
It was a late evening in Bitotia. The next day was going to be a
big day: Citizens of Bitotia would once and for all establish
which byte order was better, big-endian (B) or little-endian (L).

Little Bit Timmy was a big supporter of little endian because that
would give him the best position in the word. However, the pop-
ulation was split quite evenly between L and B, with a small
minority of Bits who still remembered the single-tape Turing
machine and preferred unary encoding (U), without any of this
endianness business. Nonetheless, about half of the Bits preferred
big-endian (B > L > U), and about half were the other way round
(L > B > U). The voting rule was simple enough: You gave 2 points
to your top choice, 1 point to your second-best, and 0 points to the
worst. As Timmy was about to fall asleep, a sudden realization
struck him: Why vote L > B > U and give the point to B, when U is
not winning anyway? Immediately, Timmy knew: He would vote
L > U > B!

The next day brought some of the most sensational news in
the whole history of Bitotia: Unary system had won! There were
104 votes L > U > B, 98 votes B > U > L, and 7 votes U > B > L. (Bito-
tia is a surprisingly small country.) U had won with 216 points,
while B had 203 and L had 208. Apparently, Timmy was not the
only one who found the trick. Naturally, Bitotians wanted to find
out if they could avoid such situations in the future, but ... since
they have to use unary now, we will have to help them! 

This story is an illustration of what we call election manipulation.
A manipulative voter decides to cast a vote that is different from
his true preferences in order to obtain a more desirable out-
come. If every supporter of L voted L > B > U (104 votes) and
every supporter of B voted B > L > U (98 votes), and the remain-
ing 7 votes were U > B > L, then B would have won (see ]gure
1). However, if Timmy were the only one to submit a manipu-
lative vote, then L and B would tie for victory (and if only sev-
eral more supporters of L would cast manipulative votes, L
would have won). Yet, one of the dangers of manipulation is
that voting rules are designed to aggregate votes accurately and
if many voters attempt manipulation, the result of the election
can be skewed quite signi]cantly. In our case, the clearly least
favorable option, U, ended up winning.1
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AI’s War on Manipulation: 
Are We Winning? 

Piotr Faliszewski and Ariel D. Procaccia

n In this article we provide an overview of
more than two decades of work, mostly in AI,
that studies computational complexity as a bar-
rier against manipulation in elections. 
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Figure 1. The Election in Bitotia.

(a) Before the manipulation. (b) After the manipulation.
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Of course, part of the Bitotians’ problem was
that they chose an election rule — called Borda
count — that seems particularly vulnerable to
manipulation: It is very tempting to rank the most
preferred candidate ]rst and to rank his strongest
competitor last, even if we think that the competi-
tor is not so bad after all. They should have known
better and should have picked a better voting rule!
The only glitch is that there are no better voting
rules: The classic result of Gibbard (1973) and Sat-
terthwaite (1975) says that every reasonable2 vot-
ing rule for three candidates or more sometimes
creates incentives for voters to attempt manipula-
tion.

The danger of manipulation is quite clear in
human elections, but recently voting manipula-
tion has also endangered the world of arti]cial
intelligence and computer science. The reason is
that virtual elections have become a standard tool
in preference aggregation. The idea of employing
voting in AI originates from the work of Ephrati
and Rosenschein (1991) where elections were used
to solve planning problems in multiagent systems
(very brie^y, the agents can vote on the next step
of the plan, without revealing too much of their
internal goals and desires). Another very promi-
nent application was the web metasearch engine
developed by Dwork et al. (2001). The engine treat-
ed other search engines as voters and the web
pages as candidates in a virtual election. At the
intersection of the worlds of computer science and
human societies, voting mechanisms were used,
for example, to build recommender systems
(Ghosh et al. 1999), for collaborative ]ltering (Pen-
nock, Horvitz, and Giles 2000), or even to plan the
development of computer systems (see the Debian
project, which uses a rather advanced voting
method).

The threat of manipulation is particularly rele-
vant in the context of multiagent systems: Soft-
ware agents have all the patience and computing
power necessary to perform complicated analysis
of elections and provide optimal manipulative
votes. Additionally, they are not bound by moral
obligation to act honestly as in multiagent systems
their goal is to maximize their own utility (or, their
owner’s utility). 

Manipulation is one of very many types of
attack on elections. For example, in transferable
utility settings, an agent may offer payments to
those voters that change their votes to his liking
(bribery). An agent that controls the process of vot-
ing might attempt tricks such as adding spoiler
candidates (to split the votes of competitors; for
example, in the U.S. 2000 presidential race it is
often believed that if Ralph Nader had not partici-
pated, Al Gore would have beaten George Bush), or
make it dif]cult for some agents to cast votes.
Attempts to change the result of an election by

adding/deleting candidates/voters are called elec-
tion control. Software agents can systematically
plan attacks on elections using each of these types
of actions (as well as many other types).

