemented in MAX

Table 2: References for Section 3.1.1, in order of appearance.

veloping a jazz on-the-fly improviser (Chemillier, 2004) by adapting Steedman’s grammar,
previously implemented for analysis purposes.

3.1.1 L-Systems

Lindenmayer Systems, commonly abbreviated to L-systems, are a specific variant of formal
grammar, whose most distinctive feature is parallel rewriting, i.e., at each derivation step,
not one but all possible rewriting rules are applied at once. They have been successfully
applied in different scenarios, specially to model microbial, fungi and plant growth and
shapes, because they are particularly well-suited to represent the hierarchical self-similarity
characteristic of these organisms. This ability to represent self-similar structures, together
with the fact that L-systems are easier to understand and apply than traditional formal
grammars, have made L-systems fairly popular in algorithmic composition.

Arguably, the most visually stunning way to use L-systems has been the synthesis of
2D and 3D renderings of plants, using a mapping from sequences of symbols to graphics
based on turtle graphics (Prusinkiewicz & Lindenmayer, 1990). It is only natural that
the first application of L-systems to algorithmic composition used turtle graphics to render
an image that was then interpreted into a musical score (Prusinkiewicz, 1986), mapping

523



Fernández & Vico

coordinates, angles and edge lengths into musical objects. This approach has been used
by music composers, as Nelson’s (1996) Summer Song and Mason and Saffle’s (1994) idea
of using different rotations and stretchings of the image to implement counterpoint. As a
funny side note, Soddell and Soddell (2000) generated aural renditions of their biological
L-system models, to explore new ways to understand them. Additionally, other composers
used new approaches not dependent upon the graphical interpretation of the L-systems,
such as Morgan’s (2007) symbolic mapping. One popular is to pre-generate a collection
of short fragments and/or other musical objects, and define an algorithm to interpret the
final sequence of symbols as instructions that transform and arrange the fragments into a
composition. This approach has been used by Langston (1989) and Kyburz (Supper, 2001),
while Edwards (2011) used a more convoluted but ultimately similar mapping.

However, these two approaches (the graphics-to-music and the pre-generated sequences)
only scratch the surface of the technical possibilities to generate music with L-systems; many
other mappings are possible (Worth & Stepney, 2005). In some cases, these mappings can
become exceedingly complex, such as the implementation of Manousakis (2006), whose
L-systems drove a multidimensional automata whose trajectory was then interpreted as
music. While most composers and researchers experimented with context-free L-systems,
McCormack (1996, 2003a) used context-sensitive, parametric L-systems to increase the
expressiveness of the compositions and enable the implementation of polyphony. He also
used a rich and comprehensive mapping from the symbol sequence to the musical score,
interpreting the symbols in the sequence as instructions to modulate the parameters of
an automata driving a MIDI synthesizer, though the grammars were ultimately specified
by hand. DuBois (2003) used a simpler but also rich approach, mapping the symbols
to elemental musical objects (as notes or instruments) or simple transformations applied
to them, using brackets to encode polyphony. He also used L-systems to drive real-time
synthetic accompaniment, by extracting features from the audio signal of a performer (as
the pitch and loudness of the notes), encoding them as symbols to be expanded by L-system
rules, and using the resulting symbol sequences to drive MIDI synthesizers. In spite of these
developments, new mappings based on the images rendered by the turtle method are still
investigated (Wilson, 2009).

L-systems can also be used to implement tools to assist the compositional process by
solving just a part of it, as generating more complex arpeggios than off-the-shelf arpeggiators
(McGuire, 2006), or providing just the base chord progression of a composition (Watson,
2008), sometimes applying elements of music theory to implement the rules (Gogins, 2006).
Another area of research is the implementation of real-time improvisers, either for limited
parts of the composition process (Bulley & Jones, 2011), or for accompaniment (Pestana,
2012).

3.1.2 Grammars and Evolutionary Algorithms

Evolutionary methods have also been used together with grammars. In this case, a common
approach is to evolve the grammatical rules, as in GeNotator (Thywissen, 1999), in which
the genomes are grammars specified through a GUI and the fitness function is interactive
(the user assigns the fitness of the grammars). A more exotic example by Khalifa et al.

524



AI Methods in Algorithmic Composition

Reference Composition task Comments

Thywissen, 1999
(GeNotator) structure the grammar is the genotype

in an interactive evolutionary algorithm

Khalifa et al., 2007 melody the grammar is part of the fitness function

Ortega et al., 2002 melody grammatical evolution

Reddin et al., 2009 melody grammatical evolution

Shao et al., 2010
(Jive) melody interactive grammatical evolution

Bryden, 2006 melody interactive evolutionary algorithm with L-systems

Fox, 2006 melody interactive evolutionary algorithm with L-systems

Peck, 2011 melody evolutionary algorithm with L-systems

Dalhoum et al., 2008 melody grammatical evolution with L-systems

Table 3: References for Section 3.1.2, in order of appearance.

(2007) uses the grammar as part of the fitness function instead of the generation of the
compositions.

Some evolutionary methods are specifically adapted to handle grammars. This is the
case of grammatical evolution, a method in which the genomes are sequences of numbers
or symbols controlling the application of rules of a pre-defined (and possibly stochastic)
grammar. The most common approach is to represent the music as the output from the
grammar, which can range from very general to specific for a given music style. Several
instances of this method have been developed: from an early, bare-bones implementation
(Ortega et al., 2002) to a more elaborated one using a simple fitness function based on gen-
eral concepts from music theory (Reddin et al., 2009). However, there are other approaches,
such as the system implemented by Shao et al. (2010), whose grammar is used to produce
intermediate code, which is then used to generate the music.

As in the more general case of formal grammars, evolutionary algorithms have been
used to create L-systems. However, most examples use an interactive fitness function (the
fitness is assigned by a human), like the basic implementation of Bryden (2006) and the
approach based on genetic programming used by Fox (2006). Others use very simplistic
fitness functions, with modest results (Peck, 2011). A more sophisticated approach was
used by Dalhoum et al. (2008), using grammatical evolution with a fitness function based on
a distance metric of the synthesized compositions to a pre-specified corpus of compositions.

3.1.3 Related Methods

Finally, this subsection presents a few examples that do not exactly use grammars, but
utilize similar or borderline approaches.

The first one is the application of Kohonen’s Dynamically Expanding Context (DEC)
method to algorithmic composition (Kohonen et al., 1991). In DEC, a set of music examples
is fed to the algorithm, which infers a model from the structure of the examples that may
be construed as a stochastic context-sensitive grammar. The model is as parsimonious as
possible, that is, the rules have as little contextual information as possible. Then, the
inferred grammar is used to generate new compositions. Drewes and Högberg’s (2007)

525



Fernández & Vico

Reference Composition task Comments

Kohonen et al., 1991 melody Uses Kohonen’s Dynamically Expanding Context

Drewes & Högberg, 2007 generate variations on
a melody applies tree-based algebraic transformations

Cope, 1992 (EMI),
2000 (SARA, ALICE),
2005 (Emily Howell)

melody EMI uses Augmented Transition Networks

Table 4: References for Section 3.1.3, in order of appearance.

work is also borderline, using regular tree grammars to generate a basic scaffold that is
then modified by algebraic operations to generate a final music composition.

But the more famous example in this category is Cope’s (1992) “Experiments in Musical
Intelligence” (EMI), a software application able to analyze a set of musical compositions in a
specific style (for example, Bach’s) and to derive an Augmented Transition Network (ATN),
i.e., a finite state automaton able to parse relatively complex languages. EMI then applies
pattern-matching algorithms to extract signatures or short musical sequences characteristic
of the style of the set of examples being analyzed, determining how and when to use these
signatures in compositions with that style. After this analysis, the synthesis phase generates
new music compositions that comply with the specifications encoded in the inferred ATN,
with quite impressive results. He iterated EMI’s design in other applications, like SARA
and ALICE (Cope, 2000), but ultimately tried a new approach with yet another application,
“Emily Howell”. Cope (2005) reported that “Emily Howell” developed a unique style by
a process of trial and error guided by human input; however, other researchers (Wiggins,
2008) have disputed the validity of his methodology.

3.2 Symbolic, Knowledge-Based Systems and Related Methods

Here, knowledge-based system is used as an umbrella term encompassing various rule-based
systems under several different paradigms, with the common denominator of representing
knowledge as more or less structured symbols. Since knowledge about musical composition
has traditionally been structured as sets of more or less formalized rules for manipulating
musical symbols (Anders & Miranda, 2011), knowledge-based and rule systems come as a
natural way to implement algorithmic composition. In fact, it is extremely common for
algorithmic composition systems to include some kind of composition rules at some point
of the workflow. The most known early work on algorithmic composition is an example:
classical rules for counterpoint were used in the generation of the first and second movements
of the Illiac Suite (Hiller & Isaacson, 1958). Because of this, this subsection is mostly
confined to the description of systems with strong foundations in AI (as expert systems),
sidestepping to a certain degree the works of composers that are difficult to categorize,
because of the ad hoc nature of their approaches and the very different language they use.

Starting with an exposition of early work, Gill’s (1963) paper, already cited in Sec-
tion 2.1, presented the first application of classical AI heuristics to algorithmic composi-
tion: he used a hierarchical search with backtracking to guide a set of compositional rules
from Schoenberg’s twelve-tone technique. Another notable example is Rothgeb’s (1968)
Ph.D. thesis: he encoded in SNOBOL a set of rules extracted from eighteenth century

526



AI Methods in Algorithmic Composition

Reference Composition task Comments

Gill, 1963 Schoenberg’s twelve-tone
technique hierarchical search with backtracking

Rothgeb, 1968 unfigured bass implemented in SNOBOL

Thomas, 1985
(Vivace) four-part harmonization implemented in LISP

Thomas et al., 1989
(Cantabile) Indian raga style implemented in LISP

Steels, 1986 four-part harmonization uses Minsky’s frames

Riecken, 1998
(Wolfgang) melody uses Minsky’s SOM

Horowitz, 1995 jazz improvisation uses Minsky’s SOM

Fry, 1984
(Flavors Band)

jazz improvisation and other
styles

phrase processing networks (networks of
agents encoding musical knowledge)

Gjerdingen, 1988
(Praeneste) species counterpoint implements a theory of how composers work

Schottstaedt, 1989 species counterpoint constraint-based search with backtracking

Löthe, 1999 piano minuets set of rules extracted from a classical textbook

Ulrich, 1977 jazz improvisation also uses a grammar (for jazz chords)

Levitt, 1981 jazz improvisation Criticized by Horowitz (1995)
for being overly primitive

Hirata & Aoyagi, 1988 jazz improvisation uses logic programming

Rowe, 1992
(Cypher)

interactive jazz
improvisation uses Minsky’s SOM

Walker, 1994
(ImprovisationBuilder)

interactive jazz
improvisation implemented in SmallTalk

Ames & Domino, 1992
(Cybernetic Composer) jazz, rock also uses Markov chains for rhythm

Table 5: References for Section 3.2, in order of appearance.

music treatises to harmonize the unfigured bass, that is to say, determine adequate chords
from a sequence of bass notes.14 He discovered that the classical rules were incomplete and
incoherent to a certain extent.

These were recurring problems for many others implementing rules of composition
straight from musical theory. For example, Thomas (1985) designed a rule-based system
for four-part chorale harmonization implemented in Lisp15, with the intent of clarifying the
musical rules she taught to her students. Later, she designed another rule system (Thomas
et al., 1989) for simple melody generation in the Indian raga style. Another example in
harmonization is the use of Minsky’s paradigm of frames by one of his students to encode a
set of constraints to solve a relatively simple problem from tonal harmony, finding a pass-
ing chord between two others (Steels, 1979), and later to tackle the problem of four-part
harmonization (Steels, 1986). Minsky developed other paradigms, such as K-lines and the

14. It should be noted that this stems from the practice of not completely specifying the harmonization, a
problem that performers were expected to solve by improvisation.

15. All the systems discussed in this paragraph were implemented in Lisp.

527



Fernández & Vico

Reference Composition task Comments

Schwanauer, 1993
(MUSE)

four-part
harmonization

presents the learning techniques in a similar way to
Roads (1985, sect. 8.2)

Widmer, 1992 harmonization based on user evaluations of a training corpus

Spangler, 1999 real-time four-part
harmonization

prioritizes harmonic errors by severity,
in order to refine the results

Morales & Morales, 1995 species counterpoint uses logic programming

Table 6: References for Section 3.2.1, in order of appearance.

Society of Mind (SOM), which also influenced the work on algorithmic composition of two
of his students, Riecken and Horowitz. Riecken (1998) used them in a system that com-
posed monophonic melodies according to user-specified “emotional” criteria, while Horowitz
(1995) used them in a system that improvised jazz solos. Fry’s (1984) phrase processing
networks, while not directly based on SOM, were specialized procedural representations of
networks of agents implementing musical transformations to encode knowledge about jazz
improvisation and other styles.

Other researchers have also explored different ways to generate species counterpoint
with rule-based systems: Gjerdingen (1988) implemented a system based on the use of
several pre-specified musical schemata, implementing a theory of how composers work,
while Schottstaedt (1989) used a more formal approach: a constraint-based search with
backtracking. He followed a classical rulebook on species counterpoint, to the point of
bending some rules and creating new ones in order to get as close as possible to the scores
serving as examples in that book. Also on the formal side, Löthe (1999) extracted a set of
rules from a classical textbook for composing minuets.

Other music styles demanded different approaches: as jazz performances are improvisa-
tions over existing melodies, knowledge-based systems for jazz were structured as more or
less sophisticated analysis-synthesis engines. For example, the work of Ulrich (1977): his
system analyzed a melody and fitted it to a harmonic structure. Another student of Minsky
(Levitt, 1981) implemented a rule-based jazz improviser formulating some of the rules as
constraints, while Hirata and Aoyagi (1988) encoded the rules in logic programming, trying
to design a more flexible system. Rowe (1992) used a SOM architecture16 for Cypher, an
analysis-synthesis engine able to play jazz interactively with a human performer, notable for
its flexibility and the musical knowledge encoded into it. Also, Walker (1994) implemented
an object-oriented analysis-synthesis engine able to play jazz interactively with a human
performer, and Ames and Domino (1992) implemented a hybrid system (using rules and
Markov chains) for the generation of music in several popular genres.

3.2.1 Rule Learning

While the knowledge implemented in rule-based systems is usually static, part of the knowl-
edge may be dynamically changed or learned. The natural term for this concept is machine
learning, but its meaning is unfortunately vague, because it is used as a catch-all for many
methods, including neural networks and Markov chains.

16. He was not a student of Minsky, though.

528



AI Methods in Algorithmic Composition

A few examples of rule-based learning systems have been developed. For example,
Schwanauer (1993) implemented MUSE, a rule-based system for solving several tasks in four-
part harmonization. While the core ruleset was static, a series of constraints and directives
for the composition process where also built in the system, and their application was also
used to dynamically change the rule priorities. Additionally, when the system successfully
solved a task, it was able to deduce new composite rules by extracting patterns of rule
application. Widmer (1992) implemented another example: a system for the harmonization
of simple melodies. It was based on user evaluations of a training corpus: from a hierarchical
analysis of the training melodies and theirs evaluations, it extracted rules of harmonization.
Spangler (1999) implemented a system for generating rule systems for harmonizing four-
part chorales in the style of Bach, with the constraint of doing the harmonization in real
time. The rulesets were generated by analyzing databases of examples with algorithms that
applied formal concepts of information theory for distilling the rules, and the violations of
harmonic rules were prioritized in order to refine the results. Using the framework of logic
programming, Morales and Morales (1995) designed a system that learned rules of classical
counterpoint from musical examples and rule templates.

3.2.2 Rule-Based Methods and Evolutionary Algorithms

The most intuitive way to hybridize rule-based knowledge systems and evolutionary algo-
rithms is to craft a fitness function from the ruleset. This can be done efficiently for domains
whose rules have been adequately codified, and compliance with the rules can be expressed
as a graduated scale, instead of a binary (yes/no) compliance.

A good example is four-part baroque harmonization for a pre-specified melody, which
lends itself particularly well to this approach. McIntyre (1994) extracted a set of rules for
performing this harmonization from classical works, and codified them as a set of scoring
functions. The fitness was a weighted sum of these scores, with a tiered structure: some
scores were not added unless other specific scores had values above some thresholds (be-
cause they were more critical or prerequisites to produce good harmonizations). A slightly
different approach was used by Horner and Ayers (1995): they defined two classes of rules:
one for defining acceptable voicings for individual chords, used to enumerate all possible
voicings, and another for defining how the voices are allowed to change between succes-
sive chords. An evolutionary algorithm was used to find music compositions, whose search
space was constructed with the enumeration of voicings (first class of rules). The fitness
of each candidate solution was simply the amount of violated rules from the second class.
Phon-Amnuaisuk et al. (1999) also did four-part harmonization using a set of rules to build
the fitness function and musical knowledge to design the genotype and the mutation and
crossover operators, but the lack of global considerations in the fitness function led to mod-
est results. In contrast, Maddox and Otten (2000) got good results implementing a system
very similar to McIntyre’s (1994), but using a more flexible representation, resulting in a
larger search space of possible individuals, and without the tiered structure in the fitness
function, enabling a less constrained search process.

Another good example is species counterpoint: Polito et al. (1997) extracted rules for
species counterpoint from a classic eighteenth century music treatise, using them to define
fitness functions in a multi-agent genetic programming system: each agent performed a

529



Fernández & Vico

Reference Composition task Comments

McIntyre, 1994 four-part harmonization explores several schemes to combine
rules into the fitness function

Horner & Ayers, 1995 four-part harmonization
two stages: enumeration of possible

chord voicings, evolutionary algorithm
for voice-leading rules

Phon-Amnuaisuk et al., 1999 four-part harmonization
criticizes vanilla evolutionary algorithms

for generating unstructured
harmonizations

Maddox & Otten, 2000 four-part harmonization similar to McIntyre’s (1994)

Polito et al., 1997 species counterpoint multi-agent genetic programming system

Gwee, 2002 species counterpoint fuzzy rules

Table 7: References for Section 3.2.2, in order of appearance.

set of composition or transformation operations on a given melody specified as a seed,
and they cooperated to produce the composition. Gwee (2002) exhaustively studied the
computational complexity of problems related to the generation of species counterpoint
with rulesets, and implemented an evolutionary algorithm whose fitness function was based
on a set of fuzzy rules (although he also experimented with trained artificial neural networks
as fitness functions).

3.2.3 Constraint Satisfaction

Gradually (in a process that spanned the 1980s and 1990s), some researchers on algorithmic
composition with rule-based systems adopted formal techniques based on logic program-
ming. For example, Boenn et al. (2008) used answer set programming to encode rules for
melodic composition and harmonization. However, most of the work on logic programming
has been under a different paradigm: the formulation of algorithmic composition tasks as
constraint satisfaction problems (CSPs). Previously referenced work, as Steels’s (1979),
Levitt’s (1981), Schottstaedt’s (1989) and Löthe’s (1999) can be seen as part of a gradual
trend towards the formulation of musical problems as CSPs17, although constraint logic
programming (CLP) came to be the tool of choice to solve CSPs. Good surveys on CLP
for algorithmic composition have been written by Pachet and Roy (2001) and Anders and
Miranda (2011).

Ebcioğlu worked for many years in this area, achieving notable results. In a first work
implemented in Lisp (Ebcioğlu, 1980), he translated rules of fifth-species strict counterpoint
to composable Boolean functions (he had to add rules of his own to bring the system into
producing acceptable results, though), and used an algorithm that produced an exhaustive
enumeration of the compositions satisfying a previously arranged set of rules: basically, he
implemented a custom engine for logic programming in Lisp. Over the next decade, he
the tackled the problem of writing four-part chorales in the style of J. S. Bach. Finally, he
produced CHORAL, a monumental expert system (Ebcioğlu, 1988), distilling into it 350
rules to guide the harmonization process and the melody generation. To keep the problem

17. While Gill’s (1963) implementation was formulated as a CSP, it was somewhat primitive by later stan-
dards.

530



AI Methods in Algorithmic Composition

tractable, he designed a custom logic language (BSL) with optimizations over standard logic
languages, as backjumping. His system received substantial publicity, and was supposed to
reach the level of a talented music student, in his own words.

