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Abstract

This demo paper discusses a scalable platform for emerg-
ing Data-Driven AI Applications targeted toward predictive
maintenance solutions. We propose a common AI software
architecture stack for building diverse AI Applications such
as Anomaly Detection, Failure Pattern Analysis, Asset Health
Forecasting, etc. for more than a 100K industrial assets of
similar class. As a part of the AI system demonstration, we
have identified the following three key topics for discussion:
Scaling model training across multiple assets, Joint execution
of multiple AI applications; and Bridge the gap between cur-
rent open source software tools and the emerging need for
AI Applications. To demonstrate the benefits, AI Model Fac-
tory has been tested to build the models for various industrial
assets such as Wind turbines, Oil wells, etc. The system is
deployed on API Hub for demonstration.

Introduction
The field of Automated Data Science (AutoDS) and Auto-
mated Machine Learning (AutoML) has significantly helped
to increase the adoption of AI-based solutions in various
areas such as healthcare, human resources, manufacturing
industries, etc. Given a dataset (Tabular, Time Series, Im-
ages, etc.), there exists a plethora of general-purpose AI
tools that turn data into meaningful AI artifacts (i.e., trained
AI Model) (Patel et al. 2020a). Such AI artifact helps moni-
tor the data in real-time and generates valuable insight such
as data anomalies (Patel et al. 2022a; Zerveas et al. 2021;
Patel et al. 2020b; Shrivastava et al. 2019) or upcoming fail-
ures (Patel et al. 2020c). These insights subsequently drive
decision-making within business facilities and throughout
their operations. So far, current work focuses on develop-
ing tools and techniques for analyzing a single dataset that
originates from a single asset. However, the Industrial sec-
tor has multiple types of assets, and each asset has multiple
instances. With the broader adoption of AI solutions in In-
dustry 4.0, there is an emerging need for mass production of
AI models fairly automatedly.

Example 1 : Automated Robot Diagnostic. The automo-
bile company has more than 2000 robots working on their
shop floor, performing different functions. Robotic actions

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

are monitored, and anomalous actions are reported. In par-
ticular, robotic torque sensor data is used to create a digital
signature given a defined trajectory and load combination to
perform a particular task. The signature of each robot is later
used to diagnose mechanical deterioration.

The Automated Robot Diagnostic discussed in Example 1
demonstrates a typical training AI workload in Industry 4.0.
To emphasize the need for AI scaling in our working exam-
ple, each robot needs a multi-variate anomaly model (i.e.,
2000 models). Ideally, the anomaly model discovery process
explores around 100s of different machine learning mod-
els (including their parameters)(Patel et al. 2022b; Patel,
Phan, and Mueller 2022). In summary, a Data Scientist or
AI practitioner working on providing an AI solution needs
to explore 2000 × 100 for Example 1. In a very ad-hoc man-
ner, one can use a popular MLFlow library (MLFlow 2022)
for machine learning modeling and manually generate 2000
experiments to be conducted with 100 runs each. However,
such an ad-hoc approach misses specific optimization, assets
of similar types may share a similarity, and thus their joint
exploration may benefit the model discovery process.

On top of cross-asset learning, we have also witnessed
the requirement of building different AI applications on the
same asset dataset. For example, in the IBM Maximo prod-
uct, the output of Anomaly Detection (an unsupervised ap-
proach) and Failure Forecasting Model (a semi-supervised
approach) are displayed for each asset. Currently, training
of the Anomaly and failure prediction models are isolated.
However, provided data is shared across different AI appli-
cations, and it is an inherent expectation to conduct a com-
mon data prepossessing across multiple AI applications and
coordinate across multiple assets. The AI Model factory pro-
posed in this paper is designed to deal with both the emerg-
ing needs: Scale across multiple assets as well as multiple
AI applications.

AI Model Factory : System Overview
Figure 2 gives an overview of AI Model Factory’s layered
architecture. The tool extends existing open source libraries
such as MLFlow and Ray (the bottommost layer) to enable
scalable model training across multiple assets and AI appli-
cations. Our crucial contribution comes from designing and
developing the middle two layers (Model Factory runtime
and core). The top layer is how a data scientist or end AI
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Figure 1: Model Factory Preview Service @ IBM Developer API Hub

user interacts with the Model Factory. We explain the sys-
tem’s working with the help of an Asset Health Forecasting
Application. This model factory application builds time se-
ries forecasting model for predicting the future health of an
asset using its historical information. The number of assets
ranges from 2000-3000 per asset group.