Is there any way in which we can protect elec-
tions from these attacks? Quite surprisingly, in the
late 1980s and early 1990s, Bartholdi, Tovey, and
Trick (1989, 1992) and Bartholdi and Orlin (1991)
answered: Yes! Even though manipulative actions are
possible in principle, we can prevent them in practice!
They observed that even though elections are vul-
nerable to most types of attack, a given attack can
be carried out only if it can be computed effective-
ly. What does it mean? For example, let us consid-
er some voting rule R and the problem of manipu-
lation (strategic voting). Bartholdi, Orlin, Tovey,
and Trick said that if given the votes of all remain-
ing voters it is still NP-hard to compute a manipu-
lative vote, then we can rest assured that R is com-
putationally resistant to manipulation. Even if
someone wanted to manipulate elections where
rule R is used, short of randomly guessing the cor-
rect vote, this person would never succeed in time!
Naturally, this idea of a computational barrier to
manipulative behavior extends to bribery and con-
trol and to all other types of attack.

Many researchers have pursued the direction
pioneered by Bartholdi, Orlin, Tovey, and Trick,
studying the computational complexity of manip-
ulation, control, and bribery in elections, obtain-
ing results for a great number of voting rules in
very varied settings; we will survey some of these
results in the sequel. However, recently the com-
putational barrier approach has also been criti-
cized.

The most controversial part of the approach is
that it relies on NP-hardness as a measure of com-
putational dif]culty. The issue is that NP-hardness
is a worst-case notion and the fact that a problem
is NP-hard simply means that it has some dif]cult
instances and not that necessarily the ones typi-
cally occurring in practice are hard to solve. For
example, let us consider the PARTITION problem,
where we are given a sequence s1, …, sn of non-
negative integers and we ask if there is a subset of
them that sums up to 

Even though the problem is NP-hard (and, in fact,
NP-complete), we can solve it in polynomial time
if the values s1, …, sn are suf]ciently small (speci]-
cally, we can solve PARTITION in polynomial time
with respect to n and max{s1, …, sn }). We can also
effectively compute arbitrarily close-to-correct
approximate solutions to an optimization variant
of the problem, where we ask for a subset whose
sum is at most
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but as close to it as possible (though, of course, the
better the approximation the longer the running
time). From the practical perspective, in a large
majority of settings PARTITION is easy to solve. The
worry regarding the computational barrier
approach is that, perhaps, theoretically hard
manipulation problems are also practically easy to
solve.

The main purpose of this article is to present the
results regarding manipulation in voting, both
challenging the worst-case computational barrier
approach and developing its theory. We believe
that considering both types of results leads to a sig-
ni]cantly better understanding of computational
aspects of voting. 

Elections
Let us now de]ne our election model and describe
several voting rules that we focus on in this article.

Formally, an election E = (C, V) consists of a set
of candidates (or alternatives) denoted  C = {c1, …,
cm} and a sequence of voters V = (v1, …, vn). Each
voter vi has some preferences regarding the candi-
dates. For example, if C = {a, b, c} and v1 thinks that
a is the best candidate, c is second, and b is the
worst, we say that v1’s preference order is a > c > b.
There are also other means to express preference.
For example, in approval voting agents simply
indicate which candidates they approve of, and in
range voting they assign numerical scores to can-
didates proportionally to the level of support.
Nonetheless, preference orders are the standard
model. We identify voters’ preference orders with
their votes.

Given the votes, a voting rule says which candi-
dates are winners. Partially due to the Gibbard-Sat-
terthwaite theorem, and partially due to the
famous result of Arrow (1951),3 there are remark-
ably many voting procedures, and new ones are
still being developed (for example, the Schulze
method [2003]), a very popular voting system
used, for example, by Wikimedia, has been devel-
oped in the late 1990s). In this article we will look
just at several typical examples.

Perhaps the simplest and the most popular one
is the Plurality rule: In Plurality we simply give
each candidate one point for each vote that ranks
him ]rst, and we declare as winners those candi-
dates that have most points. Note that we do allow
multiple winners. In practice, elections involve
various tie-breaking rules, but here (and typically
in the computer science literature) we disregard
such complications, and instead use one of the fol-
lowing models. In the unique-winner model, a can-
didate has to be the unique winner to claim victo-
ry in the election, and in the nonunique-winner
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model it suf]ces that the candidate is one of the
winners.