Following Ebcioğlu’s work, many constraint systems have been implemented for harmo-
nization or counterpoint. Tsang and Aitken (1991) implemented a CLP system using Prolog
to harmonize four-part chorales. However, their system was grossly inefficient.18 Ovans and
Davison (1992) described an interactive CSP system for first-species counterpoint, where
a human user drove the search process, and the system constrained the possible outputs
(according to counterpoint rules) as the search progressed. They took care of efficiency
by using arc-consistency in the resolution of the constraints. Ramírez and Peralta (1998)
solved a different problem: given a monophonic melody, their CLP system generated a
chord sequence to harmonize it. Phon-Amnuaisuk (2002) implemented a constraint system
for harmonizing chorales in the style of J. S. Bach, but with an innovation over previous
systems: to add knowledge to the system about how to apply the rules and control the
harmonization process explicitly, thus modulating the search process in an explicit and
flexible way. Anders and Miranda (2009) analyzed a Schoenberg’s textbook on the theory
of harmony, programming a system in Strasheela (see below) to produce self-contained har-
monic progressions, instead of harmonizing pre-existing melodies, as most other constraint
systems do.

While many CLP systems have been implemented to solve classical problems in harmo-
nization or counterpoint, some researchers have studied the application of CLP techniques to
different problems. In a very simple application, Wiggins (1998) used a CLP system to gen-
erate short fragments of serial music. Zimmermann (2001) described a two-stage method,
where both stages used CLP: the first stage (AARON) took as input a “storyboard” to spec-
ify the mood of a composition as a function of time, and generated a harmonic progression
and a sequence of directives. The second (COMPOzE) generated a four-part harmonization
according to the previously arranged progression and directives; the result was intended as
background music. Laurson and Kuuskankare (2000) studied constraints for the instru-
mentation19 of guitars and trumpets (i.e., constraints for composing music easily playable
in these instruments). Chemillier and Truchet (2001) analyzed two CSPs: a style of Cen-
tral African harp music, and Ligeti textures. They used heuristic search in their analyzes
instead of backtracking, heralding OMClouds’ approach to constraint programming (see
below). Sandred (2004) proposed the application of constraint programming to rhythm.

Several general-purpose constraint programming systems for algorithmic composition
have been proposed (i.e., languages and environments to program the constraints). One
of the earliest examples was Courtot’s (1990) CARLA, a CLP system for generating poly-
phonies with a visual front-end and a rich, extendable type system designed to represent
relationships between different musical concepts. Pachet and Roy (1995) implemented an-
other general-purpose musical CLP (Backtalk) in an object-oriented framework (MusES),
designing a generator of four-part harmonizations on top of it. Their key contribution
was a hierarchical arrangement of constraints on notes and chords, dramatically decreas-
ing the (both cognitive and computational) complexity of the resulting constraint system.

18. In spite of using just 20 rules, it required up to 70 megabytes of memory to harmonize a phrase of 11
notes.

19. That is to say, take into account the way an instrument is played when composing its part.

531



Fernández & Vico

Reference Composition task Comments

Boenn et al., 2008 melody and harmonization answer set programming
Ebcioğlu, 1980 species counterpoint implemented in LISP
Ebcioğlu, 1988
(CHORAL) four-part harmonization implemented in a custom logic language (BSL)

Tsang & Aitken, 1991 four-part harmonization very inefficient
Ovans & Davison, 1992 species counterpoint interactive search
Ramírez & Peralta, 1998 melody harmonization simpler constraint solver
Phon-Amnuaisuk, 2002 four-part harmonization explicit control over the search process

Anders & Miranda, 2009 Schoenberg’s Theory of
Harmony implemented in Strasheela

Wiggins, 1998 Schoenberg’s twelve-tone
technique very simple demonstration

Zimmermann, 2001
(Coppelia)

structure, melody,
harmonization, rhythm

two stages: harmonic plan (Aaron) and
execution (Compoze)

Laurson & Kuuskankare,
2000

guitar and trumpet
instrumentation implemented with PWConstraints

Chemillier & Truchet, 2001 African harp and Ligeti
textures implemented in OpenMusic

Sandred, 2004 rhythm implemented in OpenMusic
Courtot, 1990
(CARLA) polyphony, general purpose early general-purpose system

Pachet & Roy, 1995
(BackTalk) four-part harmonization implemented in MusEs

Rueda et al., 1998 polyphony, general purpose
describes PWConstraints (implemented in
PatchWork) and Situation (implemented in

OpenMusic)
Rueda et al., 2001 general purpose describes PiCO
Olarte et al., 2009 general purpose describes ntcc

Allombert et al., 2006 interactive improvisation uses ntcc
Rueda et al., 2006 interactive improvisation uses ntcc and Markovian models
Pachet et al., 2011 melody integrates Markovian models and constraints
Truchet et al., 2003 general purpose describes OMClouds

Anders, 2007 general purpose describes Strasheela

Sandred, 2010 general purpose describes PWMC.
Implemented in PatchWork

Carpentier & Bresson, 2010 orchestration
uses multi-objective optimization
to discover candidate solutions.

Interfaces with OpenMusic and MAX
Yilmaz & Telatar, 2010 harmonization fuzzy logic
Aguilera et al., 2010 species counterpoint probabilistic logic

Geis & Middendorf, 2008 four-part harmonization multi-objective Ant Colony Optimization
Herremans & Sorensena,

2012 species counterpoint variable neighborhood with tabu search

Davismoon & Eccles, 2010 melody, rhythm uses simulated annealing to combine
constraints with Markov processes

Martin et al., 2012 interactive improvisation implemented in MAX

Table 8: References for Section 3.2.3, in order of appearance.

532



AI Methods in Algorithmic Composition

Rueda et al. (1998) reviewed two other early general-purpose systems, PWConstraints and
Situation. PWConstraints was able to (relatively easily) handle problems in polyphonic
composition through a subsystem (score-PMC), while Situation was more flexible and im-
plemented more optimizations in its search procedures. PiCO (Rueda et al., 2001) was
an experimental language for music composition that seamlessly integrated constraints,
object-oriented programming and a calculus for concurrent processes. The idea was to use
constraint programming to specify the voices in a composition, and to use the concurrent
calculus to harmonize them. The authors also implemented a visual front-end to PiCO for
ease of use, Cordial. In a similar way to PiCO, ntcc was another language for constraint
programming that implemented primitives for defining concurrent systems, although it was
not specifically designed for algorithmic composition. ntcc has been proposed to generate
rhythm patterns and as a more expressive alternative to PiCO (Olarte et al., 2009), and
has mainly been used for machine improvisation: Allombert et al. (2006) used it as the
improvisation stage of their two-stage system (the first stage used a temporal logic system
to compose abstract temporal relationships between musical objects, while the ntcc stage
generated concrete music realizations), and Rueda et al. (2006) used ntcc to implement
a real-time system that learned a Markovian model (using a Factor Oracle) from musi-
cians and concurrently applied it to generate improvisations. Not related to ntcc, Pachet
et al. (2011) has also proposed a framework to combine constraint satisfaction and Markov
processes.

OMClouds (Truchet et al., 2003) was another general-purpose (but purely visual) con-
straint system for composition, but its implementation set it apart from most other formal
systems: internally, the constraints are translated to cost functions. Instead of the opti-
mized tree search with backtracking usual in CLP, an adaptive tabu search was performed,
seeking to minimize a solution with minimal cost. This avoids some problems inherent to
constraint programming, such as overconstraining, but it cannot be guaranteed to com-
pletely navigate the search space. Anders (2007) implemented Strasheela, a system that
was expressly designed to be highly flexible and programmable, aiming to overcome a per-
ceived limitation of previous general-purpose systems: the difficulty to implement complex
with constraints related to multiple aspects of the compositions process. Finally, another
purely visual constraint system, PWMC, was proposed by Sandred (2010) to overcome per-
ceived limitations of score-PMC. It was able to handle constraints concerning not only pitch
structure as score-PMC, but also rhythm and metric structure.

It should be stressed that, while CLP has become the tool of choice to solve CSPs,
other approaches are also used. Previously cited OMClouds is just one of these. Carpentier
and Bresson (2010) implemented a mixed system for orchestration that worked in a curi-
ous way: the user fed the system with a target sound and a set of symbolic constraints; a
multi-objective evolutionary algorithm found a set of orchestration solutions matching the
target sound, and a local search algorithm filtered out the solutions not complying with
the constraints. Yilmaz and Telatar (2010) implemented a system for simple constraint
harmonization with fuzzy logic, while Aguilera et al. (2010) used probabilistic logic to solve
first-species counterpoint. More exotic solutions have been proposed, as the use of Ant
Colony Optimization with a multi-objective approach to solve the constraints of Baroque
harmonization (Geis & Middendorf, 2008), variable neighborhood with tabu search to solve
soft constraints for first-species counterpoint (Herremans & Sorensena, 2012), or simulated

533



Fernández & Vico

Reference Composition task Comments

Pereira et al., 1997 Baroque music hierarchical analysis and representation

Ribeiro et al., 2001
(MuzaCazUza) Baroque music generates a melody from a harmonic line

Ramalho & Ganascia, 1994 jazz improvisation uses a rule-based system for analysis

Parikh, 2003 jazz improvisation also uses a rule system to analize music

Eigenfeldt & Pasquier, 2010 jazz chord progressions also uses Markovian models

Sabater et al., 1998 harmonization also uses a rule system

Table 9: References for Section 3.2.4, in order of appearance.

annealing to combine constraints with Markov processes (Davismoon & Eccles, 2010). Fi-
nally, Martin et al. (2012) presented an even more exotic approach: a real-time music
performer that reacted to its environment. While some of the aspects of the music where
controlled by Markov chains, others where expressed as a CSP. To solve this CSP in real
time, a solution was calculated at random (but quickly) using binary decision diagrams.

3.2.4 Case-Based Reasoning

Case-based reasoning (CBR) is another formal framework for rule-based systems. In the
CBR paradigm, the system has a database of cases, that can be defined as instances of
a problem with their corresponding solutions. Usually, a case also contains structured
knowledge about how the problem is solved in that case. When faced with a new problem,
the system matches it against the case database. Unless the new problem is identical to
one recorded in the case database, the system will have to select a case similar to the new
problem, and adapt the corresponding solution to the new problem. If the new solution is
deemed appropriate, a new case (recording the new problem along with the new solution)
may be included in the database.

Several researchers have used CBR for algorithmic composition. Pereira et al. (1997)
implemented a system that generated its case database from just three Baroque music
pieces, which were analyzed into hierarchical structures; the cases were their nodes. The
system composed just the soprano melodic line of the piece, searching for similar cases in its
case database. The results were comparable to the output of a first-year student, according
to music experts consulted by the authors. An intersecting set of researchers implemented
a simpler CBR composing system (Ribeiro et al., 2001) that generated a melody from a
harmonic line, this time with a case database generated from just six Baroque pieces. Cases
were represented in a different way, tough: each case represented the rhythm, the melody
and other attributes associated to a chord in a given context. To generate a new music piece,
a harmonic line was specified, and the system fleshed out the music piece by matching the
cases to the harmonic line.

Hybrid systems have also been proposed. Ramalho and Ganascia (1994) proposed a jazz
improviser that used a rule system to analyze incoming events (for example, the ongoing
sequence of chords) and a CBR engine to improvise. The case database was assembled by
extracting patterns from transcriptions of jazz recordings, and consisted of descriptions of
contexts and how to play in these contexts. During the improvisation, the current context

534



AI Methods in Algorithmic Composition

Reference Composition task Comments

Haus & Sametti, 1991
(Scoresynth) melody Petri nets

Lyon, 1995 melody Petri nets to encode Markov chains

Holm, 1990 melody, sound synthesis inspired in CSP process algebra

Ross, 1995
(MWSCCS) melody custom process algebra

Rueda et al., 2001 general purpose describes PiCO

Allombert et al. (2006) interactive improvisation uses ntcc

Rueda et al., 2006 interactive improvisation uses ntcc and Markovian models

(Olarte et al., 2009) general purpose, rhythms describes ntcc

Table 10: References for Section 3.2.5, in order of appearance.

was analyzed by the rule system, and those cases applying in the current context were
extracted from the database and combined to determine the output of the improviser. Con-
sidering that Ramalho and Ganascia’s system was too inflexible, Parikh (2003) implemented
another jazz improviser, intending to use a large case database containing jazz fragments
from various sources, in order to get a system with a style of its own. Eigenfeldt and
Pasquier (2010) used a case-based system to generate variable-order Markov models for
jazz chord progressions.

Outside the jazz domain, a hybrid system for harmonizing melodies of popular songs
was implemented by Sabater et al. (1998): given a melody, the system sequentially decided
the chords to harmonize it. If the CBR module failed to match a case, the system fell back
to a simple heuristic rule system to select an appropriate chord. As the harmonized output
was added to the case database, the CBR module gradually learned over time from the rule
system.

3.2.5 Concurrency Models

Concurrency models can be described as formal languages to specify, model and/or reason
about distributed systems. They provide primitives to precisely define the semantics of
interaction and synchronization between several entities. Their main application has been
modeling and designing distributed or concurrent computer systems, but they have also
been used as languages to partially or fully model the composition process, because music
composition can be formulated as an endeavor to carefully synchronize streams of music
events produced by several interacting entities. Concerning algorithmic composition, the
most used concurrency models have been Petri nets and several kinds of process algebras,
also known as process calculi. Detailed descriptions of these models are beyond the scope of
this survey; see for example Reisig’s (1998) book on Petri nets and Baeten’s (2005) survey
on process algebras for more information.

Petri nets have been used as the basis for Scoresynth (Haus & Sametti, 1991), a visual
framework for algorithmic composition in which Petri nets were used to describe transforma-
tions of musical objects (sequences of notes and musical attributes), and the synchronization

535



Fernández & Vico

between musical objects was implicit in the structure of the net. Petri nets have also been
used as an efficient and compact way to implement Markov chains (Lyon, 1995).

Process algebras were first used for algorithmic composition by Holm (1990), although
his model (inspired by Hoare’s algebra, CSP) was more geared towards sound synthesis
than music composition. A more proper example is Ross’s (1995) MWSCCS, an exten-
sion (adding concepts for music composition) of a previously existing algebra (WSCCS).
Specifications for algorithmic composition written in MWSCCS were meant to resemble
grammatical specifications, but with a richer expressive power. Later examples have also
been cited in Section 3.2.3, as the PiCO language (Rueda et al., 2001), which integrated
logical constraints and a process algebra. Also cited in that Section, ntcc is a process alge-
bra that has been used to implement machine improvisation (Allombert et al., 2006) and
to drive a Markovian model (using a Factor Oracle) for real-time machine learning and
improvisation (Rueda et al., 2006). It has also been proposed to generate rhythm patterns,
and as a more expressive alternative to PiCO (Olarte et al., 2009).

3.3 Markov Chains and Related Methods

Conceptually, a Markov chain is a simple idea: a stochastic process, transiting in discrete
time steps through a finite (or at most countable) set of states, without memory: the next
state depends just on the current state, not on the sequence of states that preceded it
or on the time step. In their simplest incarnations, Markov chains can be represented as
labeled directed graphs: nodes represent states, edges represent possible transitions, and
edge weights represent the probability of transition between states. However, Markov chains
are more commonly represented as probability matrices.

When Markov chains are applied to music composition, the probability matrices may
be either induced from a corpus of pre-existing compositions (training), or derived by hand
from music theory or by trial-and-error. The former is the most common way to use them in
research, while the latter is more used in software tools for composers. An important design
decision is how to map the states of the Markov chain to musical objects. The simplest
(but fairly common) mapping just assigns a sequential group of notes to each state, with
the choice of just one note (instead of a larger sequence) being fairly common.

It is also common to extend the consideration of the “current state”: in an n-th order
Markov chain, the next state depends on the last n states, not just the last one. As a
consequence, the probability matrix has n + 1 dimensions. In algorithmic composition,
Markov chains are mostly used as generative devices (generating a sequence of states), but
they can also be used as analysis tools (evaluating the probability of a sequence of states).
In the latter case, the term n-gram is also used, though strictly speaking it refers to a
sequence of N states.

Markov chains were a very popular method in the early years of algorithmic composition.
Early examples have already been reviewed in Section 2.1; additionally, Ames (1989) also
provides a good survey. However, Markov chains generated from a corpus of pre-existing
compositions captured just local statistical similarities, and their limitations soon became
apparent (Moorer, 1972): low-n Markov chains produced strange, unmusical compositions
that wandered aimlessly, while high-n ones essentially rehashed musical segments from the
corpus and were also very computationally expensive to train.

536



AI Methods in Algorithmic Composition

Reference Composition task Comments

Tipei, 1975 melody Markov chains are part of a larger,
ad hoc system

Jones, 1981 melody very simple introduction for composers

Langston, 1989 melody dynamic weights

North, 1991 melody Markov chains are part of a larger,
ad hoc system

Ames & Domino, 1992
(Cybernetic Composer) jazz, rock uses Markov chains for rhythms

Visell, 2004 real-time generative art
installation

Liberal use of the concept of HMM.
Implemented in MAX

Zicarelli, 1987
(M and Jam Factory) interactive improvisation commercial GUI applications

Ariza, 2006 alternative representation for transition
matrices. Implemented in athenaCL

Ponsford et al., 1999 composing sarabande pieces adds symbols to expose the structure
of the pieces

Lyon, 1995 melody implements Markov chains
with Petri nets

Verbeurgt et al., 2004 melody two stages: a Markovian model
and an artificial neural network

Thom, 2000
(BoB) interactive jazz improvisation statistical machine learning

Lo & Lucas, 2006 melody evolutionary algorithm, Markov chains
used in the fitness function

Werner & Todd, 1997 melody co-evolutionary algorithm, Markov
chains used as evolvable fitness functions

Thornton, 2009 melody grammar-like hierarchy
of Markov models

Cruz-Alcázar and Vidal-Ruiz
(1998) melody analysis with grammatical inference,

generation with Markovian models

Gillick et al. (2009) jazz improvisation analysis with grammatical inference,
generation with Markovian models

Eigenfeldt & Pasquier, 2010 jazz chord progressions uses case-based reasoning

Davismoon & Eccles, 2010 melody, rhythm uses simulated annealing to combine
constraints with Markov processes

Pachet et al., 2011 melody integrates Markovian models and
constraints

Grachten, 2001 jazz improvisation integrates Markovian models
and constraints

Manaris et al., 2011 interactive melody improvisation Markov chains generate candidates
for an evolutionary algorithm

Wooller & Brown, 2005 transitioning between two melodies alternates Markov chains
from the two melodies

Table 11: References for Section 3.3, in order of appearance.

Because of this, Markov chains came to be seen as a source of raw material, instead of a
method to truly compose music in an automated way, except for some specialized tasks such

537



Fernández & Vico

as rhythm selection (McAlpine et al., 1999). Therefore, while research interest in Markov
chains receded in subsequent years as these limitations became apparent and other methods
were developed, they remained popular among composers. However, citing even a relevant
subset of all the works were composers use Markov chains as part of their compositional
process would inflate the reference list beyond reasonable length. A few typical examples of
Markov chains used by composers (sometimes as part of a larger automatic compositional
framework or software system) are the papers of Tipei (1975), Jones (1981), Langston (1989,
although he used dynamically computed weights), North (1991) and Ames and Domino
(1992). It should be noted that composers sometimes deconstruct formal methods to adapt
them to their own purposes, as when Visell (2004) used the concept of a Hidden Markov
Model (described below) to implement a manually-tuned real-time generative art system.

In addition, many software suites use Markov chains to provide musical ideas to com-
posers, even if the probabilities are specified by hand instead of generated from a corpus.
Ariza (2006) gives a compact list of software suites and experimental programs using Markov
chains, while his thesis (Ariza, 2005b) provides a comprehensive view of the field. Much
has been done for usability in this field, by using GUI interfaces (Zicarelli, 1987), but also
developing more effective ways to encode the probability matrices, for example as compact
string specifications (Ariza, 2006).

