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Few human endeavors can be viewed both as extremely successful and unsuccessful at the same time. This is
typically the case when goals have not been well defined or have been shifting in time. This has certainly been true
of Artificial Intelligence (AI).

The behaviorist model
The nature of intelligence has been the object of much thought and speculation throughout the history of

philosophy. It is in the nature of philosophy that real headway is sometimes made only when appropriate tools
become available. For instance, the nature and behavior of physical objects was a major topic of philosophy. That is
until the experimental method and the advent of calculus allowed for the development of Physics.

Similarly the computer, coupled with the ability to program (at least in principle) any function, appeared to be
the tool that could tackle the notion of intelligence. To suit the tool, the problem of the “nature” of intelligence was
soon sidestepped in favor of this notion: If a probing conversation with a computer could not be distinguished from
a conversation with a human, then “artificial” intelligence had been achieved. This notion became known as the
“Turing test”, after the mathematician Alan Turing who proposed it in 1950.

This challenge quickly attracted the best computer scientists in a worldwide search for techniques and principles of
what soon became known as the field of Artificial Intelligence. The early efforts focused on creating “general
problem solvers” like, for instance, the Soar system (Newell, Laird and Rosenbloom) which attempted to solve
problems by breaking them down into sub-goals.

Conceptually rich and interesting, these early efforts gave rise to a large portion of the field’s framework. Key to
artificial intelligence, rather than the “number crunching” typical of computers until then, was viewed as the ability
to manipulate symbols and make logical inferences. To facilitate these tasks, “AI languages” such as LISP and
Prolog were invented and used widely in the field.

That this quest never strayed far from rigorous mathematical underpinnings was both its strength and its
limitation. Its strength was to open a new fertile area of computer science. Its limitation was that “real world”
problems tended to be too complex for the limitations imposed by mathematical rigor and the constraints of logic
and symbol manipulation. Therefore, much effort continued to be focused on “toy problems.”

One idea that emerged and enabled some success with real world problems was the notion that “most” intelligence
really resided in knowledge. A phrase attributed to Feigenbaum, one of the pioneers, was “knowledge is the power.”

 With this premise, the problem is shifted from “how do we solve problems” to “how do we represent
knowledge.” A good knowledge representation scheme could allow one to draw conclusions from given premises.
Such schemes took forms such as rules, frames and scripts. It allowed the building of what became known as “expert
systems” or “knowledge based systems” (KBS).

These types of systems could indeed help in real world problems (the author led a project for the first expert
system to aid astronauts in performing some scientific experiments. It was called PI-in-a-Box). The technology that
ensued from expert systems gave rise to the first instance of an “Al industry.” Consulting “Knowledge Engineers”
and products (Shells) could take some of the drudgery out of building these types of systems.

The enthusiasm of this time, however, masked an important shift that had been made by this technology: “Real
world” solutions were obtained by keeping the system's focus extremely narrow and limited in scope. These systems
were, and, to a large extent, remain extremely “fragile.” That is, unexpected inputs or straying from the scope of the
system could easily result in unexpected and erroneous results. The most difficult aspects of intelligence to
incorporate appeared to be understanding a) one's limits of knowledge and b) the, unfortunately, elusive “common
sense.”

The very usefulness and continuing success of these types of systems has also brought to light the fundamental
limitation of the behaviorist model of intelligence. This model has difficulty coping with the fact that intelligence
seems to reside in the ability to achieve one's expertise and to use it appropriately more than, or certainly in addition
to, the expertise itself.

Again, this realization shouldn't take away from the continuing improvements and successes in these types of
systems. Model Based Reasoning has emerged as a powerful approach to diagnosis, and planning and scheduling
systems have had much success as well. The point is that AI, now increasingly called “Symbolic AI,” has produced
a new branch of computer science. Along with it, powerful tools have been created for knowledge representation,
symbol manipulation, searching and optimization. AI is alive and well. However, many opine that its picture of
intelligence is too fragmented to represent a satisfactory model of cognition.



News of its death have been greatly exaggerated
Enter neural networks. They were dismissed early on for lack of computational power by Minsky and Papert

(quite correctly, given the extreme simplicity of the early “Perceptron” model). However, neural networks have re-
emerged as the solution to at least some problems that have dogged symbolic Al. Based on a highly abstracted
notion of “neurons,” connections and “synaptic weights,” neural networks can be presented with input-output sets
and can learn to perform very complex mapping functions.