Plurality rule is the simplest member of a class of
election systems called (positional) scoring rules. A
scoring rule for m candidates is de]ned by a vector
a = (a1, …, am) of nonnegative integers such that
a1 ≥ … ≥ am. A candidate receives aj points for each
vote that ranks him on the jth position; the win-
ners are those candidates who get most points. It is
easy to see that Plurality is de]ned through a fam-
ily of scoring rules (1, 0, …, 0), with one vector for
each number of candidates. Similarly, Borda
count—the rule used by Bitotians — is de]ned
through a family of scoring vectors of the form (m
− 1, m − 2, …, 0). A scoring rule is used, for exam-
ple, for the elections of the best song in the Euro-
vision song contest.

Copeland’s rule presents a very different per-
spective on choosing a winner. Let a and b be two
candidates in an election E. We say that a wins a
head-to-head contest with b if the majority of vot-
ers prefers a to b. In Copeland’s rule a candidate
receives one point for each candidate that he
defeats in a head-to-head contest, and half a point
for each candidate with whom he ties. That is,
Copeland’s rule views the process of electing the
winner as a round-robin tournament, with 1 point
for victory, 1/2 point for a tie, and 0 points for los-
ing. The candidates with most points are winners.
Sometimes, instead of using half-points for a tie, a
different value a [0, 1] is used, and the voting
rule is denoted Copelanda (Faliszewski et al. 2009b)
(though, we mention that some papers also use the
term Copeland for what we would call Copeland0).

Manipulation and 
Related Problems

To formally study computational properties of
manipulation we have to de]ne it as a decision
problem. We will do so in this section, discussing
several variants of the de]nition and several relat-
ed problems.

Let R be a voting rule. Intuitively, in the R-
MANIPULATION problem we are given an election
where some of the voters have ]xed votes (prefer-
ence orders) and some voters — the manipulators
— are trying to choose their votes so that their pre-
ferred candidate p becomes a winner. The manipu-
lators are working together, that is, they form a
coalition, and we assume that they can perfectly
coordinate their actions. We also assume that they
have perfect knowledge regarding the remaining
votes. These assumptions stem from the fact that
we are interested in hardness of manipulation in a
setting that is most favorable for the manipulators.
If the manipulation is hard there then certainly it
must be hard in more realistic settings.4 Formally,
we have the following de]nition (based on that
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from Bartholdi, Tovey, and Trick [1989] and
Conitzer, Sandholm, and Lang [2007]).

Definition 1 Let R be a voting rule. In R-MANIPULA-
TION we are given an election E = (C, V + W), where
voters in V have fixed preference orders and the
preference orders of voters in W remain to be set,
and a designated candidate p C; we ask if there is
a way to set the votes in W so that p is a winner. 

Originally, Bartholdi, Tovey, and Trick (1989)
considered single-voter manipulation instances
only, that is, those where the collection W con-
tains exactly one voter. The de]nition presented
here — adapted from (Conitzer, Sandholm, and
Lang 2007) — regards coalitional manipulation. In
fact, Conitzer, Sandholm, and Lang introduced
one more important twist to the de]nition: They
allowed voters to be weighted. In R-WEIGHTED-
MANIPULATION each voter v (manipulator or not) has
a weight wv and his vote counts as wv votes. Weight-
ed elections are very natural. For example, within
a company, the votes of shareholders are weighted
by the amount of shares they hold, the U.S. elec-
toral college is weighted, and so are countries vot-
ing within the European Union. 

Finally, a different variant of the manipulation
problem was studied by Meir et al. (2008), who
considered multiwinner elections (such as, for
example, elections for assemblies or parliaments).

Manipulation captures situations where a group
of voters, the coalition, decides to collude in order
to obtain a better outcome for itself. On the other
hand, in bribery there is a single agent who wishes
to change the outcome of the election and offers
payments to voters for changing the preference
orders to his liking. The computational study of
bribery was initiated by Faliszewski, Hemaspaan-
dra, and Hemaspaandra (2009) who, in particular,
introduced and studied the following problem.

Definition 2 Let R be a voting rule. In the R-BRIBERY

problem we are given an election E = (C, V), a des-
ignated candidate p C, and a natural number B.
We ask if it is possible to ensure that p is an R-win-
ner of E through changing the votes of at most B
voters. 