However, novel research on Markov chains for algorithmic compositions has still been
carried out in several ways. For example, Ponsford et al. (1999) used a corpus of sarabande
pieces (relatively simple dance music) to generate new compositions using Markov models20,
but with a pre-processing stage to automatically annotate the compositions of the corpus
with symbols to make explicit their structure, and a post-processing stage using a template
to constrain the structure of the synthesized composition, in order to generate minimally
acceptable results. Another way is the hybridization of Markov chains with other methods.
For example, Lyon (1995) used Petri nets as an efficient and compact way to implement
Markov chains, while Verbeurgt et al. (2004) used Markov chains21 to generate a basic
pattern for the melody, which was then refined with an artificial neural network. In the
BoB system (Thom, 2000), Markov chains were trained by statistical learning: from a set of
jazz solos, statistical signatures were extracted for pitches, melodic intervals and contours.
Then, these signatures were used to define the transition probabilities of a Markov chain
whose output was sampled to generate acceptable solos. Lo and Lucas (2006) trained
Markov chains with classic music pieces, but, instead of generating compositions with them,
used them as fitness evaluators in an evolutionary algorithm to evolve melodies encoded
as sequences of pitches. Werner and Todd (1997) also used Markov chains to evaluate
simple (32-note) melodies, but with the particularity that the chains themselves were also
subject to evolution, to investigate sexual evolutionary dynamics. Thornton (2009) defined
a set of grammar-like rules from an existing composition, inferring a hierarchy of Markov
models to use statistical patterns of the analyzed composition at multiple levels. As already
mentioned in Section 3.1, Cruz-Alcázar and Vidal-Ruiz (1998) and Gillick et al. (2009) used
grammatical inference with Markovian models. Regarding symbolic methods, Eigenfeldt
and Pasquier (2010) used a case-based system to generate Markov processes for jazz chord

20. Their work is commonly cited in the literature as grammatical, but their methodology is thoroughly
statistical.

21. Also reviewed in Section 3.4.

538



AI Methods in Algorithmic Composition

progressions, (Davismoon & Eccles, 2010) used simulated annealing to combine constraints
and Markov processes, and Pachet et al. (2011) proposed a framework to combine Markovian
generation of music with rules (constraints) to produce better results.

Additionally, Markov chains remained a feasible option for restricted problems (for ex-
ample, real-time performances, as jazz improvisation), as their limitations were less apparent
in these cases than in the generation of whole compositions. For example, Grachten (2001)
developed a jazz improviser where Markov chains generated duration and pitches, and then a
system of constraints refined the output, and pre-defined licks (short musical patterns) were
inserted at appropriate times. Manaris et al. (2011) also implemented an improviser, using a
Markov model trained with user input to generate a population of candidate melodies, feed-
ing them into an evolutionary algorithm, whose fitness function rewarded melodies whose
metrics were similar to the user input’s metrics. A different (but also restricted) problem
was studied by Wooller and Brown (2005): applying Markov chains to generate musical
transitions (morphings) between two different pieces in a simple application of non-linear
music, by stochastically alternating between two Markov chains, each one trained with one
of the pieces.

3.3.1 Related Methods

More sophisticated Markovian models (and related statistical methods; see the survey in
Conklin, 2003) have also been applied for algorithmic composition, as in Pachet’s (2002)
Continuator, a real-time interactive music system. The Continuator departs from common
Markov chain implementations in that it uses variable-order (also known as mixed-order)
Markov chains22, which are not constrained to a fixed n value, and can be used to get the best
of low and high-n chains. Conklin and Witten (1995) implemented a sophisticated variable-
order scheme23, whose main feature was the consideration in parallel of multiple viewpoints
or sequences of events in the compositions (for example, pitches, durations, contours, etc.),
instead of integrating them all in a unique sequence of symbols, as it was common for most
implementations of Markov chains. Variable-order Markov chains have also been used as
part of a larger real-time music accompaniment system (Martin et al., 2012). Other variable-
order schemes used in algorithmic composition, formulated in a machine learning framework,
are Prediction Suffix Trees (PSTs, Dubnov et al., 2003), more space-efficient structures like
Factor Oracles24 (Assayag & Dubnov, 2004), and Multiattribute Prediction Suffix Graphs
(MPSGs, Triviño Rodríguez & Morales-Bueno, 2001), which can be considered an extension
of PSTs to consider multiple viewpoints as in Conklin and Witten’s work. Sastry (2011)
also used multiple viewpoints and PSTs to modelize Indian tabla compositions, though his
model could also be used to generate new compositions.

Hidden Markov Models (HMMs) also are generalizations of Markov chains that have
been used for algorithmic composition. A HMM is a Markov chain whose state is unob-
servable, but some state-dependent output is visible. Training a HMM involves not only

22. It should be noted that Kohonen’s method (Kohonen et al., 1991), reviewed in Section 3.1.3, is similar
(in some ways) to variable-order chains.

23. Conklin and Witten’s method has also been described as grammatical, but they are included here because
their emphasis in formal statistical analysis.

24. Also implemented with a concurrent constraint paradigm by Rueda et al. (2006). See Section 3.2.3 and
Section 3.2.5 for more details.

539



Fernández & Vico

Reference Composition task Comments

Pachet, 2002
(Continuator) interactive improvisation variable-order

Conklin & Witten, 1995 Bach chorales multiple viewpoint systems

Martin et al., 2012 interactive improvisation variable-order; implemented in MAX

Dubnov et al., 2003 melody Prediction Suffix Trees.
Implemented in OpenMusic

Rueda et al., 2006 interactive improvisation uses ntcc and Factor Oracles

Assayag & Dubnov, 2004 melody Factor Oracles.
Implemented in OpenMusic

Triviño Rodríguez &
Morales-Bueno, 2001 melody Multiattribute Prediction Suffix Graphs

Sastry, 2011 improvisation of tabla rhythms
multiple viewpoints and Prediction

Suffix Trees.
Implemented in MAX

Farbood & Schoner, 2001 species counterpoint Hidden Markov Models

Biyikoglu, 2003 four-part harmonization Hidden Markov Models

Allan, 2002 four-part harmonization Hidden Markov Models

Morris et al., 2008
(SongSmith) melody harmonization Hidden Markov Models

Schulze, 2009
(SuperWillow)

melody, rhythm, two-voice
harmonization

Hidden Markov Models
and Prediction Suffix Trees

Yi & Goldsmith, 2007 four-part harmonization Markov Decision Processes

Martin et al., 2010 interactive improvisation Partially Observable
Markov Decision Processes

Table 12: References for Section 3.3.1, in order of appearance.

determining a matrix of transition probabilities, but also a matrix of output probabilities
(that is, for each state, the probability of each possible output). Then, given a sequence
of outputs, it is possible to compute the most likely sequence of states to produce that se-
quence of outputs, using the Viterbi dynamic programming algorithm. In this way, HMMs
find a globally optimized sequence of states, while simpler Markov methods perform just lo-
cal optimization. When applied to algorithmic composition, HMMs are appropriate to add
elements to an existing composition (most commonly, counterpoint and harmonization),
given a set of pre-existing examples: the composition is modeled as a sequence of outputs
of the HMM, and the additions are computed as the most likely sequence of states of the
HMM.

Farbood and Schoner (2001) implemented the earliest example of a HMM for algorithmic
composition: they trained a second-order HMM to generate Palestrina-style first-species
counterpoint (the simplest way to write counterpoint), defining the training set from rules
used to teach counterpoint. A related problem is to train HMMs with a set of chorale
harmonizations in the style of J.S. Bach in order to get more Bach-like harmonizations.
This problem has been researched by Biyikoglu (2003) and Allan (2002); the latter divided
the problem of harmonization into the same three subtasks as in HARMONET (Hild et al.,
1992). For Microsoft’s SongSmith software, Morris et al. (2008) trained a HMM with

540



AI Methods in Algorithmic Composition

300 lead sheets (specifications for song melodies) to generate chords to accompany a user-
specified vocal melody, parametrizing the resulting system with a very intuitive interface
for non-technical users. Schulze (2009) generated music in several styles using mixed-order
Markov chains to generate the melodies, and HMMs to harmonize them.

Markov Decision Processes (MDPs) are another generalization of Markov models, in
which an agent maximizes some utility function by taking actions to probabilistically influ-
ence the next state, and Partially Observable MDPs (POMDPs) represent the corresponding
generalization of HMMs. Experimental systems for algorithmic composition have been im-
plemented with MDPs (Yi & Goldsmith, 2007) and POMDPs (Martin et al., 2010), though
it is not clear that these sophisticated models offer definitive advantages over simpler ones.

3.4 Artificial Neural Networks and Related Methods

Artificial Neural Networks (ANNs) are computational models inspired in biological neural
networks, consisting of interconnected sets of artificial neurons: very simple computational
devices that aggregate numeric inputs into a single numeric output using a (generally)
simple but nonlinear function. Some neurons have connections that are set externally
(input connections), while other have output signals intended to be read as the result
of the network’s computation (output connections). Typically, neurons are organized in
recurrent networks (some or all neurons have inputs that come from other neurons) with
several interconnected layers, and many variations can be found in the literature. ANNs
are typically used as a machine learning method, using a set of examples (input patterns)
to train the network (i.e., to set the weights of the connections between neurons), in order
to use it to recognize or generate similar patterns. Effectively, this means that neural
networks need a pre-existing corpus of music compositions (all of them in a very similar
style, generally); therefore they can at most imitate the style of the training examples. Most
papers use a supervised learning approach, meaning that the examples in the training set
are associated with a signal, and the ANN learns this association. An important aspect
of ANN design is the modelization of musical composition, that is, the mapping between
music or music notation and the inputs and outputs of the network. Another important
aspect is the way in which compositions are fed to the ANNs: they may be presented as
temporal patterns in the network inputs, which are usually windowed in segments, but in
some cases they are fed at once (as wholes) to the ANNs (these implementations do not
scale well, though, because of the big ANNs needed to model long compositions).

ANNs were first used during the 1970s and 1980s to analyze musical compositions, cre-
ating artificial models of cognitive theories of music (Todd & Loy, 1991), but they were later
adapted for music composition. The first example was implemented by Todd (1989), who
used a three-layered recurrent ANN designed to produce a temporal sequence of outputs
encoding a monophonic melody, each output signal of the network representing an absolute
pitch. Given a set of one or more composition examples, the ANN was trained to associate
a single input configuration to the output temporal sequence of the corresponding com-
position. Then, feeding input configurations different to the ones used during the training
created melodies interpolated between the ones used during the training. If just one melody
was used during the training, the result was an extrapolation from it. Later that year, Duff
(1989) published another early example, but using a different approach, encoding relative

541



Fernández & Vico

Reference Composition task Comments

Todd, 1989 melody three layers, recurrent

Duff, 1989 melody two layers, recurrent

Mozer, 1991
(CONCERT) melody psychologically-grounded representation

of pitch

Lewis, 1991 feedforward model, used as the fitness
function in an optimization algorithm

Shibata, 1991 harmonization feedforward model

Bellgard & Tsang, 1992 harmonization effective Boltzmann machine

Melo, 1998 harmonization the ANN is trained
to model music tension

Toiviainen, 1995 jazz improvisation recurrent model

Nishijimi & Watanabe, 1993 jazz improvisation feedforward model

Franklin, 2001 jazz improvisation recurrent model

Hild et al., 1992
(HARMONET) four-part harmonization three-layered architecture

(two ANNs and a constraint system)

Feulner & Hörnel, 1994
(MELONET) four-part harmonization uses HARMONET and another ANN

for melodic variations

Goldman et al., 1996
(NETNEG) species counterpoint ANN for basic melody, an ensemble of

agents refine the melody

Verbeurgt et al., 2004 melody two stages: a Markovian model
and an ANN

Adiloglu & Alpaslan, 2007 species counterpoint feedforward model

Browne & Fox, 2009 melody simulated annealing with an ANN
to measure musical tension

Coca et al., 2011 melody recurrent model, uses chaotic non-linear
systems to introduce variation

Table 13: References for Section 3.4, in order of appearance.

instead of absolute pitches (as Todd’s work) in the mapping, for composing music in Bach’s
style.

As a machine learning paradigm, ANNs can be used in many different ways, so Todd’s
approach is not the only possible; indeed, other early papers provide different examples. For
example, Mozer (1991) developed a recurrent ANN with a training program devised to cap-
ture both local and global patterns in the set of training examples. The model also featured
in the output mapping a sophisticated multidimensional space for pitch representation, to
capture a formal psychological notion of similarity between different pitches. In this way,
similar output signals are mapped to similar pitches, in order to facilitate the learning phase
and improve the composition phase. Lewis (1991) proposed another ANN framework: cre-
ation by refinement, in which a feedforward ANN was trained with a set of patterns ranging
from random to very good music, associating each pattern with a (possibly) multidimen-
sional musicality score. In this way, the training phase generated a mapping function from
patterns to musicality scores. Then, to create new compositions, the mapping was inverted:
starting from a purely random pattern, a gradient-descent algorithm used the ANN as a

542



AI Methods in Algorithmic Composition

critique, reshaping the random pattern to maximize the musicality score in the hope of
finally producing a pleasant composition. Unfortunately, this paradigm had a prohibitive
computational cost, so it was tested only with fairly simple and short compositions.

Most of the early examples described above were experiments at composing more or less
full-fledged monophonic compositions. However, ANNs were also used to automate other
tasks in music composition, as harmonization of pre-existing melodies. Shibata (1991) im-
plemented an early example: a feedforward ANN that represented chords using their compo-
nent tones, trained for harmonizing simple MIDI music, whose performance was measured
by human listeners. A more sophisticated ANN used for harmonization, the effective Boltz-
mann machine (EBM), also provided a measure of the quality of the output relative to the
training set (Bellgard & Tsang, 1992). Melo (1998) also harmonized classical music, but
with a notable twist: in order to model the tension25 in the music to be harmonized, he
measured the tension curve reported by several human subjects while listening to the music,
and then used an averaged tension curve to train an ANN, such that the chord progressions
generated by the ANN matched the tension level suggested by the curve. As it can be seen,
harmonization was a popular test case, but other problems were also tried. For example,
Toiviainen (1995) used ANNs to generated jazz improvisations based on a set of training
examples. The ANNs were able to create new jazz melodic patterns based on the training
set. In a similar way, Nishijimi and Watanabe (1993) trained a set of feedforward ANNs
to produce jazz improvisations in a jam session, by modeling several music features of jazz
and using examples of modeled jazz improvisations to train the ANNs. Franklin (2001)
used a recurrent ANNs to improvise jazz (trade four solos with a jazz performer), trained
in two phases: a first phase training an ANN with a set of pre-specified examples, and a
second phase where the ANN is reconfigured and trained by reinforcement learning, where
the reinforcement values are obtained by applying a set of heuristic rules.

Some researchers came to use hybrid systems, combining ANNs with other methods.
One of the first examples was HARMONET (Hild et al., 1992): a model designed to solve
a more complex task: four-part choral harmonization in Bach’s style. HARMONET had
a three-layered architecture: the first component was a feedforward ANN with a sophis-
ticated encoding of musical information (optimized for harmonization functions instead of
individual pitches), which was used to extract harmonization information. The output was
fed to the second component, a rule-based constraint satisfaction algorithm to generate the
chords, and the final component was another ANN designed to add quaver ornaments to
the previously generated chords. As an evolution of HARMONET, MELONET (Feulner &
Hörnel, 1994; improved by Hörnel & Degenhardt, 1997) not only harmonized chorales, but
also generated melodic variations for their voices, using HARMONET as a first processing
stage for the harmonization, then used another neural network to generate the melodic
variations.

NETNEG (Goldman et al., 1996) was another hybrid system that used an ANN trained
with sixteenth century classical music compositions. The ANN generated a basic melody by
segments. After each segment was created, an ensemble of agents generated a polyphonic
elaboration of the segment. The agents had rule-based systems crafted from music theoret-

25. An important property of music, rather difficult to define. At each point in time, the tension is related
to the interplay between structure and uncertainty perceived by the listener in the flow of the music.
Informally, it can be defined as the unfinishedness of the music if it were stopped at that point.

543



Fernández & Vico

ical considerations, and coordinated to maintain a coherent global output. ANNs can also
be combined with probabilistic methods: in the work of Verbeurgt et al. (2004), a set of
training sequences was decomposed into musical motifs, encoded in relative pitch. Then, a
Markov chain was constructed, whose states were the motifs. New compositions were gen-
erated by the Markov chain, but to assign the absolute pitches to the motifs in the resulting
composition, they trained an ANN. Adiloglu and Alpaslan (2007) used feedforward ANNs
to generate two-voice counterpoint, applying notions of music theory to the representation
of musical information in the networks. In Browne and Fox’s (2009) system, simulated
annealing was used to arrange small fragments (motifs) of classical music, trying to get
a profile of musical tension (the same metric as in Melo, 1998) similar to the profile of a
pre-specified composition, measured using an ANN specialized in music perception. Finally,
another hybrid system was implemented by Coca et al. (2011), which used ANNs trained
with pre-existing compositions together with pseudo-random musical input generated from
a chaotic system, in order to generate more complex compositions in the synthesis phase.

3.4.1 ANNs with Evolutionary Algorithms

Among hybrid systems, those combining ANNs with evolutionary algorithms quickly be-
came the most popular. Usually, an ANN was trained to act as the fitness function of an
evolutionary algorithm. This is the case of the earliest example of these hybrid systems,
NEUROGEN (Gibson & Byrne, 1991). Its fitness function was the composed result of two
ANNs, one for judging the intervals between pitches and the other for the overall struc-
ture. A genetic algorithm with a rather rigid, classical binary representation was used,
severely limiting the applicability of the whole implementation. However, there are also
“inverted” frameworks where the evolving individuals are ANNs. For example, Hörnel and
Ragg (1996) evolved HARMONET networks, but the fitness was the network performance
in training and harmonization. In another example (Chen & Miikkulainen, 2001), recurrent
three-layered ANNs evolved to compose music, and the fitness was computed from a set of
rules from music theory.

Given the modular nature of evolutionary algorithms and the perceived complexity of
ANNs, it is not uncommon that the evolutionary framework is laid down in a first research
work, and only in subsequent developments ANNs are used to replace the original fitness
function.26 For example, Spector and Alpern (1994) developed a genetic programming (GP)
framework for jazz improvisations: the individuals were programs composed by collections
of transformations that produced improvisations upon being fed previously existing jazz
melodies, and the fitness function aggregated several simple principles from jazz music
theory. The following year (Spector & Alpern, 1995), they updated their model to train an
ANN to be used as their fitness function. However, this scheme does not always fare well,
specially if the initial framework uses interactive fitness. This is the case of GenJam (Biles,
1994), an evolutionary algorithm for generating jazz melodies with an interactive fitness
function. Later on (Biles et al., 1996), as the interactive fitness evaluation represented a
severe fitness bottleneck, ANNs were tried to partially offload evaluation from human users,
with no success, as the ANNs failed to satisfactorily generalize the evaluations from their

26. This approach is risky, though, because evolutionary algorithms tend to find and exploit unexpected and
undesired quirks in any fitness evaluation function; more so if the evaluator is an ANN.

544



AI Methods in Algorithmic Composition

Reference Composition task Comments

Gibson & Byrne, 1991 melody, rhythm Two ANNs to define the fitness function

Hörnel & Ragg, 1996 melody harmonization evolves HARMONET, the fitness is the ANN’s
performance in training and harmonization

Chen & Miikkulainen, 2001 melody evolves recurrent networks,
the fitness is computed from a set of rules

Spector & Alpern, 1994 melody genetic programming, ANNs as fitness functions

Biles et al., 1996 jazz improvisation ANNs as fitness functions

Johanson & Poli, 1998
(GP-Music) melody genetic programming, ANNs as fitness functions

Klinger & Rudolph, 2006 melody ANNs and decision trees as fitness functions

Manaris et al., 2007 melody genetic programming, ANNs as fitness functions

Burton, 1998 drum rhythms Adaptive Resonance Theory
(unsupervised learning) as fitness function

Phon-Amnuaisuk et al., 2007 melody genetic programming, self-organinzing map
(unsupervised learning) as fitness function

Table 14: References for Section 3.4.1, in order of appearance.

training sets. In the case of the GP-Music System (Johanson & Poli, 1998), which used
GP with procedural representations of short melodies, the trained ANNs were not a failure,
but decidedly below par with respect to the performance of the algorithm with interactive
fitness. Klinger and Rudolph (2006) compared the performance of feedforward ANNs with
learned decision trees, finding that the latter performed better and their ratings were easier
to understand. In spite of these examples, more successful instances do exist: Manaris et al.
(2007) extracted several statistical metrics from music compositions and trained an ANN
to recognize compositions whose metrics’ distributions featured Zipf’s law, then used it as
the fitness function in a GP framework whose individuals were procedural representations
of polyphonic compositions. The results were validated as aesthetically pleasing by human
testers.

All the research described up to this point uses ANNs with supervised learning. However,
methods using unsupervised learning also exist. Burton (1998) proposed a genetic algorithm
with a classical binary representation for generating multi-voice percussion rhythms, whose
fitness function presented an unconventional feature mix. It used Adaptive Resonance The-
ory (ART), an ANN with unsupervised learning, initially trained to perform automatic
clustering of a set of drum rhythms. Then, during the execution of the genetic algorithm,
the unsupervised learning continued. The fitness was a measure of how near was the individ-
ual to some cluster. If the individual represented a brand new rhythm so different as to add
a new cluster, the rhythm was presented to the user to decide if it was musically acceptable.
In this way, Burton tried to get the best of interactive and automatic fitness evaluation.
A different example with unsupervised learning was presented by Phon-Amnuaisuk et al.
(2007), able to generate variations over a pre-specified composition. It used GP whose in-
dividuals were procedural representations of melodies, while the fitness was the similarity
to the pre-specified composition, as measured by a self-organizing map (SOM) previously
trained with musical elements of the pre-specified composition.