At the start of the process, the end user needs to provide
two inputs to initiate the applications:

1. Data The input data should be organized in S3-
compatible COS buckets or a local file system. At
present, Model Factory prescribes three commonly used
data organizations. These three prescriptions are Asset
Specific, Asset Agnostic, and Simplified. Figure 3 picto-
rially displayed then.

2. Parameter. User also provides application-specific pa-
rameters such as asset id, timestamp, input feature, out-
put target, prediction window size which denotes the
forecast horizon, the learning parameter which can be
“single-task” where a different model is trained for each
asset or “multi-task” where a model is trained on multiple
assets and the level parameter which can be basic, ad-
vanced and comprehensive. The basic level does model
exploration among statistical forecasting methods like
ARIMA, the advanced level does additional exploration
with ML models, and the comprehensive level does even
more exploration by including Deep Learning models.

Once the application is executed, the end user can track
the execution of the process using various tracking APIs
such as /track and /report. The /track method
shows the progress of the running project with the number of
assets that have finished training and the total number of as-
sets to be trained. The /report method gives an extensive
summary of the finished project, including pipeline explo-
ration time, validation metrics, test metrics, and more.

Once the entire process is finished, the project’s status
is updated as Done. Then the users have the choice to de-

Figure 2: Layered architecture of Model Factory

Figure 3: Dataset Organization

ploy the trained models to ML model serve platforms us-
ing /deploy endpoint. Currently, the service supports IBM
Watson Machine Learning, enabling the model to serve in
production. More cloud platform support is yet to come.

16468



References
MLFlow. 2022. A platform for the machine learning lifecy-
cle. https://mlflow.org/. Accessed: 2022-12-07.
Patel, D.; Ganapavarapu, G.; Jayaraman, S.; Lin, S.;
Bhamidipaty, A.; and Kalagnanam, J. 2022a. AnomalyK-
iTS: Anomaly Detection Toolkit for Time Series. In AAAI,
13209–13211. AAAI Press.
Patel, D.; Phan, D.; and Mueller, M. 2022. Time Series
Anomaly Detection Toolkit for Data Scientist. In 2022
IEEE 38th International Conference on Data Engineering
(ICDE), 3202–3204.
Patel, D.; Phan, D.; Mueller, M.; and Rajasekharan, A.
2022b. Toolkit for Time Series Anomaly Detection. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD ’22, 4812–4813.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450393850.
Patel, D.; Shrivastava, S.; Gifford, W.; Siegel, S.;
Kalagnanam, J.; and Reddy, C. 2020a. Smart-ML: A Sys-
tem for Machine Learning Model Exploration using Pipeline
Graph. In 2020 IEEE International Conference on Big Data
(Big Data), 1604–1613.
Patel, D.; Yousaf Shah, S.; Zhou, N.; Shrivastava, S.;
Iyengar, A.; Bhamidipaty, A.; and Kalagnanam, J. 2020b.
FLOps: On Learning Important Time Series Features for
Real-Valued Prediction. In 2020 IEEE International Con-
ference on Big Data (Big Data), 1624–1633.
Patel, D.; Zhou, N.; Shrivastava, S.; and Kalagnanam, J.
2020c. Doctor for Machines: A Failure Pattern Analysis So-
lution for Industry 4.0. In 2020 IEEE International Confer-
ence on Big Data (Big Data), 1614–1623.
Shrivastava, S.; Patel, D.; Gifford, W. M.; Siegel, S.; and
Kalagnanam, J. 2019. ThunderML: A Toolkit for Enabling
AI/ML Models on Cloud for Industry 4.0. In Miller, J.;
Stroulia, E.; Lee, K.; and Zhang, L.-J., eds., Web Services
– ICWS 2019, 163–180. Cham: Springer International Pub-
lishing. ISBN 978-3-030-23499-7.
Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; and
Eickhoff, C. 2021. A Transformer-Based Framework for
Multivariate Time Series Representation Learning. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD, 2114–2124.

16469