As in the case of manipulation, we can consider
the weighted variant of the problem, R-WEIGHTED-
BRIBERY. However, in the case of bribery, perhaps a
different twist of the de]nition is more interesting.
In R-BRIBERY, effectively, each voter has the same
unit cost: We only care about bribing as few voters
as possible. However, in many settings, the voters
might have different prices, depending, for exam-
ple, on how much a particular voter cares about
the result of the election or on the nature of the
bribery. To model the ]rst possibility, Faliszewski,
Hemaspaandra, and Hemaspaandra (2009) intro-
duced R-$BRIBERY where each voter v has a price pv
for changing his vote (after we pay v the pv units,
we obtain full control over v’s vote). To deal with

the latter option, Elkind, Faliszewski, and Slinko
(2009) introduced R-SWAP-BRIBERY. In swap bribery
each voter v has a cost function pv such that for
each two candidates c, c�, pv (c, c�) is the cost of
swapping c and c� on v’s preference list (provided c
and c� are ranked next to each other). For example,
a voter might be willing to swap his two least
favorite candidates at a small cost, but would nev-
er — irrespective of the payment — change the
top-ranked candidate. The goal of the briber is to
]nd a sequence of adjacent swaps that lead to his
or her preferred candidate’s victory, and that has
lowest cost.

The priced variants of the bribery problem can
also be considered in the weighted setting. How-
ever, essentially, all such problems are NP-com-
plete as this is true even with respect to Plurality-
WEIGHTED-$BRIBERY.

We will not survey results regarding bribery in
this article and we point the reader to particular
research articles. However, the general intuition is
that bribery appears to be computationally harder
than manipulation. This intuition is based on the
results for natural systems studied so far. However,
there is an arti]cial election system for which
manipulation is NP-complete but bribery is in P
(Faliszewski, Hemaspaandra, and Hemaspaandra
2009).

There is one more problem that is quite related
to manipulation and bribery, namely the Possible-
Winner problem introduced by Konczak and Lang
(2005) and further studied by, for example, Xia and
Conitzer (2008a); Walsh (2007); Pini et al. (2007);
Betzler, Hemmann, and Niedermeier (2009). Let us
]x a voting rule R. In R-POSSIBLE-WINNER we are giv-
en an election E = (C, V) where the preference
orders are possibly partial (a partial order is, simply,
a re^exive, transitive, antisymmetric relation). The
question is: given a candidate p, is it possible to
extend the preference orders to complete linear
orders so that p is a winner? The possible winner
problem models a situation where we have some
partial information about the votes and we want
to ]nd out who still has a chance of winning. Sim-
ilarly, in the R-NECESSARY-WINNER problem — also
de]ned in Konczak and Lang (2005) — we ask if a
given candidate is a winner irrespective of how the
votes are completed.

Formally, manipulation is a special case of the
possible winner problem, where the nonmanipu-
lators have fully speci]ed preference orders and
the manipulators have completely unspeci]ed
ones. In fact, quite a few problems mentioned
above are special cases of each other. For example
R-MANIPULATION is a special case of R-$BRIBERY (we
can view the manipulation problem as a bribery
problem where the prices of manipulators are very
low, the prices of nonmanipulators are very high,
and our budget allows us to buy the votes of all the
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Figure 2: Diagram of “Is a Special Case of” Relation for Manipulation-Related Problems. (R is a Voting Rule).

An arrow points from a problem that is a special case to the problem that generalizes it. The same diagram is true for the weighted variants
of the problems.



manipulators, but none of the nonmanipulators).
It is somewhat less trivial to see that R-POSSIBLE-
WINNER is a special case of R-SWAP-BRIBERY. We pres-
ent the “is a special case of” relations between
problems in ]gure 2. These relations are important
as computational hardness of a special case implies
hardness of the more general problem, and easi-
ness of the more general problem implies easiness
of its special cases. For pairs of problems in ]gure 2
for which we do not indicate “is a special case of”
relation, either such a relation does not hold or is
not known to hold. (Figure 2 presents results from
Faliszewski, Hemaspaandra, and Hemaspaandra
[2009] and Elkind, Faliszewski, and Slinko [2009].)

As a ]nal remark, we mention that researchers
often consider destructive variants of the problems
we have presented here, where the goal is to ensure
that some candidate does not win. However, in
this article we focus on the constructive cases only
(as presented in the de]nitions in this section).

Hardness of Manipulation
With all the necessary background, we can ]nally
move on to the discussion of computational
aspects of manipulation. In sync with history, we
start with the single-manipulator variant of the
problem. 

Bartholdi, Tovey, and Trick wanted to show
hardness of manipulation, but their ]rst result was,
in fact, that for a large class of voting rules, includ-
ing all scoring rules and Copeland, single-voter
manipulation is easy. The manipulator has to exe-
cute the following natural steps:
Initialization: Place the preferred candidate p in the
first position in the vote. 

Loop: If there are no more unprocessed candidates,
we have found a successful manipulative vote. Oth-
erwise, test if there is a not-yet-placed candidate c
such that putting c in the next free position in the
vote does not prevent p from being a winner. If
there is such a c, place him in the vote. Otherwise,
signal that manipulation is impossible. Repeat. 