545



Fernández & Vico

Reference Composition task Comments

Baggi, 1991 jazz improvisation ad hoc connectionist expert system

Laine, 2000 simple rhytms uses central pattern generators

Dorin, 2000 poly-rhythmic musical patterns uses Boolean networks

Hoover et al., 2012 acompaniment uses CPPNs

Table 15: References for Section 3.4.2, in order of appearance.

3.4.2 Related Methods

Finally, this subsection presents methods that may be considered roughly similar to ANNs,
or more generally, connectionist. For example, Neurswing (Baggi, 1991) may be described
as an ad hoc expert system for jazz improvisation crafted in a connectionist framework.
Surprisingly, many research papers cite Neurswing as an ANN framework, despite Baggi’s
disclaimer: “[Neurswing], though only vaguely resembling a neural net or a connectionist
system, [. . . ]” (Baggi, 1991). Laine (2000) used very simple ANNs to implement Central
Pattern Generators, whose output patterns where then interpreted as more or less simple
rhythms (motion patterns in his terminology).

Boolean networks are another connectionist paradigm in which each node has a binary
state and the edges between nodes are directed; each node’s state changes in discrete steps
according to a (usually randomly chosen) Boolean function whose inputs are the states of
the nodes with connections to that node. They may be considered as generalizations of
cellular automata, and depending on the wiring and the distribution of Boolean functions,
their states can change in very complex patterns, with potentially complex responses to ex-
ternal forcing. Because of these properties, Dorin (2000) used Boolean networks to generate
complex poly-rhythmic musical patterns, modulable in real time by the user.

Hoover et al. (2012) proposed another connectionist approach: compositional pattern
producing networks (CPPNs). These are feedforward networks where each “neuron” may
use a different, arbitrary function, instead of the classical sigmoid function. They are usually
designed by interactive evolutionary methods, and can be used to generate or modulate
highly complex patterns. In the cited paper, they were fed a pre-existing simple composition
as input, in order to generate an accompaniment for it.

3.5 Evolutionary and Other Population-Based Methods

Most evolutionary algorithms (EAs) approximately follow a common pattern: a changing
set of candidate solutions (a population of individuals) undergoes a repeated cycle of evalu-
ation, selection and reproduction with variation. The first step is to generate the candidate
solutions of the initial set, either from user-specified examples or in a more or less random
way. Each candidate is then evaluated using a fitness function, a heuristic rule to measure
its quality. The next phase is selection: a new set of candidate solutions is generated by
copying candidate solutions from the old one; each candidate solution is copied a number
of times probabilistically proportional to its fitness. This step decreases the diversity of
the population, which is restored by applying (to a fraction of the candidate solutions)
some operators designed to increase the variation (for example, mutation or recombination

546



AI Methods in Algorithmic Composition

operators). These steps are applied iteratively; as a result, best and mean fitness gradually
tend to increase.

While this algorithmic pattern is common to all EAs, there exist many different algo-
rithms using different sets of selection rules, variation operators and solution encoding. In
an EA, the encoded form of a candidate solution is the genotype, while the phenotype is
the translation of that coded form into a solution. Holland’s original formulation of ge-
netic algorithms is strongly associated with a plain and direct encoding of genotypes as
binary strings, but this is not the case in most papers using EAs. Because of this, the
term evolutionary is preferred over genetic in this paper. Another popular variant, Koza’s
genetic programming, represents genotypes as tree structures, often encoding expressions of
a programming language, while the phenotype is the result of evaluating these expressions.

Since EAs are particularly prone to be hybridized with other methods, they are also
reviewed in the other sections: with grammars in Section 3.1.2, with ANNs in Section 3.4.1,
with Markov chains in Section 3.3†, with rule-based systems in Section 3.2.2, and with
cellular automata in Section 3.6.1‡. In general, the papers cited in these sections will not
be discussed here. We also recommend some literature to learn more about evolutionary
computer music: Burton and Vladimirova (1999) wrote a survey with long, thorough de-
scriptions of the referenced papers, while the survey of Santos et al. (2000) is more similar
to ours in style, packed with brief descriptions. Miranda and Biles’s (2007) book is more
recent, but also contains work on other optimization methods (as swarm optimization) and
algorithmic composition techniques (as cellular automata).

3.5.1 Evolution with Automatic Fitness Functions

The difficulty to define automatic fitness functions has been a constant issue, frequently
limiting the application of evolutionary methods to well-defined and restricted problems
in composition. Horner and Goldberg (1991) provided one of the first examples: they
implemented an EA for thematic bridging, a composition technique consisting of defining
a sequence (with a pre-specified preferred length) of small musical patterns such that the
first and the last ones are pre-specified, and each pattern is the result of applying a simple
transformation to the previous one. Naturally, the individuals in the EA were defined as
lists of operations applied to the initial pattern to generate the sequence of patterns. The
fitness measured how close the final pattern (generated from the operations) was to the
pre-specified final pattern, plus the difference between actual and preferred lengths of the
sequence. Essentially the same work (with differences in the underlying representation and
operation set) was reported by Ricanek et al. (1993).

A common way to implement a fitness function is as a weighted sum of features of the
composition (although tuning the weights to optimize the EA can prove difficult except for
toy problems). For example, Marques et al. (2000) composed short polyphonic melodies
using a very direct representation for the genotypes and also a simple fitness function,
with a rather simple, ad hoc evaluation of harmony and melodic value. The results were
reportedly acceptable. Johnson et al. (2004) also composed short melodies using an EA

†. Only a few examples of evolutionary algorithms were described in this section, not warranting a dedicated
subsection for them.

‡. Same case as in the previous note.

547



Fernández & Vico

Reference Composition task Comments

Horner & Goldberg, 1991 thematic bridging fitness: distance to original melodies

Ricanek et al., 1993 thematic bridging fitness: distance to original melodies

Marques et al., 2000 polyphony fitness: combination of features

Johnson et al., 2004 melody fitness: combination of features

Papadopoulos & Wiggins,
1998 jazz improvisation fitness: combination of features

Harris, 2008
(JazzGen) jazz improvisator fitness: combination of features

Towsey et al., 2001 melodic extension fitness: combination of features
(only fitness, no evolutionary algorithm)

Birchfield, 2003 melody, rhythm fitness: combination of features

Garay Acevedo, 2004 species counterpoint fitness: combination of features

Lozano et al., 2009 melody
harmonization fitness: combination of features

De Prisco et al., 2010 unfigured bass multi-objective optimization

Freitas & Guimarães, 2011 melody
harmonization multi-objective optimization

Gartland-Jones, 2002 generate variations
on two melodies fitness: distance to a melody

Alfonseca et al., 2005 melody fitness: distance to corpus of melodies

Özcan & Erçal, 2008
(AMUSE)

generate variations
on a melody fitness: combination of features

Wolkowicz et al., 2009 melody fitness: distance to corpus of melodies

Laine & Kuuskankare, 1994 melody fitness: distance to a melody. Genetic programming

Spector & Alpern, 1994 jazz improvisation fitness: combination of features. Genetic programming

Dahlstedt, 2007 contemporary
classical music fitness: combination of features. Genetic programming

Espí et al., 2007 melody fitness: combination of features extracted fropm a
corpus of melodies. Genetic programming

Jensen, 2011 melody fitness: distance to a corpus of melodies.
Genetic programming

Díaz-Jerez, 2011;
Sánchez-Quintana et al.,

2013

contemporary
classical music, other

genres
sophisticated indirect encoding

Table 16: References for Section 3.5.1, in order of appearance.

with a fitness function that was a weighted sum of a series of very basic, local features
of the melody. Papadopoulos and Wiggins (1998) implemented a system that, given a
chord progression, evolved jazz melodies by relative pitch encoding, using as fitness function
a weighted sum of eight evaluations of characteristics of the melody, ranging from very
simple heuristics about the speed and the position of the notes to user-specified contour and
similarity to user-specified music fragments. A similar approach was implemented by Harris
(2008), with modest (if promising) results. While Towsey et al. (2001) did not actually
implement an EA, they discussed how to build a fitness function for melodic extension

548



AI Methods in Algorithmic Composition

(given a composition, extend it for a few bars): they proposed to extract 21 statistical
characteristics from a corpus of pre-specified compositions, defining the fitness function as
a weighted sum of the distance between the individual and the mean of the characteristic.
In a similar vein, Birchfield (2003) implemented a fitness function as a giant weighted sum
of many features in a hierarchical EA, with multiple population levels, each individual in
a population being composed of individuals from lower populations (similar to the model
described in Biles, 1994; see Section 3.5.2). He used the output of the EA as material
to arrange a long composition for ten instruments. Garay Acevedo (2004) implemented a
simple EA to compose first species counterpoint, but the features weighted in the fitness
function were too simplistic, leading to modest results. Lozano et al. (2009) generated chord
sequences to harmonize a pre-specified melody in two steps: first a simple EA generated a
set of possible solutions according to simple local considerations (appropriateness of each
chord for the corresponding part of the melody) between the chords and the notes of the
melody, and then a variable neighborhood search was used to establish a chord progression
according to global considerations.

The alternative to implementing the fitness function as a weighted sum of musical fea-
tures is to use multi-objective evolutionary algorithms (MOEAs). However, these have very
rarely been used, most probably because they are harder to implement, both conceptu-
ally and in practice. MOEAs have been used by De Prisco et al. (2010) to harmonize the
unfigured bass27 and by Freitas and Guimarães (2011) for harmonization.

Another approach consists of measuring the fitness as the distance to a target compo-
sition or corpus of compositions. For example, Gartland-Jones (2002) implemented an EA
to compose hybrids between two pre-specified compositions (a goal similar to Hamanaka
et al.’s, 2008, cited in Section 3.1) by using one to seed the initial population, and the
distance to the other (sum of difference in pitch for each note) as the fitness function. Al-
fonseca et al. (2005) used a more sophisticated evaluation: the fitness of each composition
in the population was the sum of distances to a corpus of pre-specified target composi-
tions. The metric was the normalized compression distance, a measure of how different two
symbol strings are, based on their compressed lengths (both concatenated and separated).
Özcan and Erçal (2008) used a simple genetic representation and a fitness function based
on a weighted sum of a long list of simple musical characteristics, reportedly being able
to generate improvisations over a pre-specified melody with a given harmonic context, but
they did not specify how the evolved melodies were related to the pre-specified music. In
the EA implemented by Wolkowicz et al. (2009), individuals were encoded using relative
pitches, and a sophisticated statistical analysis of n-gram sequences in a pre-specified corpus
of compositions was used to implement the fitness function.

Genetic programming has also been used with fitness functions based on comparisons
with pre-specified music. In the work of Laine and Kuuskankare (1994), the individuals
were discrete functions of time whose output (phenotype) was interpreted as a sequence of
pitches. The fitness was simply the sum of differences in pitches between a pre-specified
target composition and the phenotype of each individual, in a similar way to Gartland-
Jones (2002). However, it is frequent to find fitness functions based on the analysis of
characteristics of the compositions evolving in the algorithm, often comparing them against

27. For a description of the unfigured bass, see the discussion of Rothgeb’s (1968) work in Section 3.2.

549



Fernández & Vico

characteristics of a pre-specified training set of compositions. Spector and Alpern (1994)
used genetic programming for jazz improvisation, “trading fours”: the individuals were
functions that took as input a “four” and produced another one by applying a series of
transformations to it. The fitness was determined by applying a series of score functions
that measured the rhythm, tonality and other features of the produced “four”, comparing
them against a database of high-quality examples from renowned artists.

Also using genetic programming, Dahlstedt (2007) composed relatively short contem-
porary classical music pieces, with a simple fitness function: a set of target values were
assigned for several statistics of the compositions (as note density or pitch standard devi-
ation, among others), and the fitness was a weighted sum of the differences between the
target values and the values for each individual. The individuals were trees whose nodes
represented notes and different operations over musical sequences (using a developmental
process from genotype to phenotype). Reportedly, the generated pieces were of acceptable
quality, because the genotype model was especially well suited for contemporary classical
music. Espí et al. (2007) used a simple tree representation for compositions (but without
indirect encoding), defining the fitness function as a weighted sum of sophisticated sta-
tistical models for melody description (measuring the distance to the values of a set of
pre-specified compositions) and several relatively simple characteristics of the composition.
Jensen (2011) also used a simple tree representation for compositions; the fitness was calcu-
lated measuring frequency distributions of simple events in the compositions, rating them
according to Zipf’s law and similarity to pre-specified compositions.

One of the latest and most successful results in evolutionary computer music follows
an evo-devo strategy. Iamus is a computer cluster which hybridizes bioinspired techniques:
compositions evolve in an environment ruled by formal constraints and aesthetic princi-
ples (Díaz-Jerez, 2011). But compositions also develop from genomic encodings in a way
that resembles embryological development (hence the evo-devo), providing high structural
complexity at a relatively low computational cost. Each composition is the result of an
evolutionary process where only the instruments involved and a preferred duration have
been specified, and are included in the fitness function. Iamus can write professional scores
of contemporary classical music, and it has published its debut album in September 2012
(Ball, 2012; Coghlan, 2012), with ten works interpreted by first-class musicians (includ-
ing the LSO for the orchestra piece). Melomics, the technology behind this avant-garde
computer-composer, is also mastering other genres and transferring the result to industry
(Sánchez-Quintana et al., 2013). After compiling a myriad of musical fragments of most
essential styles in a browsable, web-based repository (Stieler, 2012). For the first time,
Melomics is offering music as a real commodity (priced by size of its MIDI representation),
where ownership over a piece is directly transferred to the buyer.

3.5.2 Musical IGAs

From the previous exposition, it is apparent that designing an objective and convenient
fitness function for evaluating music compositions is a very difficult problem.28 If the music
is to be evaluated in terms of subjective aesthetic quality, it may become impractical or

28. To the point that artists sometimes find “unconventional” ways around this problem: Waschka (1999)
argued to have solved the problem by assigning a purely random fitness value to the individuals.

550



AI Methods in Algorithmic Composition

Reference Composition task Comments

Hartmann, 1990 melody inspired by Dawkins’ biomorphs

Nelson, 1993 melody inspired by Dawkins’ biomorphs

Horowitz, 1994 rhythms inspired by Dawkins’ biomorphs

Pazos et al., 1999 rhythms binary genotype

Degazio, 1996 melody binary genotype; graphical representation

Biles, 1994
(GenJam) jazz improvisation two hierarchically structured populations

(measures and jazz phrases)

Tokui & Iba, 2000 rhythms
two hierarchically structured populations

(short and long rhythmic patterns).
Genetic programming

Jacob, 1995 melody the user trains “critics” that act as fitness functions

Schmidl, 2008 melody the user trains “critics” that act as fitness functions

Putnam, 1994 melody genetic programming

Ando & Iba, 2007 melody genetic programming

MacCallum et al., 2012
(DarwinTunes) melody genetic programming

Kaliakatsos-Papakostas
et al., 2012

melody, 8-bit sound
synthesis genetic programming

Hoover et al., 2012 acompaniment uses CPPNs

McDermott & O’Reilly, 2011 interactive generative
music similar to CPPNs

Ralley, 1995 melody minimizes user input by clustering candidates

Unehara & Onisawa, 2001 melody minimizes user input with elitism

Díaz-Jerez, 2011 contemporary classical
music

minimizes user fatigue producing small, good
compositions

Beyls, 2003 melody uses cellular automata; graphical representation

Moroni et al., 2000
(Vox Populi) melody complex graphical representation

Ventrella, 2008 melody the whole population comprises the melody

Marques et al., 2010 melody minimizes evolutionary iterations

Table 17: References for Section 3.5.2, in order of appearance.

directly impossible to define a formal fitness function. Because of these inconveniences,
many researchers have resorted to implement the fitness function with human evaluators.
A common term for describing this class of EAs is musical IGA (interactive genetic algo-
rithm29, MIGA for short). As MIGAs represent a substantial percentage of the total body
of work on EAs for algorithmic composition, this subsection is devoted to them.

The first MIGAs were implemented by composers intrigued by the concept of evolu-
tionary computing, resulting in more or less peculiar architectures from the perspective
of common practice in evolutionary computing, but also by computer scientists exploring

29. Most research tagged as IGA does not use the binary genotypes commonly associated with the term
genetic algorithm, but the term is very common.

551



Fernández & Vico

the field. Hartmann (1990), inspired by Dawkins’ biomorphs, presented one of the first
applications of evolutionary computing to composition, a MIGA that he unfortunately de-
scribed in a notoriously laconic and obscure language, resulting in a very low citation rate
for his work. Also inspired by the biomorphs, Nelson (1993) described a toy MIGA for
evolving short rhythms over a fixed melodic structure, with simple binary genotypes (each
bit simply denoted the presence or absence of sound). More formal models similar in scope
to Nelson’s were designed by Horowitz (1994) and Pazos et al. (1999). They implemented
rhythm generators for multiple instruments, each one with its own independent rhythm
pattern encoded in the genotype (Horowitz’s genotypes were parametric, while Pazos et
al. used more direct binary encodings). Degazio (1996) implemented a system in which
the genotype was a set of parameters (in later iterations, a mini-language to describe the
parameters) to instruct his CAAC software to generate melodies.

The best known MIGA may be GenJam, a system for generating jazz solos, developed
over several years. In its first incarnation (Biles, 1994), it was formulated as a MIGA with
two hierarchically structured populations: one of measures, and other of jazz phrases, con-
structed as sequences of measures. Given a chord progression and several other parameters,
jazz solos emerged by concatenating selected phrases during the evolutionary process, and
the fitness was integrated over time by accumulating fixed increments and decrements from
simple good/bad indications from the evaluator. Further iterations of the system included
the already discussed use of ANNs as fitness functions (Biles et al., 1996) and the possibility
to trade fours with a human performer, by dynamically introducing into the population the
music performed by the human (Biles, 1998). Tokui and Iba (2000) used a similar solution
for creating rhythms with multiple instruments: a population of short sequences specified
as list of notes, and another population of tree structures representing functions in a simple
macro language that used the short sequences as building blocks. Another example of hier-
archical structuring of the MIGA is Jacob’s (1995) system for general-purpose composition,
with three inter-dependent evolutionary processes: one involving the human user to train
ears to evaluate short musical sequences, another one to compose musical phrases using the
ears (filters) as fitness functions, and another also involving the human user to train an
arranger that reorders the resulting phrases into the final output of the system. Schmidl
(2008) implemented a similar system, but without a high-level arranger module, and with
ears automatically trained from a set of examples, in order to minimize user interaction and
enable real-time composition.

Genetic programming with interactive evaluation has been used several times. Putnam
(1994) implemented an early example: each individual coded for a set of functions that
generated a melody as the result of an iterated function system. Tokui and Iba’s (2000)
example has been already cited. Ando and Iba (2007) implemented a fully interactive
system (not only the selection, but also the reproduction and mutation were user-guided),
where the genotype model was similar to Dahlstedt’s (2007). MacCallum et al. (2012) used
trees to encode Perl expressions that generated polyphonic short loops, but concentrated on
analyzing the interactive evolution from the point of view of theoretical biology. Kaliakatsos-
Papakostas et al. (2012) used a rather different approach to generate 8-bit melodies: each
individual was a function composed of bitwise operators that generated a waveform by
iterating the function. In fact, that work might be described as sound synthesis over large
time scales, rather than music composition.

552



AI Methods in Algorithmic Composition

Some MIGAs with graph-based genetic representations also exist, as the implementation
based in CPPNs (Hoover et al., 2012) that was already cited in Section 3.4.2. McDermott
and O’Reilly (2011) used a similar paradigm: genotypes were sequences of integers that
indirectly encoded graphs, whose nodes represented functions, and their connections were
compositions of functions. The output nodes generated musical output in one or more
voices, which were modulated by user inputs.

A problem common to all MIGAs is user fatigue: candidate solution evaluation is a
comparatively slow and monotone task that rapidly leads to user fatigue. Even with small
population sizes and small numbers of generations, it remains a significant problem that has
been solved by many researchers in different ways. For example, Ralley (1995) used a binary
representation with relative pitch encoding for the genotypes, and classified the population
with a clustering algorithm, deriving similarity metrics from rudimentary spectral analysis of
the scores. The user was simply required to evaluate the closest composition to the centroid
of each cluster. A more exotic solution was employed by previously cited Tokui and Iba
(2000): training a neural network to filter out candidates with low fitness, thus presenting
to the user individuals of acceptable quality. Unehara and Onisawa (2001) presented just
10% of candidate melodies to the human user, and then parts of the genomes of the best
rated ones were dispersed in the population by “horizontal gene transfer”. McDermott and
O’Reilly (2011) also limited the number of candidates exposed to user rating, filtering out
the worst ones with heuristic functions. Another option to minimize user fatigue is to
produce small compositions that already are reasonably good. The Melomics system (see
last paragraph in Section 3.5.1) can be used in this way (Díaz-Jerez, 2011).