These systems’ power comes from side stepping the problem of finding good knowledge representation and
inferencing rules. Neural networks can be thought of as building “implicit” models of systems in the form of
synaptic weights. Also, they are inherently capable of learning by simply modifying these weights. Major areas of
application have been classification and pattern recognition problems. But neural algorithms are being adapted, with
varying degrees of success, to all types of “traditional” AI problems.

Neural networks’ lure is threefold: 1) adaptation to changes (a fundamental characteristic of real world situations)
is a natural offshoot of the learning algorithms used to “train” these systems; 2) results tend to be robust with
respect to input variations, and 3) some comfort can be derived from the fact that the fundamental governing
principles, if not the actual algorithms, have some strong analogies with how parts of the biological nervous system
works.

With this paradigm shift in the approach to artificial intelligence there has also been a sociological shift. Neural
network research and industry is dominated by engineers and physicists rather than by computer scientists. The
tendency has been to view intelligent processes as closely coupled to the hardware.

The name “sub-symbolic” is often being used for this approach to intelligence. An attempt has also been made to
re-define the field by using the name “Computational Intelligence.” The term represents an approach that combines
neural networks, fuzzy logic (which can be shown to be very compatible with neural networks) and genetic
algorithms (more on these).

Is this an improvement?
We certainly have increased the choice of tools we have for building systems that display intelligent behavior.

But do neural network architectures give a greater insight into intelligence than the programs and data structures of
symbolic AI? Are we closer to the kind of system that can achieve expertise and understands its own limitations? In
some sense, both symbolic AI and sub-symbolic AI are victims of their success.

Once it became obvious that real world problems could be solved, both camps became fragmented and oriented
towards accomplishing specific tasks by any means available. In both cases, the quest for understanding the nature of
intelligence has been largely “lost in the shuffle.”

It is true that the symbolic sub-symbolic dichotomy is crying out for a new integrated view. Perhaps integration
attempts will bear fruit. Perhaps we have simply reached two dead ends and some rethinking is necessary.

So what is “intelligence”?
Another indication that we may have lost sight of our quest is that more and more systems are being referred to as

intelligent or “smart.” We have intelligent control, intelligent design, smart bombs, smart appliances, intelligent
agents and so forth. Everything that has some ability to “decide,” even on the basis of very simple rules, is being
termed “intelligent.” We appear to have really defined the problem away. At the same time, a new insight may be
emerging in the fact that intelligence is a much more pervasive concept than the one implied by the Turing test.

Intelligence and evolution
Is intelligence in the product or in the process? A car engine wouldn't be viewed as intelligent, but the process

that produced it certainly is. At the same time, a talking dashboard that reminds us to hook up our seatbelt would
probably be called “intelligent.” Even though, it might not consist of much more than a glorified switch.

A biological cell hasn't been viewed as an example of intelligent behavior. Yet, if we could build a machine with
similar properties, capable to change its state in response to environmental conditions, capable of self-repair and
even self-reproduction, current definitions of intelligence would certainly apply. At the very least we would view the
process that created it as intelligent.

If the essence of intelligence is an ability to solve problems, then evolution is the ultimate intelligent process. It
has the extraordinary ability to solve the survival problem and to construct the myriad of systems that each living
entity needs to survive. These include growth, reproduction, digestion, sensing and, ultimately, the seat of the type
of intelligence we have really been after, the brain itself.

An obvious difference between the problem solving mechanisms of evolution (natural selection) and those of the
brain (neuronal activity) is the time scale for these processes. Fortunately, computer implementations of natural
selection, like evolutionary computation in its various forms such as genetic algorithms and genetic programming,



are making this a mute point for many applications. For example, we can now use evolutionary computation to
produce analog circuit designs. In fact, we cannot tell them apart from those “produced” by the human brain.

How far can we push this? Can we finally understand human intelligence by evolving it? Maybe…but the
important result of these developments is a different one: we can no longer push the problem away by re-defining it.

If we want to produce solutions to difficult engineering problems, we have now developed a large number of
techniques we can use and refine. Posterity will decide whether the term “intelligence” is appropriate either for the
techniques or for the solutions.

In any case, much exciting research and engineering work lies ahead. If we truly want to understand and ultimately
produce human-like intelligence, we may have to return to cognitive models grounded in the neural “hardware” of the
brain. Symbolic, sub-symbolic and evolutionary computing will certainly have roles to play in building these
models. But, in the opinion of this author, the common framework will have to come from brain architecture.
Abstracting relevant principles remains extremely difficult until we really understand the interplay between the
sensing level and the highest levels of cognition.
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