It is quite easy to see that this algorithm works
both for Copeland and for each scoring rule. Plac-
ing p in the ]rst position in the vote completely
determines p’s score, and the order in which we ]ll
in positions in the vote (from the most preferred to
the least preferred) guarantees that each time we
place a new candidate we can also determine his or
her ]nal score.

Given the naturalness and simplicity of the
above algorithm, it is in fact quite remarkable that
Bartholdi, Tovey, and Trick (1989) and Bartholdi
and Orlin (1991) have actually found voting rules
for which single-voter manipulation is NP-hard.
These rules are, respectively, second-order
Copeland (a variant of the Copeland rule with an
elaborate tie-breaking) and a variant of single

transferable vote (STV). Very brie^y speaking, STV
works as follows: if there is a single candidate, he is
the winner; otherwise ]nd a candidate that is
ranked ]rst the least number of times, remove him
from the votes, and repeat. STV is quite vulnerable
to internal tie-resolutions (that is, the order in
which candidates with the same number of ]rst-
place votes are removed). In fact, a recent result
shows that for a certain natural tie-breaking rule
even determining the winners in STV can become
NP-complete (Conitzer, Rognlie, and Xia 2009).

Second-order Copeland and STV were the ]rst
rules for which computational resistance to manip-
ulation was obtained. In fact, to date, only one
more natural voting rule — called Ranked Pairs —
is known to posses such resistance to single-voter
manipulation (Xia et al. 2009). However, Conitzer
and Sandholm (2003) showed how adding a pre-
round can make single-voter manipulation com-
putationally hard, and Elkind and Lipmaa (2005a)
achieved the same by building hybrid election sys-
tems, in a way resembling STV.

The early results of Bartholdi, Orlin, Tovey, and
Trick (almost) exhaust the research regarding sin-
gle voter manipulation; their greedy algorithm is
indeed very powerful. Let us, thus, turn to coali-
tional manipulation. There are two main ̂ avors of
the problem: weighted and unweighted. Histori-
cally, weighted manipulation has been studied ear-
lier (and much more thoroughly) so let us consid-
er it ]rst.

Weighted manipulation was introduced by
Conitzer, Sandholm, and Lang (2007) who
observed that in real life elections (that is, in elec-
tions we encounter in human societies) typically
there are very few candidates. They have pointed
out that if the number of candidates is a small con-
stant then (unweighted) manipulation immediate-
ly becomes easy — one can, essentially, brute-force
through all possible combinations of votes (if there
are m candidates and n manipulators then there
are at most (n + 1)m! different combinations of
manipulative votes — assuming the order of votes
is irrelevant — and if m is a small constant then, at
least in principle, we can look at each set of votes
for the manipulators). However, in weighted elec-
tions the brute-force approach does not work any-
more. Even if there are very few candidates, it is
not suf]cient to know how many votes of each
type there are, but it is critical to know which vot-
ers have which preference orders. Thus, Conitzer,
Sandholm, and Lang (2007) set out to determine
the complexity of weighted manipulation for a
number of voting rules (they have considered near-
ly a dozen rules including Plurality, Veto, Borda,
Copeland). In fact, not only have they done that,
but also for each rule they have established the
exact number of candidates that need to partici-
pate in the election for the weighted manipulation
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problem to be NP-complete. It turned out that for
most rules, as soon as we have at least three or four
candidates, weighted manipulation becomes NP-
complete. However, there are some quite interest-
ing rules (for example, so-called randomized cup) for
which weighted manipulation is in P for up to six
candidates and then — suddenly — becomes NP-
complete if there are seven candidates or more.

Perhaps the most beautiful result regarding the
complexity of weighted manipulation is the
dichotomy theorem of Hemaspaandra and Hemas-
paandra (2007), which classi]es the complexity of
weighted manipulation in scoring rules: Given a
scoring rule a = (a1, …, am), weighted manipula-
tion is NP-complete if a satis]es the diversity of dis-
like condition, that is, {a1, …, am} contains at least
two values. Otherwise, weighted manipulation is
in P. The proof of Hemaspaandra and Hemaspaan-
dra relies on the fact that the voters’ votes are not
restricted in any way; any voter can cast any possi-
ble vote. However, if one does restrict possible
votes — for example, through assuming that the
electorate is single-peaked — then the dichotomy
condition changes. Recently, Faliszewski et al.
(2009a), showed a variant of the dichotomy for
scoring protocols with three candidates for single-
peaked electorates. Study of manipulation under
single-peaked electorates, initiated by Walsh
(2007), is a very interesting direction of research as
single-peaked preferences often arise in practice.
(Single-peaked preferences, introduced by Black
(1958), model situations where voters judge candi-
dates based on their view on a single issue such as,
for example, level of taxation.)