Other common ways to manage the problem include low population sizes and/or hierar-
chical structuring of the algorithm (Biles, 1994), or providing statistical information and/or
rendering graphical representations of the compositions in order to make possible their
evaluation without actually listening to them (Degazio, 1996). Graphical representations
are also particularly useful if using generative methods as L-systems or cellular automata
(Beyls, 2003). Putnam (1994) used a web interface to reach out to more volunteers. Moroni
et al. (2000) tried to solve the problem using sophisticated GUI abstractions, with complex
non-linear mappings between the graphic controls and the parameters of the fitness function
and other aspects of the evolutionary process, to produce a highly modulable system for
real-time interactive composition of melodies. To mitigate user fatigue, Ventrella (2008)
presented a population of short melodies as a continuous stream of sound; fitness was ob-
tained through a binary signal set by the user. Marques et al. (2010) limited user fatigue in
the generation of short, simple melodies by severely limiting the number of generations of
the algorithm, and generating a reasonably good starting population by drawing the notes
using Zipf’s law.

3.5.3 Other Population-Based Methods

Finally, this subsection presents other methods that are also population-based. For exam-
ple, the metaheuristic method Harmony Search is inspired in the improvisation process of
musicians, though in practice can be framed as an evolutionary method with a specific way
to structure candidate solutions and perform selection, crossover and mutation operations.
Geem and Choi (2007) used this method to harmonize Gregorian chants (i.e., to write or-

553



Fernández & Vico

Reference Composition task Comments

Geem & Choi, 2007 harmonize
Gregorian chants harmony search

Geis & Middendorf, 2008 four-part
harmonization multi-objective Ant Colony Optimization

Tominaga & Setomoto, 2008 polyphony,
counterpoint artificial chemistry

Werner & Todd, 1997 melody co-evolutionary algorithm, Markov chains used
as evolvable fitness functions

Bown & Wiggins, 2005 melody individuals are Markov chains
that compose and evaluate music

Miranda, 2002 melody individuals agree on a common set of
“intonation patterns”

Miranda et al., 2003,
sect. IV melody individuals are grammars that compose music

McCormack, 2003b interactive soundscape individuals indirectly compete for users’ attention

Dahlstedt & Nordahl, 2001 soundscape music emerges from collective interactions

Beyls, 2007 soundscape music emerges from collective interactions

Blackwell & Bentley, 2002 soundscape music emerges from collective interactions

Eldridge & Dorin, 2009 soundscape,
sound synthesis

music emerges from collective interactions,
individuals exist in the frequency domain

Bown & McCormack, 2010 interactive soundscape,
sound synthesis

music emerges from collective interactions,
individuals exist in the frequency domain

Table 18: References for Section 3.5.3, in order of appearance.

ganum lines for the chants). Other methods are also population-based but not properly
evolutionary. An example is the use of Ant Colony Optimization (ACO) to solve constraint
harmonization problems (Geis & Middendorf, 2008), already mentioned in Section 3.2.3.
In ACO, the candidate solutions are represented as paths in a graph, and a population of
agents (ants) traverse the graph, cooperating to find the optimal path.

As a more exotic example, an Artificial Chemistry is a generative system consisting of
a multiset of strings of symbols. These strings (analogues of molecules) can react according
to a pre-specified set of rules (analogues of chemical reactions), generating new strings from
the existing ones. Tominaga and Setomoto (2008) used this method, encoding polyphonic
compositions in the strings and musical rules for counterpoint in the reaction rules of the
artificial chemistry: starting from a set of simple strings, the system generated progressively
more complex ones, though the aesthetical value of the resulting compositions varied widely.

A more popular method based on populations of individuals is the Artificial Ecosystem.
In an artificial ecosystem, compositions emerge from the interaction between individuals in
a simulation with evolutionary and/or cultural interactions, taking inspiration in the evo-
lutionary origins of music in humans (Wallin & Merker, 2001). Frequently, the complexity
of the simulations is severely limited by the available computational power, and in some
cases the goal is not music composition per se, but the study of evolutionary dynamics, the
emergence of shared cultural traits and avant-garde artistic experimentation.

554



AI Methods in Algorithmic Composition

An early example by Werner and Todd (1997) investigated sexual evolutionary dynamics
in a population of males (small compositions) and females (Markov chains initially generated
from a corpus of songs) that evaluated how much the males deviated from their expectations.
However, most studies use just one kind of agent, as in the work of Bown andWiggins (2005),
whose agents used Markov chains for both compose and analyze music. Miranda (2002)
and Miranda, Kirby, and Todd (2003, sect. IV) implemented models with a similar goal: to
study the emergence of common structures (shared cultural knowledge). In the first case a
population of agents strove to imitate each other’s intonation patterns (short sequences of
pitches); in the second case agents learned to compose music by inferring musical grammars
from other agents’ songs. Bosma (2005) extended Miranda’s (2002) model, using neural
networks in the agents to learn and compose music, although with tiny population sizes. As
part of an art installation, McCormack (2003b) proposed a virtual ecosystem with evolving
agents able to compose music using a rule-based system, competing for resources that were
indirectly determined by the interest of human observers.

An alternative is that the music is not composed by the agents, but emerges as an
epiphenomenon of the whole ecosystem. The models of Dahlstedt and Nordahl (2001) and
Beyls (2007) used simple organisms in a two-dimensional space whose collective behavior
was mapped into complex compositions, while Blackwell and Bentley’s (2002) model was
similar but three-dimensional, and the dynamics of the agents were inspired in swarm
and flocking simulations. While all these examples use either homogeneous or spatially
structured ecosystems, a recent trend is the use of sound as an environment in itself. In
Eldridge and Dorin’s (2009) model, the agents dwelt in the one-dimensional space of the
Fourier transform of a sample of ambient sound, feeding off and moving the energy across
frequencies. Bown and McCormack (2010) implemented a similar model, in which the
agents were neural networks that generated sound and competed for room in the space of
frequencies of ambient sound.

3.6 Self-Similarity and Cellular Automata

In the late 1970s, two notable results about music were reported by Voss and Clarke (1978).
The first was that, for music of many different styles, the spectral density of the audio
signal was (approximately) inversely proportional to its frequency; in other words, it ap-
proximately follows a 1/f distribution. This is not so surprising: many different data series
follow this property, from meteorological data to stock market prices; it is usually referred
to as 1/f noise or pink noise. The second result was that random compositions seemed
more musical and pleasing (for a wide range of evaluators, from unskilled people to profes-
sional musicians and composers) when the pitches were determined by a source of 1/f noise,
rather than other common random processes as white (uncorrelated) noise or Brownian mo-
tion (random walks). Although the first result has been since challenged30, the second one
has been used by composers as a source of raw material. Bolognesi (1983) implemented an
early example influenced by Voss and Clarke’s results, but composers used data series with
1/f noise as raw material even before these results, early in the 1970s (Doornbusch, 2002).

30. The main criticism is that the data samples used by Voss and Clarke were hours long, merging in each
sample many different compositions (and even non-musical sounds from a radio station). In view of their

555



Fernández & Vico

Reference Composition task Comments

Voss & Clarke, 1978 melody first reference to 1/f noise in music

Bolognesi, 1983 melody early deliberate use of 1/f noise in music

Doornbusch, 2002 melody reference to early non-deliberate use of 1/f noise in music

Gogins, 1991 melody iterated function systems

Pressing, 1988 melody,
sound synthesis chaotic non-linear maps

Herman, 1993 melody chaotic non-linear dynamical systems

Langston, 1989 melody fractional Brownian motion

Díaz-Jerez, 2000 melody fractals and other self-similar systems

Bidlack, 1992 melody various fractal and chaotic systems

Leach & Fitch, 1995
(XComposer) melody, rhythm uses various fractal and chaotic systems

Hinojosa-Chapel, 2003 melody uses various fractal and chaotic systems to fill the

Coca et al., 2011 melody uses chaotic systems to add variation

Table 19: References for Section 3.6, in order of appearance.

There remains the question of why 1/f noise produces more musical results that other
random processes. The consensus in the research and artistic communities is self-similarity:
the structure of 1/f noise is statistically similar across several orders of magnitude (Farrell
et al., 2006). Self-similarity is a common feature in classical music compositions (Hsü &
Hsü, 1991), and is also one of the defining features of fractals (in fact, 1/f noise also has
fractal characteristics). Because of this, fractals have been extensively used as a source
of inspiration and raw material for compositions and CAAC software. In general, self-
similar musical patterns have multiple levels of structure, with pleasing regularities but
also dotted with sudden changes. Because these characteristics can be also present in the
output of chaotic systems (whose attractors are also fractal structures), these are also used
to generate musical patterns. Commonly used techniques to generate self-similar musical
patterns include chaotic systems such as iterated function systems (Gogins, 1991), non-
linear maps (Pressing, 1988) and non-linear dynamical systems (Herman, 1993), but also
fractional Brownian motion (Langston, 1989), cellular automata (discussed below) and L-
systems (already discussed in Section 3.1.1). More exotic methods are also possible, as
musical renderings of fractal images or number sequences with fractal characteristics (Díaz-
Jerez, 2000). These methods are widely regarded as not suitable to produce melodies or
compositions in their own right, but as a source of inspiration or raw material (Bidlack,
1992). Because of this, no extensive review will be provided here.31 However, full-fledged
algorithmic composition methods can use them as part of the creative process, as in Leach
and Fitch’s (1995) XComposer, where chaotic systems are used to fill the structures laid

critics, such as Nettheim (1992), these samples could not possibly be representative of single musical
pieces (see also the discussion in Díaz-Jerez, 2000, pp. 136–138).

31. Good (if somewhat outdated) reviews can be found in the work of Jones (1989), Díaz-Jerez (2000) and
Nierhaus (2009). The list of composers using fractals and chaotic systems for CAAC is so long that it is
impractical to consistently describe all the existing relevant work.

556



AI Methods in Algorithmic Composition

down by a hierarchical model, or in Hinojosa-Chapel’s (2003) paradigm for interactive
systems, where they are also used as a source of musical material. They can also be used
to add complexity to compositions generated by other means.32

3.6.1 Cellular Automata

A cellular automaton (CA) is a discrete (in time, space and state) dynamic system composed
of very simple computational units (cells) usually arranged in an ordered n-dimensional (and
potentially unbounded) grid (or any other regular tiling). Each cell can be in one of a finite
number of states. In each discrete time step, each cell’s state is deterministically updated,
using a set of transition rules that take into account its own state and its neighbors’ states.
Although this definition can be generalized in multiple ways, it represents a good first
approximation. Cellular automata are used in many disciplines across Science and the
Humanities as dynamical models of complex spatial and temporal patterns emerging from
the local interaction of many simple units; music composition is just one of these disciplines.
Cellular automata can be used to generate fractal patterns and discrete versions of chaotic
dynamical systems, but they also represent an alternative computational paradigm to realize
algorithmic composition.33 Unfortunately, just like fractals and chaotic systems, CA also
tend to produce interesting but somewhat unmusical patterns that are used as inspiration
or raw material rather than directly as music compositions. Although CA are argued to be
better suited to sound synthesis than to algorithmic composition (Miranda, 2007), only the
latter application will be reviewed here.

Xenakis was known to be deeply interested in the application of CA to music. In his
orchestral composition Horos, released in 1986, he is widely regarded to have used a CA to
configure the structure of the composition, though it was then heavily edited by hand (Hoff-
mann, 2002). Early, better documented explorations of CA for music composition include
the implementations of Beyls (1989), Millen (1990), and Hunt et al. (1991), which mapped
the patterns generated by user-defined CA to MIDI output. Beyls (1989) presented CA as
a generative system for real-time composition of avant-garde music, exploring several ways
to complexify the generated musical patterns (as changing the transition rules according to
meta-rules), while Millen (1990) presented a minimalist CAAC system. Hunt et al. (1991)
implemented another CAAC system designed to give the composer more control over the
composition process. Echoing Beyls’s (1989) early work, Ariza (2007) proposed to bend the
transition rules in order to increase the space of parameters available to the composer for ex-
perimentation, by either randomly changing the state of some isolated cells or dynamically
changing the transition rules from one generation to the next.

CAMUS (Miranda, 1993) is a more known CA system for algorithmic composition with
an innovative design using two bidimensional CA: Conway’s Game of Life (used to determine
musical sequences) and Griffeath’s Crystalline Growths (used to determine the instrumen-
tation of the notes generated by the first CA). Each activated cell in the Game of Life was
mapped to a sequence of three notes, whose instrument was selected according to the corre-
sponding cell in the second CA (the Crystalline Growths system). Unfortunately, according
to its own creator (Miranda, 2007), CAMUS did not produce very musical results: its out-

32. See, e.g., the description of the work by Coca et al. (2011) in Section 3.4.
33. For a more detailed survey, see e.g. the work of Burraston and Edmonds (2005).

557



Fernández & Vico

Reference Composition task Comments

Hoffmann, 2002 structure reference to early use of CA in music (Xenakis’s Horos)

Beyls, 1989 melody early use of CA in music

Millen, 1990 melody early use of CA in music

Hunt et al., 1991 melody early use of CA in music

Ariza, 2007 melody dynamically changing CA rules

Miranda, 1993
(CAMUS)

melody,
instrumentation

two CA: one for the melody,
other for the instrumentation

McAlpine et al., 1999
(CAMUS 3D)

melody, rhythm,
instrumentation same as above, plus Markov chains to select rhythm

Bilotta & Pantano, 2001 melody explores several mappings from CA to music events

Dorin, 2002
(Liquiprism) rhythmic patterns several interacting CA

Ball, 2005, Miljkovic, 2007 melody, rhythm references to WolframTones

Phon-Amnuaisuk, 2010 melody uses ANNs to learn CA rules

Beyls, 2003 melody interactive evolutionary algorithm

Bilotta & Pantano, 2002 melody extends Bilotta and Pantano’s (2001) work
with an evolutionary algorithm

Lo, 2012 melody evolutionary algorithm,
Markov chains used in the fitness function

Table 20: References for Section 3.6.1, in order of appearance.

put was more properly considered as raw material to be edited by hand. CAMUS was later
generalized, using a Markov chain to determine the note durations and three-dimensional
versions of the Game of Life and Crystalline Growths (McAlpine et al., 1999).

More recently, Bilotta and Pantano (2001) explored several different mappings to gen-
erate music from CA: local codes (mapping cells to pitches, the usual mapping in most
papers), global codes (mapping the entropy of the whole pattern in each generation to musi-
cal events) and mixed codes (mapping groups of cells to musical events). Dorin (2002) used
six bidimensional finite CA arranged in a cube (their edges connected), running at differ-
ent speeds, to generate complex poly-rhythmic patterns.34 Finally, WolframTones35 (Ball,
2005) is a commercial application of CA to music composition, using a database of four
billions of transition rules for one-dimensional CA (all possible transition rules taking into
account five neighbors). WolframTones searches for rules that produce chaotic or complex
patterns. These patterns are mapped to musical events, and the system is able to search
for patterns whose musical mapping resembles one of a set of pre-defined musical styles
(Miljkovic, 2007).

Although CA are commonly used to generate musical material in a “uncontrolled” way
(i.e., the composer tunes the parameters of the CA by hand), it is possible to use other
methods to design the CA (states, transition rules, etc.). For example, Phon-Amnuaisuk

34. In Section 3.4.2, similar work (Dorin, 2000) with Boolean networks (a connectionist paradigm usually
seen as a generalization of CA) was mentioned.

35. http://tones.wolfram.com/

558

http://tones.wolfram.com/


AI Methods in Algorithmic Composition

(2010) used artificial neural networks trained to learn the transition rules of a CA: given
a melody, its piano-roll notation was interpreted as the temporal pattern of a CA, and the
network was trained to learn the transition rules for that temporal pattern. Then, given
other initial conditions, the network produced new compositions in piano-roll notation.
Evolutionary algorithms are also used to design the parameters (transition rules, states,
etc.) of CA. In some cases, previous work with hand-designed CA is adapted to use an
evolutionary algorithm. This is the case of Beyls (2003), who used an interactive evolu-
tionary algorithm to evolve the parameters of a CA, and Bilotta and Pantano (2002), who
adapted their previously discussed work (Bilotta & Pantano, 2001) to use an evolutionary
algorithm, although the fitness function was poorly described. Lo (2012) applied evolution-
ary algorithms to generate CA for algorithmic composition in a more comprehensive way,
experimenting with various fitness functions based on extracting statistical models from a
corpus of pre-existing compositions, including metrics based on Markov models and Zipf’s
law.

4. Conclusions

In this survey, several hundreds of papers on algorithmic composition have been briefly re-
viewed. Obviously, none of them has been described in detail. Rather, this survey has been
intended as a short reference guide for the various methods commonly used for algorithmic
composition. As Pearce et al. (2002) noted, most papers on algorithmic composition do
not adequately (a) specify the precise practical or theoretical aims of research; (b) use a
methodology to achieve these aims; or (c) evaluate the results in a controlled, measurable
and repeatable way. Researchers of algorithmic composition have very diverse backgrounds,
and, in many cases, they do not present their work in a way that enables comparison with
others. Because of these considerations, we have presented the literature in a “narrative”
style, classifying the existing work in several broad categories, and providing brief descrip-
tions of the papers in an approximately chronological order for each category.

4.1 About Creativity

Algorithmic composition automates (to varying degrees) the various tasks associated with
music composition, such as the generation of melodies or rhythms, harmonization, coun-
terpoint and orchestration. These tasks can be applied in two ways: (a) to generate music
imitating a corpus of compositions or a specific style, and (b) to automate composition
tasks to varying degrees, from designing mere tools for human composers, to generating
compositions without human intervention:

Generating music imitating a corpus of compositions or a specific style. Most
instances of this kind of problem (including real-time improvisation systems that elab-
orate on input from human musicians) can be considered as solved: imitation problems
have been tackled with many different methods, in many cases with reasonable success
(such as Cope’s EMI, 1992, or Pachet’s Continuator, 2002). In fact, since the origins
of computational algorithmic composition, there has been a bias in the research com-
munity towards imitation problems (Nierhaus, 2009). This may be attributed to the

559



Fernández & Vico

difficulty to merge the mindset of computer science (clear-cut definitions, precise algo-
rithms, straight methodologies) with the mindset of artistic work (intuition, vagueness,
cultural heritage and artistic influences). These two mindsets may be compared to
the once common cultural divide in Artificial Intelligence between neats and scruffies.
Unfortunately, while the neats reign supreme in Artificial Intelligence, they have yet
to gain the upper hand in Artificial Creativity.

Automating composition tasks to varying degrees. In the case of automated
systems for algorithmic composition intended to reproduce human creativity in some
way, there is the problem of evaluating their performance: the concept of artistic
creativity eludes a formal, unambiguous and effective definition. This makes it difficult
to evaluate these systems in a completely rigorous way. Certainly, many frameworks
have been proposed for assessing computational creativity36, but not one can be easily
and uniformly applied to computers and humans alike, in a way that does not spark
controversy. It may seem simple to measure computational creativity against human
standards: we can simply ask people to listen to human and machine compositions,
and declare an algorithmic composition system as creative if these people cannot tell
apart its compositions from human ones. As Ariza (2009) noted, this kind of “musical
Turing Test” has been performed by many different researchers trying to validate their
systems, but they are valid if the algorithmic composition system just aspires to imitate,
not to be truly creative and create a truly innovative work of art.

There is also the view that systems for algorithmic composition cannot attain true creativ-
ity, even in principle. In fact, it has been suggested (Kugel, 1990) that no Turing-equivalent
formalism can truly simulate human creativity, i.e., musical creativity is not effectively com-
putable, thus preventing computer systems from completely imitating human composers,
even in theory. This argument is not without merits, but it is open to debate, precisely
because it lacks a rigorous, unambiguous definition of creativity.

4.2 About the Methods

Regardless of these (more or less abstract) considerations about true creativity, this survey
has presented existing work on algorithmic composition, organized in several categories. As
described at the beginning of Section 3, these categories can be grouped in a few classes:

Symbolic AI (grammars and rule-based systems). Under this umbrella, we have
grouped very different techniques. These techniques can be used both for imitation (be
it the style of a specific composer, or more generally a musical style) and automation of
composition tasks. They have proved very effective, and they are very popular (at least,
by sheer volume of reviewed work), but in most cases, they are very labor-intensive,
because they require musical knowledge to be encoded and maintained in the symbolic
framework of choice. There has also been a clear trend towards more and more formal
systems, gradually moving from ad hoc rule systems to constraint satisfaction and other
various formalisms.

36. For example, Gero’s (2000), Pearce and Wiggins’s (2001), Ritchie’s (2007) and Boden’s (2009).

560



AI Methods in Algorithmic Composition

Machine learning (Markov chains and artificial neural networks). Because of
their nature, machine learning techniques are used primarily for imitation, although
both Markov chains (and related statistical methods) and artificial neural networks
can be also used to automate composition tasks (such as harmonization). It should be
noted that some techniques described here as symbolic AI are also machine learning
(like Cope’s ATNs, rule learning or case-based reasoning).

Optimization techniques (evolutionary algorithms). As in the case of machine
learning, optimization techniques (mostly evolutionary algorithms) have been profusely
used for imitation, since it is natural to express the objective of the optimization (the
fitness function) as the distance to the musical style to be imitated. However, the
automation of composition tasks has also been explored, more so than in the case of
machine learning techniques.

Self-similarity and cellular automata. Strictly speaking, these techniques are not a
form of AI. As explained at the beginning of Section 3, they just represent a convenient
way to generate novel musical material without resorting to human musical knowledge,
but the problem is that musical material generated in this way is very rough; it is most
commonly used by human composers as raw material to build upon.

After reviewing the literature, it becomes apparent that there is no silver bullet: except for
strict, limited imitation of specific musical styles or real-time improvisation systems that
elaborate on input from human musicians, almost all approaches to algorithmic composition
seem to be unable to produce content which can be deemed on a par with professional
human composers, even without taking into account the problem of creativity as discussed
in Section 4.1. Very few examples stand out, and then only in some niche applications, such
as the contemporary classical music composed by Iamus (Ball, 2012).

As there is no silver bullet, one obvious way forward is the hybridization of two or
more methods. In fact, from our review of the existing work, it seems apparent that many
researchers are already following this route, but there are some hybridizations that have
rarely been explored. For example, the music material produced by systems based on
self-similarity and CA is commonly regarded as a mere source of inspiration for human
composers, rather than as a proper way to automate the composition of music, because
this music material generally lacks structure. However, it can be used as the first stage
in a process of algorithmic composition, to be modified and refined by subsequent stages,
probably based on some form of machine learning if the goal is to produce music in a specific
musical style, or some knowledge-based system (such as Leach and Fitch’s XComposer,
1995). In the case of evolutionary algorithms, self-similarity systems may be used to seed
the initial population, or to introduce variety to avoid premature convergence, and CA may
be used as individuals to be evolved (such as in the work of Lo, 2012, which also features
machine learning techniques). More research is required to explore the potential of this
kind of approach, combining self-similarity and CA-based systems with other methods.

In the case of optimization techniques, the multi-objective paradigm has rarely been
used, at least in comparison with the traditional single-objective approach. Composing
music usually requires balancing a set of many different, sometimes conflicting objectives,
to configure the various aspects of the music, so multi-objective optimization seems a natural

561



Fernández & Vico

way to tackle this problem. All too often, researchers use a weighted sum of parameters
to conflate all these objectives into a single fitness function. Very few researchers use
multi-objective optimization, as do Geis and Middendorf (2008), Carpentier and Bresson
(2010), De Prisco et al. (2010), and Freitas and Guimarães (2011). While multi-objective
optimization is harder (both conceptually and in practice), it represents a natural way of
dealing with the complexity of having many different objectives, and it should be explored
more by the research community.

Finally, in the specific case of evolutionary algorithms, the issue of encoding the indi-
viduals should also be examined. Looking at algorithmic composition as an optimization
problem, search spaces for musical compositions tend to be huge and high-dimensional.
Direct encodings (such as directly representing music as a sequence of pitches) make it
very difficult to explore the search space in an effective way, with problems of scalability
(the performance degrades significantly as the size of the problem increases) and solution
structure (the solutions generated by the algorithm tend to be unstructured, hard to adapt
and fragile). This problem is mitigated by indirect encodings, in which the genotype does
not directly represent the phenotype, but rather a “list of instructions” to build it. Many
different types of indirect encoding have been used in algorithmic composition, such as
L-systems, other types of grammars, or the various encoding styles used in genetic pro-
gramming. However, other advanced techniques for indirect encoding have rarely been
applied to algorithmic composition, in order to overcome the aforementioned problems of
scalability and solution structure, such as those related to artificial embryogenies (Stanley
& Miikkulainen, 2003), which have been inspired by biological developmental processes.
Adding these to the evolutionary toolkit may be a way to enable more and more complex
compositional tasks to be tackled.

4.3 Final Thoughts

Computers have come to stay: the use of CAAC software is prevalent among many com-
posers, and some artistic scenes (as generative music) embrace computer-generated music as
part of their identity. However, creativity is still in the hands of composers for the most part.
As argued in Section 4.1, creativity is an inherently subjective concept, and it is arguably
debatable the point at which a computational system may become truly creative. However,
even if a precise definition cannot be agreed upon, it is easy to see that the development
of algorithmic composition systems capable of independent creativity will radically change
the process of music composition, and consequently the market for music. This should not
be seen as yet another case of computers replacing humans in an ever more sophisticated
activity, but a potentially radical disruption in the way composers perform their work: just
like a pedagogical expert system does not supersedes the role of human teachers, but enable
new ways to do their work.

Being music one of the arts with a stronger mathematical background, it is not surprising
that most of the debate on whether machines can make original and creative works has
centered in this subfield of computational creativity. Hybridization of different techniques,
bioinspiration, and the use of high performance computing might bring about new realms
of (computer-) creativity. As science writer Philip Ball put it in his analysis of Melomics’

562



AI Methods in Algorithmic Composition

music composition technology: “. . . unfolding complex structure from a mutable core has
enabled the kind of dramatic invention found in biological evolution” (Ball, 2012).

Acknowledgments

The authors wish to thank Ilias Bergstrom for his comments on a preliminary version of the
manuscript. Also, the critical review of our anonymous referees has greatly improved the
final version. This study was partially supported by a grant for the MELOMICS project
(IPT-300000-2010-010) from the Spanish Ministerio de Ciencia e Innovación, and a grant for
the CAUCE project (TSI-090302-2011-8) from the Spanish Ministerio de Industria, Turismo
y Comercio. The first author was supported by a grant for the GENEX project (P09-TIC-
5123) from the Consejería de Innovación y Ciencia de Andalucía. The first author also
wishes to thank his wife Elisa and his daughter Isabel for being there day after day, in spite
of the long hours spent writing this manuscript, and his family for the invaluable support
they have provided.

References

Adiloglu, K., & Alpaslan, F. N. (2007). A machine learning approach to two-voice counter-
point composition. Knowledge-Based Systems, 20 (3), 300–309.

Aguilera, G., Galán, J. L., Madrid, R., Martínez, A. M., Padilla, Y., & Rodríguez, P. (2010).
Automated generation of contrapuntal musical compositions using probabilistic logic
in Derive. Mathematics and Computers in Simulation, 80 (6), 1200–1211.

Alfonseca, M., Cebrián, M., & Ortega, A. (2005). Evolving computer-generated music
by means of the normalized compression distance. In Proceedings of the WSEAS
International Conference on Simulation, Modelling and Optimization, pp. 343–348,
Stevens Point, Wisconsin, USA.

Allan, M. (2002). Harmonising chorales in the style of Johann Sebastian Bach. Master’s
thesis, University of Edinburgh.

Allombert, A., Assayag, G., Desainte-Catherine, M., & Rueda, C. (2006). Concurrent con-
straints models for interactive scores. In Proceedings of the Sound and Music Com-
puting Conference.

Ames, C. (1987). Automated composition in retrospect: 1956-1986. Leonardo, 20 (2), 169–
185.

Ames, C. (1989). The Markov process as a compositional model: A survey and tutorial.
Leonardo, 22 (2), 175–187.

Ames, C., & Domino, M. (1992). Understanding music with AI, chap. Cybernetic composer:
an overview, pp. 186–205. The MIT Press, Cambridge.

Amiot, E., Noll, T., Agon, C., & Andreatta, M. (2006). Fourier oracles for computer-aided
improvisation. In Proceedings of the International Computer Music Conference.

Anders, T. (2007). Composing Music by Composing Rules: Design and Usage of a Generic
Music Constraint System. Ph.D. thesis, Queen’s University Belfast.

563



Fernández & Vico

Anders, T., & Miranda, E. R. (2009). A computational model that generalises Schoenberg’s
guidelines for favourable chord progressions. In Proceedings of the Sound and Music
Computing Conference.

Anders, T., & Miranda, E. R. (2011). Constraint programming systems for modeling music
theories and composition. ACM Computing Surveys, 43 (4), 30:1–30:38.

Ando, D., & Iba, H. (2007). Interactive composition aid system by means of tree repre-
sentation of musical phrase. In Proceedings of the IEEE Conference on Evolutionary
Computation, pp. 4258–4265.

Ariza, C. (2005a). Navigating the landscape of computer aided algorithmic composition
systems: A definition, seven descriptors, and a lexicon of systems and research. In
Proceedings of the International Computer Music Conference.

Ariza, C. (2005b). An Open Design for Computer-Aided Algorithmic Music Composition:
athenaCL. Ph.D. thesis, New York University.

Ariza, C. (2006). Beyond the transition matrix: A language-independent, string-based input
notation for incomplete, multiple-order, static Markov transition values. Unpublished
manuscript.

Ariza, C. (2007). Automata bending: Applications of dynamic mutation and dynamic rules
in modular One-Dimensional cellular automata. Computer Music Journal, 31 (1),
29–49.

Ariza, C. (2009). The interrogator as critic: The Turing test and the evaluation of generative
music systems. Computer Music Journal, 33 (2), 48–70.

Ariza, C. (2011). Two pioneering projects from the early history of computer-aided algo-
rithmic composition. Computer Music Journal, 35 (3), 40–56.

Aschauer, D. (2008). Algorithmic composition. Master’s thesis, Vienna University of Tech-
nology.

Assayag, G., & Dubnov, S. (2004). Using factor oracles for machine improvisation. Soft
Computing - A Fusion of Foundations, Methodologies and Applications, 8 (9), 604–610.

Assayag, G., Rueda, C., Laurson, M., Agon, C., & Delerue, O. (1999). Computer-Assisted
composition at IRCAM: From PatchWork to OpenMusic. Computer Music Journal,
23 (3), 59–72.

Baeten, J. C. M. (2005). A brief history of process algebra. Theoretical Computer Science,
335 (2–3), 131–146.

Baggi, D. L. (1991). Neurswing: an intelligent workbench for the investigation of swing in
jazz. Computer, 24 (7), 60–64.

Balaban, M., Ebcioğlu, K., & Laske, O. E. (1992). Understanding music with AI : perspec-
tives on music cognition. The MIT Press, Cambridge.

Ball, P. (2005). Making music by numbers online. Nature News Online
(http://dx.doi.org/10.1038/050919-14).

Ball, P. (2012). Computer science: Algorithmic rapture. Nature, 488 (7412), 458.

564

http://dx.doi.org/10.1038/050919-14


AI Methods in Algorithmic Composition

Baroni, M., & Jacoboni, C. (1978). Proposal for a grammar of melody : The Bach chorales.
Les Presses de l’Université de Montréal.

Bel, B. (1992). Modelling improvisatory and compositional processes. Languages of Design,
Formalisms for Word, Image and Sound, 1, 11–26.

Bellgard, M. I., & Tsang, C. P. (1992). Harmonizing music using a network of Boltzmann
machines. In Proceedings of the Annual Conference of Artificial Neural Networks and
their Applications, pp. 321–332, France.

Berg, P. (2011). Using the AC Toolbox. Institute of Sonology, Royal Conservatory, The
Hague.

Beyls, P. (1989). The musical universe of cellular automata. In Proceedings of the Interna-
tional Computer Music Conference, pp. 34–41.

Beyls, P. (2003). Selectionist musical automata: Integrating explicit instruction and evolu-
tionary algorithms. In Proceedings of the Brazilian Symposium on Computer Music.

Beyls, P. (2007). Interaction and self-organisation in a society of musical agents. In Pro-
ceedings of the European Conference on Artificial Life.

Bidlack, R. (1992). Chaotic systems as simple (but complex) compositional algorithms.
Computer Music Journal, 16 (3), 33–47.

Biles, J. A. (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceedings
of the International Computer Music Conference.

Biles, J. A. (1998). Interactive GenJam: Integrating real-time performance with a genetic
algorithm. In Proceedings of the International Computer Music Conference.

Biles, J. A., Anderson, P., & Loggi, L. (1996). Neural network fitness functions for a
musical IGA. In Proceedings of the International Symposium on Intelligent Industrial
Automation and Soft Computing.

Bilotta, E., & Pantano, P. (2001). Artificial life music tells of complexity. In Proceedings of
the European Conference on Artificial Life.

Bilotta, E., & Pantano, P. (2002). Synthetic harmonies: An approach to musical semiosis
by means of cellular automata. Leonardo, 35 (2), 153–159.

Birchfield, D. A. (2003). Evolving intelligent musical materials. Ph.D. thesis, Columbia
University, New York.

Biyikoglu, K. M. (2003). A Markov model for chorale harmonization. In Proceedings of the
Triennial ESCOM Conference.

Blackwell, T. M., & Bentley, P. (2002). Improvised music with swarms. In Proceedings of
the IEEE Conference on Evolutionary Computation, pp. 1462–1467.

Boden, M. A. (2009). Computer models of creativity. AI Magazine, 30 (3), 23–34.
Boenn, G., Brain, M., De Vos, M., & Fitch, J. (2008). Automatic composition of melodic

and harmonic music by Answer Set Programming. In Proceedings of the International
Conference on Logic Programming, pp. 160–174.

Bolognesi, T. (1983). Automatic composition: Experiments with self-similar music. Com-
puter Music Journal, 7 (1), 25–36.

565



Fernández & Vico

Bosma, M. (2005). Musicology in a virtual world: A bottom up approach to the study of
musical evolution. Master’s thesis, University of Groningen and University of Ply-
mouth.

Boulanger, R. C. (Ed.). (2000). The Csound Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing, and Programming. The MIT Press.

Bown, O., & McCormack, J. (2010). Taming nature: tapping the creative potential of
ecosystem models in the arts. Digital Creativity, 21 (4), 215–231.

Bown, O., & Wiggins, G. A. (2005). Modelling musical behaviour in a cultural-evolutionary
system. In Proceedings of the International Joint Conference on Artificial Inteligence.

Brooks, F. P., Hopkins, A. L., Neumann, P. G., & Wright, W. V. (1957). An experiment in
musical composition. IRE Transactions on Electronic Computers, EC-6 (3), 175–182.

Browne, T. M., & Fox, C. (2009). Global Expectation-Violation as fitness function in evolu-
tionary composition. In Proceedings of the Conference on Applications of Evolutionary
Computation, pp. 538–546.

Bryden, K. (2006). Using a Human-in-the-Loop evolutionary algorithm to create Data-
Driven music. In Proceedings of the IEEE Conference on Evolutionary Computation,
pp. 2065–2071.

Bulley, J., & Jones, D. (2011). Variable 4: A dynamical composition for weather systems.
In Proceedings of the International Computer Music Conference.

Burns, K. (1994). The History and Development of Algorithms in Music Composition,
1957-1993. Ph.D. thesis, Ball State University.

Burraston, D., & Edmonds, E. (2005). Cellular automata in generative electronic music
and sonic art: a historical and technical review. Digital Creativity, 16 (3), 165–185.

Burton, A. R. (1998). A Hybrid Neuro-Genetic Pattern Evolution System Applied to Musical
Composition. Ph.D. thesis, University of Surrey.

Burton, A. R., & Vladimirova, T. (1999). Generation of musical sequences with genetic
techniques. Computer Music Journal, 23 (4), 59–73.

Buttram, T. (2003). DirectX 9 Audio Exposed: Interactive Audio Development, chap. Be-
yond Games: Bringing DirectMusic into the Living Room. Wordware Publishing Inc.

Carpentier, G., & Bresson, J. (2010). Interacting with symbol, sound, and feature spaces
in orchidée, a computer-aided orchestration environment. Computer Music Journal,
34 (1), 10–27.

Chemillier, M. (2004). Toward a formal study of jazz chord sequences generated by Steed-
man’s grammar. Soft Computing - A Fusion of Foundations, Methodologies and Ap-
plications, 8 (9), 617–622.

Chemillier, M., & Truchet, C. (2001). Two musical CSPs. In Proceedings of the International
Conference on Principles and Practice of Constraint Programming.

Chen, C. C. J., & Miikkulainen, R. (2001). Creating melodies with evolving recurrent neural
networks. In Proceedings of the International Joint Conference on Neural Networks,
pp. 2241–2246.

566



AI Methods in Algorithmic Composition

Chusid, I. (1999). Beethoven-in-a-box: Raymond scott’s electronium. Contemporary Music
Review, 18 (3), 9–14.

Coca, A. E., Romero, R. A. F., & Zhao, L. (2011). Generation of composed musical struc-
tures through recurrent neural networks based on chaotic inspiration. In Proceedings
of the International Joint Conference on Neural Networks, pp. 3220–3226.

Coghlan, A. (2012). Computer composer honours Turing’s centenary. New Scientist,
215 (2872), 7.

Cohen, J. E. (1962). Information theory and music. Behavioral Science, 7 (2), 137–163.
Collins, N. (2009). Musical form and algorithmic composition. Contemporary Music Review,

28 (1), 103–114.
Conklin, D. (2003). Music generation from statistical models. In Proceedings of the Sym-

posium on Artificial Intelligence and Creativity in Arts and Science.
Conklin, D., & Witten, I. (1995). Multiple viewpoint systems for music prediction. Journal

of New Music Research, 24 (1), 51–73.
Cope, D. (1992). Computer modeling of musical intelligence in EMI. Computer Music

Journal, 16 (2), 69–83.
Cope, D. (2000). The Algorithmic Composer. A-R Editions.
Cope, D. (2005). Computer Models of Musical Creativity. The MIT Press, Cambridge.
Courtot, F. (1990). A constraint-based logic program for generating polyphonies. In Pro-

ceedings of the International Computer Music Conference, pp. 292–294.
Cruz-Alcázar, P. P., & Vidal-Ruiz, E. (1998). Learning regular grammars to model mu-

sical style: Comparing different coding schemes. In Proceedings of the International
Colloquium on Grammatical Inference, pp. 211–222.

Dahlstedt, P. (2007). Autonomous evolution of complete piano pieces and performances. In
Proceedings of the European Conference on Artificial Life.

Dahlstedt, P., & Nordahl, M. G. (2001). Living melodies: Coevolution of sonic communi-
cation. Leonardo, 34 (3), 243–248.

Dalhoum, A. A., Alfonseca, M., Cebrián, M., Sánchez-Alfonso, R., & Ortega, A. (2008).
Computer-generated music using grammatical evolution. In Proceedings of the Middle-
East Simulation Multiconference, pp. 55–60.

Davismoon, S., & Eccles, J. (2010). Combining musical constraints with Markov transition
probabilities to improve the generation of creative musical structures. In Proceedings
of the European Conference on the Applications of Evolutionary Computation.

De Prisco, R., Zaccagnino, G., & Zaccagnino, R. (2010). EvoBassComposer: a multi-
objective genetic algorithm for 4-voice compositions. In Proceedings of the Genetic
and Evolutionary Computation Conference.

Degazio, B. (1996). The evolution of musical organisms. Leonardo Music Journal, 7, 27–33.
Díaz-Jerez, G. (2000). Algorithmic Music Using Mathematical Models. Ph.D. thesis, Man-

hattan School of Music.

567



Fernández & Vico

Díaz-Jerez, G. (2011). Composing with Melomics: Delving into the computational world
for musical inspiration. Leonardo Music Journal, 21, 13–14.

Dobrian, C. (1993). Music and artificial intelligence. Unpublished manuscript. Available at
http://music.arts.uci.edu/dobrian/CD.music.ai.htm.

Doornbusch, P. (2002). A brief survey of mapping in algorithmic composition. In Proceedings
of the International Computer Music Conference.

Dorin, A. (2000). Boolean networks for the generation of rhythmic structure. In Proceedings
of the Australasian Computer Music Conference, pp. 38–45.

Dorin, A. (2002). Liquiprism : Generating polyrhythms with cellular automata. In Proceed-
ings of the International Conference on Auditory Display.