Compared to weighted coalitional manipula-
tion, surprisingly little is known about the
unweighted case. There is only a handful of voting
rules for which the complexity of unweighted
coalitional manipulation has been determined.
Zuckerman, Procaccia, and Rosenschein (2009)
showed that the problem is easy for Veto and for a
voting rule called Plurality with runoff, Faliszews-
ki, Hemaspaandra, and Schnoor (2008, 2010)
showed hardness for Copelanda (for a [0, 1] –
{0.5}), and Xia et al. (2009) showed hardness for
Maximin and Ranked Pairs, and easiness for Buck-
lin. It is quite interesting that for all of these rules
for which coalitional manipulation is hard — but
single voter manipulation is easy — it suf]ces that
we have exactly two manipulators to reach hard-
ness. That is, even the need to coordinate such a
small coalition is enough to boost the complexity
of these problem to NP-completeness.

Some earlier results regarding unweighted
manipulation include those of Elkind and Lipmaa
(2005b) (they used one-way functions to tweak
voting rules so that the resulting rules are compu-
tationally resistant to unweighted manipulation)
and of Conitzer, Sandholm, and Lang (2007), who

analyzed connections between weighted manipu-
lation and unweighted manipulation for the case
where votes are not known with certainty.

Unfortunately, so far, no result resembling the
dichotomy theorem for unweighted manipulation
under (polynomial-time computable families of)
scoring rules is known, and it appears that obtain-
ing one may be very dif]cult.5 Very recently, Xia,
Conitzer, and Procaccia (2010) established that
there is a polynomial-time computable family of
scoring rules where unweighted manipulation is
NP-complete. However, to date even the exact
complexity of unweighted manipulation for Borda
is not known (though, see the next section for a
discussion). We believe that establishing such a
result is a very interesting, dif]cult challenge and
we very much hope that some of the readers of this
article will successfully tackle it! 

Challenging the 
Worst-Case Approach

The previous section surveyed a signi]cant body of
work devoted to variations on the following
theme: preventing manipulation through compu-
tational complexity. The results provide a rather
rich understanding of the intricate dependence
between the characteristics of the voting rule used
to govern the election, and the computational
complexity of manipulating it. However, these
results are all concerned with worst-case hardness.
As we mentioned above, it may still be the case
that voters are usually able to manipulate the elec-
tion even though the voting rule in question is
worst-case hard to manipulate. In this section we
survey the literature that challenges the worst-case
approach by asking: is there a reasonable voting
rule that is usually hard to manipulate? In the
sequel we discuss three approaches to answering
this question (in the negative!).

The “Window of Error” Approach
Although what one means by “a reasonable voting
rule” may be arguable, the main dif]culty in
answering the above question is that it is unclear
what one means by “usually.” Ideally, we would
like the results to hold under any plausible distri-
bution on the votes, but it is a priori unclear which
formal methodology can achieve such an ambi-
tious goal.

The ]rst to tackle these rather intimidating
issues were Procaccia and Rosenschein (2007b).
They presented the notion of junta distributions;
very generally speaking, these are distributions
over the instances of R-MANIPULATION that satisfy
several constraints. Procaccia and Rosenschein
then informally argued that a junta distribution
may possess the following property: if an algo-
rithm often succeeds in deciding R-MANIPULATION
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when the instances of the problem are distributed
according to a junta distribution, it would also suc-
ceed in deciding R-MANIPULATION when the
instances are distributed according to many other
plausible distributions. Procaccia and Rosenschein
presented a greedy algorithm that often succeeds
in deciding R-MANIPULATION, where R is a scoring
rule, and the instances are distributed with respect
to a speci]c distribution that is proven to be a jun-
ta distribution. This may provide some evidence
that scoring rules are usually easy to manipulate.
However, other authors have argued that the
notion of junta distributions has limited usefulness
(Erdélyi et al. 2009).