Drewes, F., & Högberg, J. (2007). An algebra for tree-based music generation. In Proceedings
of the International Conference on Algebraic Informatics, pp. 172–188.

Dubnov, S., Assayag, G., Lartillot, O., & Bejerano, G. (2003). Using machine-learning
methods for musical style modeling. Computer, 36 (10), 73–80.

DuBois, R. L. (2003). Applications of Generative String-Substitution Systems in Computer
Music. Ph.D. thesis, Columbia University.

Duff, M. O. (1989). Backpropagation and Bach’s 5th cello suite (Sarabande). In Proceedings
of the International Joint Conference on Neural Networks, p. 575.

Ebcioğlu, K. (1980). Computer counterpoint. In Proceedings of the International Computer
Music Conference.

Ebcioğlu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music
Journal, 12 (3), 43–51.

Edwards, M. (2011). Algorithmic composition: computational thinking in music. Commu-
nications of the ACM, 54 (7), 58–67.

Eigenfeldt, A., & Pasquier, P. (2010). Realtime generation of harmonic progressions us-
ing controlled Markov selection. In Proceedings of the International Conference on
Computational Creativity.

Eldridge, A., & Dorin, A. (2009). Filterscape: Energy recycling in a creative ecosystem. In
Proceedings of the Conference on Applications of Evolutionary Computation.

Eno, B. (1996). Generative Music, speech at the Imagination Conference. Available at
http://www.inmotionmagazine.com/eno1.html.

Espí, D., Ponce de León, P. J., Pérez-Sancho, C., Rizo, D., nesta, J. I., Moreno-Seco, F., &
Pertusa, A. (2007). A cooperative approach to style-oriented music composition. In
Proceedings of the International Joint Conference on Artificial Inteligence.

Farbood, M., & Schoner, B. (2001). Analysis and synthesis of Palestrina-style counterpoint
using Markov chains. In Proceedings of the International Computer Music Conference.

Farnell, A. (2007). An introduction to procedural audio and itsapplication in computer
games. In Proceedings of the Audio Mostly Conference.

Farrell, S., Jan Wagenmakers, E., & Ratcliff, R. (2006). 1/f noise in human cognition: Is it
ubiquitous, and what does it mean?. Psychonomic Bulletin & Review, 13 (4), 737–741.

568

http://music.arts.uci.edu/dobrian/CD.music.ai.htm
http://www.inmotionmagazine.com/eno1.html


AI Methods in Algorithmic Composition

Feulner, J., & Hörnel, D. (1994). MELONET: neural networks that learn harmony-based
melodic variations. In Proceedings of the International Computer Music Conference,
pp. 121–124, San Francisco.

Fox, C. W. (2006). Genetic hierarchical music structures. In Proceedings of the International
Florida Artificial Research Society Conference.

Franklin, J. (2001). Multi-phase learning for jazz improvisation and interaction. In Pro-
ceedings of the Biennial Symposium on Arts and Technology.

Freitas, A., & Guimarães, F. (2011). Melody harmonization in evolutionary music using
multiobjective genetic algorithms. In Proceedings of the Sound and Music Computing
Conference.

Fry, C. (1984). Flavors band: A language for specifying musical style. Computer Music
Journal, 8 (4), 20–34.

Garay Acevedo, A. (2004). Fugue composition with counterpoint melody generation using
genetic algorithms. In Proceedings of the International Conference on Computer Music
Modeling and Retrieval, pp. 96–106.

Gartland-Jones, A. (2002). Can a genetic algorithm think like a composer?. In Proceedings
of the Generative Art Conference.

Geem, Z. W., & Choi, J. Y. (2007). Music composition using harmony search algorithm.
In Proceedings of the Conference on Applications of Evolutionary Computation, pp.
593–600.

Geis, M., & Middendorf, M. (2008). Creating melodies and baroque harmonies with ant
colony optimization. International Journal of Intelligent Computing and Cybernetics,
1 (2), 213–218.

Gero, J. S. (2000). Computational models of innovative and creative design processes.
Technological Forecasting and Social Change, 64 (2–3), 183–196.

Gibson, P. M., & Byrne, J. A. (1991). NEUROGEN, musical composition using genetic
algorithms and cooperating neural networks. In Proceedings of the International Con-
ference on Artificial Neural Networks, pp. 309–313.

Gill, S. (1963). A technique for the composition of music in a computer. The Computer
Journal, 6 (2), 129–133.

Gillick, J., Tang, K., & Keller, R. M. (2009). Learning jazz grammars. In Proceedings of
the Sound and Music Computing Conference, pp. 125–130.

Gjerdingen, R. (1988). Explorations in Music, the Arts, and Ideas: Essays in Honor of
Leonard B. Meyer, chap. Concrete musical knowledge and a computer program for
species counterpoint, pp. 199–228. Pendragon Press.

Gogins, M. (1991). Iterated functions systems music. Computer Music Journal, 15 (1),
40–48.

Gogins, M. (2006). Score generation in voice-leading and chord spaces. In Proceedings of
the International Computer Music Conference.

569



Fernández & Vico

Goldman, C., Gang, D., Rosenschein, J., & Lehmann, D. (1996). NETNEG: a hybrid
interactive architecture for composing polyphonic music in real time. In Proceedings
of the International Computer Music Conference, pp. 133–140.

Grachten, M. (2001). JIG : jazz improvisation generator. In Proceedings of the Workshop on
Current Research Directions in Computer Music, pp. 1–6. Audiovisual Institute-UPF.

Gwee, N. (2002). Complexity and Heuristics in Rule-Based Algorithmic Music Composition.
Ph.D. thesis, Louisiana State University.

Hamanaka, M., Hirata, K., & Tojo, S. (2008). Melody morphing method based on GTTM.
In Proceedings of the International Computer Music Conference, pp. 155–158.

Harris, R. (2008). Algorithmic composition of jazz. Master’s thesis, University of Bath.
Hartmann, P. (1990). Natural selection of musical identities. In Proceedings of the Interna-

tional Computer Music Conference.
Haus, G., & Sametti, A. (1991). Scoresynth: a system for the synthesis of music scores

based on Petri nets and a music algebra. IEEE Computer, 24 (7), 56–60.
Herman, M. (1993). Deterministic chaos, iterative models, dynamical systems and their

application in algorithmic composition. In Proceedings of the International Computer
Music Conference.

Herremans, D., & Sorensena, K. (2012). Composing first species counterpoint with a variable
neighbourhood search algorithm. Journal of Mathematics and the Arts, 6 (4), 169–189.

Hild, H., Feulner, J., & Menzel, D. (1992). HARMONET: a neural net for harmonising
chorales in the style of J.S. Bach. In Proceedings of the Conference on Neural Infor-
mation Processing Systems.

Hiller, L. A., & Isaacson, L. M. (1958). Musical composition with a High-Speed digital
computer. Journal of the Audio Engineering Society, 6 (3), 154–160.

Hinojosa-Chapel, R. (2003). Realtime algorithmic music systems from fractals and chaotic
functions: Toward an active musical instrument. Master’s thesis, Universitat Pompeu
Fabra.

Hirata, K., & Aoyagi, T. (1988). How to realize jazz feelings: a logic programming ap-
proach. In Proceedings of the International Conference on Fifth Generation Computer
Systems.

Hoffmann, P. (2002). Towards an "automated art": Algorithmic processes in xenakis’ com-
positions. Contemporary Music Review, 21 (2-3), 121–131.

Holm, F. (1990). CESAM: A concept engine for synthesis of audio and music. In Proceedings
of the International Computer Music Conference.

Holtzman, S. R. (1981). Using generative grammars for music composition. Computer
Music Journal, 5 (1), 51–64.

Hoover, A. K., Szerlip, P. A., Norton, M. E., Brindle, T. A., Merritt, Z., & Stanley, K. O.
(2012). Generating a complete multipart musical composition from a single mono-
phonic melody with functional scaffolding. In Proceedings of the International Con-
ference on Computational Creativity.

570



AI Methods in Algorithmic Composition

Hörnel, D., & Degenhardt, P. (1997). A neural organist improvising baroque-style melodic
variations. In Proceedings of the International Computer Music Conference, pp. 430–
433.

Hörnel, D., & Ragg, T. (1996). A connectionist model for the evolution of styles of har-
monization. In Proceedings of the International Conference on Music Perception and
Cognition.

Horner, A., & Ayers, L. (1995). Harmonization of musical progressions with genetic algo-
rithms. In Proceedings of the International Computer Music Conference.

Horner, A., & Goldberg, D. E. (1991). Genetic algorithms and computer-assisted music
composition. In Proceedings of the International Conference on Genetic Algorithms,
pp. 337–441.

Horowitz, M. D. (1994). Generating rhythms with genetic algorithms. In Proceedings of the
AAAI National Conference on Artificial intelligence, Menlo Park.

Horowitz, M. D. (1995). Representing musical knowledge. Ph.D. thesis, Columbia University.

Hsü, K. J., & Hsü, A. (1991). Self-similarity of the "1/f noise" called music. Proceedings of
the National Academy of Sciences of the United States of America, 88 (8), 3507–3509.

Hunt, A., Kirk, R., & Orton, R. (1991). Musical applications of a cellular automata work-
station. In Proceedings of the International Computer Music Conference.

Jacob, B. L. (1995). Composing with genetic algorithms. In Proceedings of the International
Computer Music Conference.

Jensen, J. H. (2011). Evolutionary music composition: A quantitative approach. Master’s
thesis, Norwegian University of Science and Technology.

Johanson, B., & Poli, R. (1998). GP-music: An interactice genetic programming system
for music generation with automated fitness raters. In Proceedings of the Annual
Conference on Genetic Programming, pp. 181–186.

Johnson, M., Tauritz, D. R., & Wilkerson, R. (2004). Evolutionary computation applied to
melody generation. In Proceedings of the Artificial Neural Networks in Engineering
(ANNIE) Conference.

Jones, K. (1980). A space grammar for the stochastic generation of Multi-Dimensional
structures. In Proceedings of the International Computer Music Conference.

Jones, K. (1981). Compositional applications of stochastic processes. Computer Music
Journal, 5 (2), 45–61.

Jones, K. (1989). Generative models in computer-assisted musical composition. Contempo-
rary Music Review, 3 (1), 177–196.

Kaliakatsos-Papakostas, M. A., Epitropakis, M. G., Floros, A., & Vrahatis, M. N. (2012).
Interactive evolution of 8-Bit melodies with genetic programming towards finding aes-
thetic measures for sound evolutionary and biologically inspired music, sound, art and
design. In Proceedings of the International Conference on Evolutionary and Biologi-
cally Inspired Music, Sound, Art and Design, pp. 141–152.

571



Fernández & Vico

Keller, R. M., & Morrison, D. R. (2007). A grammatical approach to automatic improvisa-
tion. In Proceedings of the Sound and Music Computing Conference, pp. 330–337.

Khalifa, Y. M. A., Khan, B. K., Begovic, J., Wisdom, A., & Wheeler, A. M. (2007). Evo-
lutionary music composer integrating formal grammar. In Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 2519–2526, New York.

Kippen, J., & Bel, B. (1989). The identification and modelling of a percussion language,
and the emergence of musical concepts in a machine-learning experimental set-up.
Computers and the Humanities, 23 (3), 199–214.

Kirke, A., & Miranda, E. (2009). A survey of computer systems for expressive music
performance. ACM Computing Surveys, 42 (1), 3:1–3:41.

Kitani, K. M., & Koike, H. (2010). ImprovGenerator: Online grammatical induction for on-
the-fly improvisation accompaniment. In Proceedings of the International Conference
on New Interfaces for Musical Expression.

Klinger, R., & Rudolph, G. (2006). Evolutionary composition of music with learned melody
evaluation. In Proceedings of the WSEAS International Conference on Computational
Intelligence, Man-Machine Systems and Cybernetics, pp. 234–239, Stevens Point, Wis-
consin, USA.

Kohonen, T., Laine, P., Tiits, K., & Torkkola, K. (1991). Music and Connectionism, chap.
A Nonheuristic Automatic Composing Method, pp. 229–242. The MIT Press, Cam-
bridge.

Kugel, P. (1990). Myhill’s Thesis: There’s more than computing in musical thinking. Com-
puter Music Journal, 14 (3), 12–25.

Laine, P. (2000). A Method for Generating Musical Motion Patterns. Ph.D. thesis, Univer-
sity of Helsinki.

Laine, P., & Kuuskankare, M. (1994). Genetic algorithms in musical style oriented gen-
eration. In Proceedings of the IEEE Conference on Evolutionary Computation, pp.
858–862.

Langston, P. (1989). Six techniques for algorithmic music composition. In Proceedings of
the International Computer Music Conference.

Laurson, M., & Kuuskankare, M. (2000). Towards idiomatic instrumental writing: A con-
straint based approach. In Proceedings of the Annual Symposium on Systems Research
in the Arts.

Leach, J., & Fitch, J. (1995). Nature, music, and algorithmic composition. Computer Music
Journal, 19 (2), 23–33.

Lerdahl, F., Jackendoff, R., & Jackendoff, R. S. (1983). A Generative Theory of Tonal
Music. The MIT Press, Cambridge.

Levitt, D. A. (1981). A melody description system for jazz improvisation. Master’s thesis,
Massachusetts Institute of Technology.

Lewis, J. P. (1991). Music and Connectionism, chap. Creation by refinement and the prob-
lem of algorithmic music composition. The MIT Press, Cambridge.

572



AI Methods in Algorithmic Composition

Lidov, D., & Gabura, J. (1973). A melody writing algorithm using a formal language model.
Computer Studies in the Humanities and Verbal Behavior, 4 (3–4), 138–148.

Lo, M. Y. (2012). Evolving Cellular Automata for Music Composition with Trainable Fitness
Functions. Ph.D. thesis, University of Essex.

Lo, M., & Lucas, S. M. (2006). Evolving musical sequences with N-Gram based trainable fit-
ness functions. In Proceedings of the IEEE Conference on Evolutionary Computation,
pp. 601–608.

Löthe, M. (1999). Knowledge based automatic composition and variation of melodies for
minuets in early classical style. In Proceedings of the Annual German Conference on
Artificial Intelligence, pp. 159–170.

Loy, G., & Abbott, C. (1985). Programming languages for computer music synthesis, per-
formance, and composition. ACM Computing Surveys, 17 (2), 235–265.

Lozano, L., Medaglia, A. L., & Velasco, N. (2009). Generation of Pop-Rock chord sequences
using genetic algorithms and variable neighborhood search. In Proceedings of the
Conference on Applications of Evolutionary Computation, pp. 573–578.

Lyon, D. (1995). Using stochastic Petri nets for real-time Nth-order stochastic composition.
Computer Music Journal, 19 (4), 13–22.

MacCallum, R. M., Mauch, M., Burt, A., & Leroi, A. M. (2012). Evolution of music by
public choice. Proceedings of the National Academy of Sciences of the United States
of America, 109 (30), 12081–12086.

Maddox, T., & Otten, J. (2000). Using an evolutionary algorithm to generate Four-Part
18th century harmony. In Proceedings of the WSEAS International Conference on
Mathematics and Computers in Business and Economics.

Manaris, B., Hughes, D., & Vassilandonakis, Y. (2011). Monterey mirror: Combining
Markov models, genetic algorithms, and power laws. In Proceedings of the IEEE
Conference on Evolutionary Computation.

Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., & Romero, J. (2007). A
corpus-based hybrid approach to music analysis and composition. In Proceedings of
the AAAI National Conference on Artificial intelligence, pp. 839–845.

Manousakis, S. (2006). Musical L-Systems. Master’s thesis, The Royal Conservatory, The
Hague.

Marques, V. M., Oliveira, V., Vieira, S., & Rosa, A. C. (2000). Music composition using ge-
netic evolutionary algorithms. In Proceedings of the IEEE Conference on Evolutionary
Computation, pp. 714–719.

Marques, V. M., Reis, C., & Machado, J. A. T. (2010). Interactive evolutionary computation
in music. In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, pp. 3501–3507.

Martin, A., Jin, C. T., & Bown, O. (2012). Implementation of a real-time musical decision-
maker. In Proceedings of the Australasian Computer Music Conference.

573



Fernández & Vico

Martin, A., Jin, C. T., van Schaik, A., & Martens, W. L. (2010). Partially observable Markov
decision processes for interactive music systems. In Proceedings of the International
Computer Music Conference.

Mason, S., & Saffle, M. (1994). L-Systems, melodies and musical structure. Leonardo Music
Journal, 4, 31–38.

Maurer, J. (1999). A brief history of algorithmic composition. Unpublished manuscript.
Available at https://ccrma.stanford.edu/~blackrse/algorithm.html.

McAlpine, K., Miranda, E., & Hoggar, S. (1999). Making music with algorithms: A Case-
Study system. Computer Music Journal, 23 (2), 19–30.

McCartney, J. (2002). Rethinking the computer music language: SuperCollider. Computer
Music Journal, 26 (4), 61–68.

McCormack, J. (1996). Grammar-Based music composition. Complexity International, 3,
320–336.

McCormack, J. (2003a). The Application of L-systems and Developmental Models to Com-
puter Art, Animation and Music Synthesis. Ph.D. thesis, Monash University.

McCormack, J. (2003b). Evolving sonic ecosystems. Kybernetes, 32 (1–2), 184–202.
McDermott, J., & O’Reilly, U. M. (2011). An executable graph representation for evolution-

ary generative music. In Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 403–410, New York.

McGuire, K. (2006). ArpEgg: a rewriting grammar for complex arpeggios. In Proceedings
of the Generative Art Conference.

McIntyre, R. A. (1994). Bach in a box: the evolution of four part baroque harmony us-
ing the genetic algorithm. In Proceedings of the IEEE Conference on Evolutionary
Computation, pp. 852–857.

Melo, A. F. (1998). A connectionist model of tension in chord progressions. Master’s thesis,
University of Edinburgh.

Miljkovic, K. (2007). From Mathematica to live performance: Mapping simple programs to
music. In Proceedings of the International Conference on Mathematics and Compu-
tation in Music.

Millen, D. (1990). Cellular automata music. In Proceedings of the International Computer
Music Conference.

Miranda, E. R. (1993). Cellular automata music: An interdisciplinary project. Journal of
New Music Research, 22 (1), 3–21.

Miranda, E. R. (2002). Mimetic development of intonation. In Proceedings of the Interna-
tional Conference on Music and Artificial Intelligence.

Miranda, E. R. (2007). Evolutionary Computer Music, chap. Cellular Automata Music:
From Sound Synthesis to Musical Forms, pp. 170–193. Springer-Verlag London.

Miranda, E. R., & Biles, J. A. (Eds.). (2007). Evolutionary computer music. Springer-Verlag
London.

574

https://ccrma.stanford.edu/~blackrse/algorithm.html


AI Methods in Algorithmic Composition

Miranda, E. R., Kirby, S., & Todd, P. M. (2003). On computational models of the evo-
lution of music: From the origins of musical taste to the emergence of grammars.
Contemporary Music Review, 22 (3), 91–111.

Moorer, J. A. (1972). Music and computer composition. Communications of the ACM,
15 (2), 104–113.

Morales, E., & Morales, R. (1995). Learning musical rules. In Proceedings of the Interna-
tional Joint Conference on Artificial Inteligence.

Morgan, N. (2007). Transformation and mapping of L-Systems data in the composition of a
large-scale instrumental work. In Proceedings of the European Conference on Artificial
Life.

Moroni, A., Manzolli, J., Zuben, F. V., & Gudwin, R. (2000). Vox Populi: An interactive
evolutionary system for algorithmic music composition. Leonardo Music Journal, 10,
49–54.

Morris, D., Simon, I., & Basu, S. (2008). Exposing parameters of a trained dynamic model
for interactive music creation. In Proceedings of the AAAI National Conference on
Artificial intelligence, pp. 784–791.

Mozer, M. (1991). Music and Connectionism, chap. Connectionist music composition based
on melodic, stylistic, and psychophysical constraints, pp. 195–211. The MIT Press,
Cambridge.

Nelson, G. L. (1993). Sonomorphs: An application of genetic algorithms to the growth and
development of musical organisms. In Proceedings of the Biennial Symposium on Arts
and Technology, pp. 155–169.

Nelson, G. L. (1996). Real time transformation of musical material with fractal algorithms.
Computers & Mathematics with Applications, 1, 109–116.

Nettheim, N. (1992). On the spectral analysis of melody. Journal of New Music Research,
21 (2), 135–148.

Nettheim, N. (1997). A bibliography of statistical applications in musicology. Musicology
Australia, 20 (1), 94–106.