In retrospect, the crux of the paper of Procaccia
and Rosenschein (2007b) is a rather loose charac-
terization of instances on which the greedy algo-
rithm may fail; these instances are drawn with
small probability according to their junta distribu-
tion. More recently, Zuckerman, Procaccia, and
Rosenschein (2009) signi]cantly re]ned this idea.
In particular, by obtaining a more careful charac-
terization of the greedy algorithm’s hard instances,
they show that the greedy algorithm of Procaccia
and Rosenschein has the following property with
respect to Borda: Given a “yes” instance of R-
MANIPULATION with a set W of manipulators, the
algorithm may wrongly return a negative answer,
but would in fact ]nd a successful manipulation
given |W| + 1 manipulators. (On the other hand, if
the algorithm answers “yes,” the answer is certain-
ly correct.) It is possible to de]ne an optimization
problem whose solution is the minimum number
of unweighted manipulators needed to make a giv-
en candidate win; then the greedy algorithm
approximates the solution to this problem under
Borda to an additive term of one. The intuitive
implication is that the “size” of the algorithm’s
“window of error” is one manipulator, which in
turn implies that the algorithm would succeed
with high probability under many distributions.

A slightly weaker extension of the above result
to scoring rules in general was obtained by Xia,
Conitzer, and Procaccia (2010). In another related
paper Brelsford et al. (2008) set up a general frame-
work for studying approximation in manipulation
and other problems; as a corollary of their main
theorem they obtain a version of the above result
of Zuckerman et al. that holds for a large subset of
scoring rules but requires that the number of can-
didates be constant.

In general, the above-mentioned papers (except
the one by Brelsford et al.) design algorithms that
are “usually” able to manipulate certain voting
rules, by arguing that these algorithms fail on very
speci]c instances. The drawback of this approach is
that the algorithms are tailor made for the voting
rules in question (scoring rules, Maximin, Plurali-
ty with Runoff), and hence this approach cannot

give a completely satisfying answer to the question
posed at the beginning of the section.

The “Fraction of Manipulators” Approach
In a different paper, Procaccia and Rosenschein
(2007a) made the following observation, which is
an extension of similar results in the social choice
literature (Baharad and Neeman 2002, Slinko
2004): If the number of manipulators is large then
there almost always exists a successful manipula-
tion, whereas if the number of manipulators is
small then there almost always does not exist a
successful manipulation. Speci]cally, they consid-
er scoring rules, and show that if |W| = v((|V|)1/2)
then there exists a trivial manipulation6 with high
probability, and if |W| = o( (|V|)1/2) then there does
not exist a manipulation with high probability.
This result holds under rather general assumptions
on the distribution over the given votes in V.
Moreover, the above result was generalized by Xia
and Conitzer (2008b); their theorems hold for gen-
eralized scoring rules, a large class of voting rules
that includes the voting rules mentioned above
(scoring rules, Copeland, STV, Ranked Pairs), as
well as other commonly studied voting rules.
These results suggest that in the vast majority of
cases the R-MANIPULATION problem can be solved
ef]ciently under generalized scoring rules.

A gap that the foregoing papers left open is the
case where |W| = Q(|V|)1/2); this case seems
unwieldy as far as analytical analysis is concerned.
Walsh (2009) recently addressed this dif]culty
using an empirical methodology. In particular,
analyzing the Veto rule, he demonstrates that
there is a smooth transition, from nearly zero to
nearly one, in the probability that there exists a
successful manipulation when the size of the
manipulating coalition grows.

Note that, although the class of generalized scor-
ing rules certainly includes many natural voting
rules, it is still not wide enough to preclude the
existence of a reasonable voting rule that is usual-
ly hard to manipulate. Indeed, in more recent
work, Xia and Conitzer (2009) characterized this
class using two axiomatic properties, anonymity
(indifference to the identities of the voters) and a
new axiom called Hnite local consistency. Their char-
acterization implies that the well-studied Dodgson
rule (see, for example, Homan and Hemaspaandra
[2009] and Caragiannis et al. [2009]) is not a gen-
eralized scoring rule.

The Axiomatic Approach
Generally speaking, the last set of papers that we
wish to discuss makes the following argument: all
reasonable voting rules satisfy some axioms, and
all the voting rules satisfying said axioms are usu-
ally manipulable by a trivial algorithm.

The ]rst to take this approach were Conitzer and
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Sandholm (2006). They showed that an R-MANIPU-
LATION instance can be decided easily if it satis]es
two properties: weak monotonicity, which is a very
natural property, and the more controversial prop-
erty that the manipulators can make one of exact-
ly two candidates win the election. Conitzer and
Sandholm empirically demonstrated that the lat-
ter property holds with high probability under dif-
ferent voting rules, but their simulations were car-
ried out only with respect to speci]c distributions
and a small number of candidates.

More recently, Friedgut, Kalai, and Nisan (2008)
proposed a promising line of attack that does not
impose stringent restrictions on the voting rule.
They assumed that the distribution over votes is
uniform, that is, we draw a uniformly random
ranking independently for each voter; this assump-
tion is known as the impartial culture assumption in
the social choice literature. Friedgut, Kalai, and
Nisan also assume that there is a single manipula-
tor. Their main insight is that a completely random
manipulation may succeed with nonnegligible
probability.7 In more detail, consider a trivial ran-
domized algorithm that, given the preferences of
the voters, chooses a random ranking as the strate-
gic vote of the manipulator; if this strategy pro-
vides a successful manipulation with nonnegligi-
ble probability on a given instance, then by
repeating this procedure we can achieve a high
probability of success with respect to that instance.
The main result of Friedgut, Kalai, and Nisan is,
roughly speaking, as follows. Assume there are
exactly three candidates, and the voting rule is neu-
tral, that is, the outcome is independent of the
names of the candidates. If the trivial randomized
algorithm succeeds with only negligible probabili-
ty when a preference pro]le and a manipulation
are drawn uniformly at random, then the voting
rule must be very close to being a dictatorship, in
the sense that there is one voter such that his
favorite candidate is almost always selected by the
voting rule. The appeal of this result is that one can
easily argue that it indeed captures every reason-
able voting rule. However, its impact is limited by
the fact that it only holds for a restricted number
of candidates and under the impartial culture
assumption.

Several attempts have been made to extend the
above result. Xia and Conitzer (2008c) achieved a
similar result that holds for any constant number
of candidates, albeit requires more restrictive
assumptions on the voting rule. Dobzinski and
Procaccia (2008) established an analogous result
for the case of two voters and any number of can-
didates, under a comparably weak assumption on
the voting rule. Very recently the result of Friedgut,
Kalai, and Nisan was successfully extended to set-
tings with an arbitrary number of voters and can-
didates, in an impressive demonstration of mathe-

matical prowess due to Isaksson, Kindler, and Mos-
sel (2010).8

The last result settles in the negative the ques-
tion of the existence of voting rules that are usual-
ly hard to manipulate, as long as one is willing to
accept the impartial culture assumption. Never-
theless, it is still possible to argue that in most set-
tings, both in the context of political elections and
multiagent domains, the votes tend to exhibit
structure that is far from random (the work of
Walsh (2007) and of Faliszewski et al. (2009b) on
manipulating single-peaked elections is an exam-
ple of a step in that direction, albeit in the worst-
case complexity model). Therefore, the ]nal word
regarding the (non)existence of voting rules that
are usually hard to manipulate is yet to be said.

Summary
In the ]rst part of the survey we discussed worst-
case hardness as a barrier against manipulation in
elections. The results along this line of work show
that several formulations of the manipulation
problem are computationally hard under different
voting rules. After more than two decades of
research we have a deep understanding of the
worst-case complexity of manipulation in elec-
tions. An enigmatic open problem is the complex-
ity of unweighted manipulation under Borda.

In the second part of the survey we outlined
three lines of work that challenge the worst-case
approach. Ideally, one would like to design a rea-
sonable voting rule that is “usually” hard to
manipulate. Unfortunately, to date all the work in
this direction suggests that there is no such voting
rule. However, despite signi]cant progress over the
last few years, this issue has not yet been settled
decisively, and still gives rise to fascinating
methodological and mathematical questions.

Notes
1. We should point out that our example is very much in
spirit of safe manipulation, introduced by Slinko and
White (2008).

2. “Reasonable” has a very natural, formal meaning here:
For the Gibbard-Satterthwaite theorem the rule is rea-
sonable if it is not dictatorial (that is, there is no special
voter who chooses the winner on his own) and each can-
didate has a chance of winning (that is, for each candi-
date there is a set of votes that elect him or her). Indeed,
each practically useful voting rule satis]es these condi-
tions.

3. Arrow’s impossibility theorem gives several very natu-
ral requirements that an intuitively good voting rule
should satisfy and shows that there are no voting rules
that satisfy all of them. As a result, what voting rule is
best depends on the setting and hence there are multiple
different ones to choose from.

4. One should be careful here: in a less favorable setting
the goals of the manipulators might also be less demand-
ing.
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5. Note that if the number of candidates is ]xed then
manipulation under any scoring protocol is easy. Thus,
we ask here for a dichotomy theorem regarding families
of scoring protocols.

6. The manipulators rank their preferred candidate p ]rst,
and every other candidate is ranked last by roughly |W| /
(|C| – 1) manipulators.

7. This is trivial under the formulation of the manipula
tion problem given in de]nition 2. when p is chosen at
random. Friedgut, Kalai, and Nisan consider a slightly dif-
ferent, in a sense more focused, formulation of the prob-
lem, where the manipulator also holds a ranking and the
question is whether he can vote in a way that improves
the outcome according to his preferences.

8. Isaksson, Kindler, and Mossel (2010) consider manip-
ulations where four adjacent candidates are randomly
permuted.
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