Nierhaus, G. (2009). Algorithmic Composition: Paradigms of Automated Music Generation.
Springer Berlin / Heidelberg.

Nishijimi, M., & Watanabe, K. (1993). Interactive music composer based on neural net-
works. Fujitsu Scientific Technical Journal, 29 (2), 189–192.

North, T. (1991). A technical explanation of theme and variations: A computer music work
utilizing network compositional algorithms. Ex Tempore, 5 (2).

Olarte, C., Rueda, C., & Valencia, F. D. (2009). New Computational Paradigms for Com-
puter Music, chap. Concurrent Constraint Calculi: a Declarative Paradigm for Mod-
eling Music Systems. Editions Delatour France.

Olson, H. F. (1961). Aid to music composition employing a random probability system.
Journal of the Acoustical Society of America, 33, 1163–1170.

575



Fernández & Vico

Ortega, A., Sánchez, R., & Alfonseca, M. (2002). Automatic composition of music by means
of grammatical evolution. In Proceedings of the Conference on APL.

Ovans, R., & Davison, R. (1992). An interactive Constraint-Based expert assistant for music
composition. In Proceedings of the Canadian Conference on Artificial Intelligence, pp.
76–81.

Özcan, E., & Erçal, T. (2008). A genetic algorithm for generating improvised music. In
Proceedings of the International Conference on Artificial Evolution, pp. 266–277.

Pachet, F. (2002). Interacting with a musical learning system: The Continuator. In Proceed-
ings of the International Conference on Music and Artificial Intelligence, pp. 103–108.

Pachet, F., & Roy, P. (1995). Mixing constraints and objects: a case study in automatic
harmonization. In Proceedings of the Conference on Technology of Object-Oriented
Languages and Systems.

Pachet, F., & Roy, P. (2001). Musical harmonization with constraints: A survey. Constraints,
6 (1), 7–19.

Pachet, F., Roy, P., & Barbieri, G. (2011). Finite-length Markov processes with constraints.
In Proceedings of the International Joint Conference on Artificial Inteligence.

Padberg, H. A. (1964). Computer-composed canon and free-fugue. Ph.D. thesis, Saint Louis
University, St. Louis.

Papadopoulos, G., & Wiggins, G. (1998). A genetic algorithm for the generation of jazz
melodies. In Proceedings of the Finnish Conference on Artificial Intelligence (STeP).

Papadopoulos, G., & Wiggins, G. (1999). AI methods for algorithmic composition: A survey,
a critical view and future prospects. In Proceedings of the Symposium on Musical
Creativity, pp. 110–117.

Parikh, T. (2003). Iris: artificially intelligent real-time improvisation system. Master’s
thesis, Emory University.

Pazos, A., Santos del Riego, A., Dorado, J., & Romero Caldalda, J. J. (1999). Genetic music
compositor. In Proceedings of the IEEE Conference on Evolutionary Computation, pp.
885–890.

Pearce, M., Meredith, D., & Wiggins, G. (2002). Motivations and methodologies for au-
tomation of the compositional process. Musicæ Scientiæ, 6 (2), 119–147.

Pearce, M., & Wiggins, G. (2001). Towards a framework for the evaluation of machine
compositions. In Proceedings of the Symposium on Artificial Intelligence and Creativity
in Arts and Science, pp. 22–32.

Peck, J. M. (2011). Explorations in algorithmic composition: Systems of composition and
examination of several original works. Master’s thesis, State University of New York,
College at Oswego.

Pennycook, B. (1985). Computer-music interfaces: A survey. ACM Computing Surveys,
17 (2), 267–289.

Pereira, F., Grilo, C., Macedo, L., & Cardoso, A. (1997). Composing music with case-based
reasoning. In Proceedings of the Conference on Computational Models of Creative
Cognition.

576



AI Methods in Algorithmic Composition

Pestana, P. (2012). Lindenmayer systems and the harmony of fractals. Chaotic Modeling
and Simulation, 1 (1), 91–99.

Phon-Amnuaisuk, S. (2002). Control language for harmonisation process. In Proceedings of
the International Conference on Music and Artificial Intelligence, pp. 155–167.

Phon-Amnuaisuk, S. (2010). Investigating music pattern formations from heterogeneous
cellular automata. Journal of New Music Research, 39 (3), 253–267.

Phon-Amnuaisuk, S., Law, E. H., & Kuan, H. C. (2007). Evolving music generation with
SOM-fitness genetic programming. In Proceedings of the Conference on Applications
of Evolutionary Computation, pp. 557–566.

Phon-Amnuaisuk, S., Tuson, A., & Wiggins, G. (1999). Evolving musical harmonisation.
In Proceedings of the International Conference on Artificial Neural Nets and Genetic
Algorithms.

Pinkerton, R. C. (1956). Information theory and melody. Scientific American, 194 (2),
77–87.

Polito, J., Daida, J. M., & Bersano Begey, T. F. (1997). Musica ex machina: Composing
16th-Century counterpoint with genetic programming and symbiosis. In Proceedings
of the International Conference on Evolutionary Programming, pp. 113–124.

Ponsford, D., Wiggins, G., & Mellish, C. (1999). Statistical learning of harmonic movement.
Journal of New Music Research, 28 (2), 150–177.

Pope, S. T. (1986). Music notations and the representation of musical structure and knowl-
edge. Perspectives of New Music, 24 (2), 156–189.

Pope, S. T. (1991). A tool for manipulating expressive and structural hierarchies in music
(or: "T-R trees in the MODE: A tree editor based loosely on Fred’s theory"). In
Proceedings of the International Computer Music Conference.

Pope, S. T. (1993). Music Processing, chap. Music composition and editing by computer,
pp. 25–72. Oxford University Press.

Pope, S. T. (1995). Fifteen years of computer-assisted composition. In Proceedings of the
Brazilian Symposium on Computer Music.

Pressing, J. (1988). Nonlinear maps as generators of musical design. Computer Music
Journal, 12 (2), 35–46.

Prusinkiewicz, P. (1986). Score generation with L-systems. In Proceedings of the Interna-
tional Computer Music Conference, pp. 455–457.

Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. Springer-
Verlag New York.

Puckette, M. (2002). Max at Seventeen. Computer Music Journal, 26 (4), 31–43.
Putnam, J. (1994). Genetic programming of music. Tech. rep., New mexico institute of

mining and technology.
Quick, D. (2010). Generating music using concepts from Schenkerian analysis and chord

spaces. Tech. rep., Yale University.

577



Fernández & Vico

Rader, G. M. (1974). A method for composing simple traditional music by computer.
Communications of the ACM, 17 (11), 631–638.

Ralley, D. (1995). Genetic algorithms as a tool for melodic development. In Proceedings of
the International Computer Music Conference, pp. 501–502.

Ramalho, G., & Ganascia, J.-G. (1994). Simulating creativity in jazz performance. In
Proceedings of the AAAI National Conference on Artificial intelligence, pp. 108–113,
Menlo Park.

Ramírez, R., & Peralta, J. (1998). A constraint-based melody harmonizer. In Proceedings
of the Workshop on Constraints for Artistic Applications.

Reddin, J., McDermott, J., & O’Neill, M. (2009). Elevated pitch: Automated grammatical
evolution of short compositions applications of evolutionary computing. In Proceedings
of the Conference on Applications of Evolutionary Computation, pp. 579–584.

Reisig, W. (1998). Elements of Distributed Algorithms: Modeling and Analysis with Petri
Nets. Springer.

Rennie, J. (2010). Ray Kurzweil’s slippery futurism. IEEE Spectrum, 47 (12), 24–28.
Ribeiro, P., Pereira, F. C., Ferrand, M., & Cardoso, A. (2001). Case-based melody generation

with MuzaCazUza. In Proceedings of the Symposium on Artificial Intelligence and
Creativity in Arts and Science, pp. 67–74.

Ricanek, K., Homaifar, A., & Lebby, G. (1993). Genetic algorithm composes music. In
Proceedings of the Southeastern Symposium on System Theory, pp. 223–227.

Riecken, D. (1998). WOLFGANG: "emotions" and architecture which enable learning to
compose music. In Proceedings of the International Conference of the Society for
Adaptive Behavior.

Ritchie, G. (2007). Some empirical criteria for attributing creativity to a computer program.
Journal for Artificial Intelligence, Philosophy and Cognitive Science, 17 (1), 67–99.

Roads, C. (1977). Composing grammars. In Proceedings of the International Computer
Music Conference.

Roads, C. (1979). Grammars as representations for music. Computer Music Journal, 3 (1),
48–55.

Roads, C. (1985). Research in music and artificial intelligence. ACM Computing Surveys,
17 (2), 163–190.

Roads, C. (Ed.). (1992). The Music Machine: Selected Readings from Computer Music
Journal. The MIT Press.

Roads, C. (2004). Microsound. The MIT Press.
Roads, C., & Strawn, J. (Eds.). (1985). Foundations of computer music. The MIT Press.
Ross, B. J. (1995). A process algebra for stochastic music composition. In Proceedings of

the International Computer Music Conference.
Rothgeb, J. (1968). Harmonizing the unfigured bass: A computational Study. Ph.D. thesis,

Yale University.

578



AI Methods in Algorithmic Composition

Rowe, R. (1992). Interactive Music Systems: Machine Listening and Composing. The MIT
Press, Cambridge.

Rueda, C., Álvarez, G., Quesada, L. O., Tamura, G., Valencia, F., Díaz, J. F., & Assayag,
G. (2001). Integrating constraints and concurrent objects in musical applications: A
calculus and its visual language. Constraints, 6 (1), 21–52.

Rueda, C., Assayag, G., & Dubnov, S. (2006). A concurrent constraints factor oracle model
for music improvisation. In Proceedings of the Latin American Informatics Conference.

Rueda, C., Lindberg, M., Laurson, M., Bloch, G., & Assayag, G. (1998). Integrating con-
straint programming in visual musical composition languages. In Proceedings of the
Workshop on Constraints for Artistic Applications.

Sabater, J., Arcos, J., & López de Mántaras, R. (1998). Using rules to support case-based
reasoning for harmonizing melodies. In Proceedings of the AAAI Spring Symposium
on Multimodal Reasoning, pp. 147–151.

Sánchez-Quintana, C., Moreno-Arcas, F., Albarracín-Molina, D., Fernández, J. D., & Vico,
F. (2013). Melomics: A case-study of AI in Spain. AI Magazine, 34 (3), 99–103.

Sandred, O. (2004). Interpretation of everyday gestures — composing with rules. In Pro-
ceedings of the Music and Music Science Conference.

Sandred, O. (2010). PWMC, a constraint-solving system for generating music scores. Com-
puter Music Journal, 34 (2), 8–24.

Santos, A., Arcay, B., Dorado, J., Romero, J. J., & Rodríguez, J. A. (2000). Evolutionary
computation systems for musical composition. In Proceedings of the International
Conference Acoustic and Music: Theory and Applications.

Sastry, A. (2011). N-gram modeling of tabla sequences using variable-length hidden Markov
models for improvisation and composition. Master’s thesis, Georgia Institute of Tech-
nology.

Scaletti, C. (2002). Computer music languages, Kyma, and the future. Computer Music
Journal, 26 (4), 69–82.

Schmidl, H. (2008). Pseudo-Genetic algorithmic composition. In Proceedings of the Inter-
national Conference on Genetic and Evolutionary Methods.

Schottstaedt, W. (1989). Current directions in computer music research, chap. Automatic
Counterpoint, pp. 199–214. The MIT Press, Cambridge.

Schulze, W. (2009). A Formal Language Theory Approach To Music Generation. Ph.D.
thesis, Stellenbosch University.

Schwanauer, S. (1993). Machine models of music, chap. A learning machine for tonal com-
position, pp. 511–532. The MIT Press, Cambridge.

Schwanauer, S. M., & Levitt, D. A. (1993). Machine Models of Music. The MIT Press,
Cambridge.

Shao, J., McDermott, J., O’Neill, M., & Brabazon, A. (2010). Jive: A generative, inter-
active, virtual, evolutionary music system applications of evolutionary computation.
In Proceedings of the Conference on Applications of Evolutionary Computation, pp.
341–350.

579



Fernández & Vico

Shibata, N. (1991). A neural network-based method for chord/note scale association with
melodies. NEC Research and Development, 32 (3), 453–459.

Simoni, M., & Dannenberg, R. B. (2013). Algorithmic Composition: A Guide to Composing
Music with Nyquist. University of Michigan Press.

Soddell, F., & Soddell, J. (2000). Microbes and music. In Proceedings of the Pacific Rim
International Conference on Artificial Intelligence.

Sowa, J. F. (1956). A machine to compose music. Instruction manual for GENIAC, Oliver
Garfield Company, Inc.

Spangler, R. R. (1999). Rule-Based Analysis and Generation of Music. Ph.D. thesis, Cali-
fornia Institute of Technology.

Spector, L., & Alpern, A. (1994). Criticism, culture, and the automatic generation of
artworks. In Proceedings of the AAAI National Conference on Artificial intelligence,
pp. 3–8, Menlo Park.

Spector, L., & Alpern, A. (1995). Induction and recapitulation of deep musical structure. In
Proceedings of the International Joint Conference on Artificial Inteligence, pp. 41–48.

Stanley, K., & Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artificial
Life, 9 (2), 93–130.

Steedman, M. J. (1984). A generative grammar for jazz chord sequences. Music Perception:
An Interdisciplinary Journal, 2 (1), 52–77.

Steels, L. (1979). Reasoning modeled as a society of communicating experts. Master’s
thesis, Massachusetts Institute of Technology, Cambridge.

Steels, L. (1986). Learning the craft of musical composition. In Proceedings of the Interna-
tional Computer Music Conference.

Stieler, W. (2012). Die mozart-Maschine. Technology Review (German edition), 12/2012,
26–34.

Supper, M. (2001). A few remarks on algorithmic composition. Computer Music Journal,
25 (1), 48–53.

Thom, B. (2000). BoB: an interactive improvisational music companion. In Proceedings of
the International Conference on Autonomous Agents, pp. 309–316, New York.

Thomas, M. T. (1985). Vivace: A rule based AI system for composition. In Proceedings of
the International Computer Music Conference, pp. 267–274.

Thomas, M. T., Chatterjee, S., & Maimone, M. W. (1989). Cantabile: A rule-based system
for composing melody. In Proceedings of the International Computer Music Confer-
ence.

Thornton, C. (2009). Hierarchical Markov modelling for generative music. In Proceedings
of the International Computer Music Conference.

Thywissen, K. (1999). GeNotator: an environment for exploring the application of evolu-
tionary techniques in computer-assisted composition. Organised Sound, 4 (2), 127–133.

Tipei, S. (1975). MP1: a computer program for music composition. In Proceedings of the
Annual Music Computation Conference.

580



AI Methods in Algorithmic Composition

Todd, P. M. (1989). A connectionist approach to algorithmic composition. Computer Music
Journal, 13 (4), 27–43.

Todd, P. M., & Loy, D. G. (1991). Music and Connectionism. The MIT Press, Cambridge.
Toiviainen, P. (1995). Modeling the target-note technique of bebop-style jazz improvisation:

an artificial neural network approach. Music Perception: An Interdisciplinary Journal,
12 (4), 399–413.

Toiviainen, P. (2000). Readings in Music and Artificial Intelligence, chap. Symbolic AI
versus Connectionism in Music Research, pp. 47–67. Harwood Academic Publishers.

Tokui, N., & Iba, H. (2000). Music composition with interactive evolutionary computation.
In Proceedings of the Generative Art Conference.

Tominaga, K., & Setomoto, M. (2008). An artificial-chemistry approach to generating
polyphonic musical phrases. In Proceedings of the Conference on Applications of
Evolutionary Computation, pp. 463–472.

Towsey, M. W., Brown, A. R., Wright, S. K., & Diederich, J. (2001). Towards melodic
extension using genetic algorithms. Educational Technology & Society, 4 (2), 54–65.

Triviño Rodríguez, J. L., & Morales-Bueno, R. (2001). Using multiattribute prediction
suffix graphs to predict and generate music. Computer Music Journal, 25 (3), 62–79.

Truchet, C., Assayag, G., & Codognet, P. (2003). OMClouds, a heuristic solver for musical
constraints. In Proceedings of the International Conference on Metaheuristics.

Tsang, C. P., & Aitken, M. (1991). Harmonizing music as a discipline of constraint logic
programming. In Proceedings of the International Computer Music Conference.

Ulrich, J. W. (1977). The analysis and synthesis of jazz by computer. In Proceedings of the
International Joint Conference on Artificial Inteligence, pp. 865–872.

Unehara, M., & Onisawa, T. (2001). Composition of music using human evaluation. In
Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1203–1206.

Ventrella, J. J. (2008). The Art of Artificial Evolution, chap. Evolving Structure in Liquid
Music, pp. 269–288. Springer Berlin / Heidelberg.

Verbeurgt, K., Fayer, M., & Dinolfo, M. (2004). A hybrid Neural-Markov approach for
learning to compose music by example. In Proceedings of the Canadian Conference
on Advances in Artificial Intelligence, pp. 480–484.

Visell, Y. (2004). Spontaneous organisation, pattern models, and music. Organised Sound,
9 (02), 151–165.

Voss, R. F., & Clarke, J. (1978). ”1/f noise” in music: Music from 1/f noise. Journal of the
Acoustical Society of America, 63, 258–263.

Walker, W. F. (1994). A conversation-based framework for musical improvisation. Ph.D.
thesis, University of Illinois.

Wallin, N. L., & Merker, B. (2001). The Origins of Music. The MIT Press.
Waschka, R. (1999). Avoiding the fitness bottleneck: Using genetic algorithms to compose

orchestral music. In Proceedings of the International Computer Music Conference, pp.
201–203.

581



Fernández & Vico

Watson, L. A. (2008). Algorithmic composition for flute and accompaniment. Master’s
thesis, University of Bath.

Werner, M., & Todd, P. M. (1997). Too many love songs: Sexual selection and the evolution
of communication. In Proceedings of the European Conference on Artificial Life.

Widmer, G. (1992). Qualitative perception modeling and intelligent musical learning. Com-
puter Music Journal, 16 (2), 51–68.

Wiggins, G. A. (1998). The use of constraint systems for musical composition. In Proceedings
of the Workshop on Constraints for Artistic Applications.

Wiggins, G. A. (2008). Computer models of musical creativity: A review of computer models
of musical creativity by David Cope. Literary and Linguistic Computing, 23 (1), 109–
116.

Wilson, A. J. (2009). A symbolic sonification of L-systems. In Proceedings of the Interna-
tional Computer Music Conference, pp. 203–206.

Wolkowicz, J., Heywood, M., & Keselj, V. (2009). Evolving indirectly represented melodies
with corpus-based fitness evaluation. In Proceedings of the Conference on Applications
of Evolutionary Computation, pp. 603–608.

Wooller, R., & Brown, A. R. (2005). Investigating morphing algorithms for generative
music. In Proceedings of the International Conference on Generative Systems in the
Electronic Arts.

Worth, P., & Stepney, S. (2005). Growing music: Musical interpretations of L-Systems.
In Proceedings of the Conference on Applications of Evolutionary Computation, pp.
545–550.

Yi, L., & Goldsmith, J. (2007). Automatic generation of four-part harmony. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence.

Yilmaz, A. E., & Telatar, Z. (2010). Note-against-note two-voice counterpoint by means of
fuzzy logic. Knowledge-Based Systems, 23 (3), 256–266.

Zicarelli, D. (1987). M and Jam factory. Computer Music Journal, 11 (4), 13–29.
Zimmermann, D. (2001). Modelling musical structures. Constraints, 6 (1), 53–83.

582


	Title
	Abstract
	1 Introduction
	1.1 Motivation

	2 Introducing AC
	2.1 The Early Years

	3 The Methods
	3.1 Grammars
	3.1.1 L-Systems
	3.1.2 Grammars and EAs
	3.1.3 Related Methods

	3.2 Knowledge-Based Systems
	3.2.1 Rule Learning
	3.2.2 Rule-Based Methods and EAs
	3.2.3 Constraint Satisfaction
	3.2.4 Case-Based Reasoning
	3.2.5 Concurrency Models

	3.3 Markov Chains
	3.3.1 Related Methods

	3.4 Artificial Neural Networks
	3.4.1 ANNs and EAs
	3.4.2 Related Methods

	3.5 Evolutionary Methods
	3.5.1 Automatic Fitness
	3.5.2 Interactive Fitness
	3.5.3 Related Methods

	3.6 Self-Similarity
	3.6.1 Cellular Automata


	4 Conclusions
	4.1 About Creativity
	4.2 About the Methods
	4.3 Final Thoughts

	Acknowledgments
	References

