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AIC model selection using Akaike weights
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The Akaike information criterion (AIC; Akaike, 1973)

is a popular method for comparing the adequacy of mul-

tiple, possibly nonnested models. Current practice in cog-

nitive psychology is to accept a single model on the basis

of only the “raw” AIC values, making it difficult to un-

ambiguously interpret the observed AIC differences in

terms of a continuous measure such as probability. Here

we demonstrate that AIC values can be easily transformed

to so-called Akaike weights (e.g., Akaike, 1978, 1979; Boz-

dogan, 1987; Burnham & Anderson, 2002), which can be

directly interpreted as conditional probabilities for each

model. We show by example how these Akaike weights can

greatly facilitate the interpretation of the results of AIC

model comparison procedures.

The evaluation of competing hypotheses is central to
the process of scientific inquiry. When the competing
hypotheses are stated in the form of predictions from
quantitative models, their adequacy with respect to ob-
served data can be rigorously assessed. Given K plausi-
ble candidate models of the underlying process that has
generated the observed data, we should like to know
which hypothesis or model approximates the “true” pro-
cess best. More generally, we should like to know how
much statistical evidence the data provide for each of the
K models, preferably in terms of likelihood(Royall, 1997)
or the probability of each of the models’ being correct
(or the most correct, because the generating model may
never be known for certain). The process of evaluating
candidate models is termed model selection or model
evaluation.

A straightforward solution to the problem of evaluat-
ing several candidate models is to select the model that
gives the most accurate description of the data. However,
the process of model evaluation is complicated by the
fact that a model with many free parameters is more flex-
ible than a model with only a few parameters. It is clearly
not desirable to always deem the most complex model
the best, and it is generally accepted that the best model
is the one that provides an adequate account of the data
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while using a minimum number of parameters (e.g.,
Myung, Forster, & Browne, 2000; Myung & Pitt, 1997).
Any criterion for model selection needs to address this
tradeoff between descriptive accuracy and parsimony.

One of the more popular methods of comparing mul-
tiple models, taking both descriptive accuracy and par-
simony into account, is the Akaike information criterion
(AIC; see, e.g., Akaike, 1973, 1974, 1978, 1979, 1983,
1987; Bozdogan, 1987; Burnham & Anderson, 2002;
Parzen, Tanabe, & Kitagawa, 1998; Sakamoto, Ishiguro,
& Kitagawa, 1986; Takane & Bozdogan, 1987).1 The
AIC is a very general method that is applied in a wide
range of situations relevant to cognitive psychology. For
instance, the AIC often used as a measure of model ade-
quacy in both structural equation modeling (Jöreskog &
Sörbom, 1996) and time series analysis (e.g., McQuarrie
& Tsai, 1998). The AIC is also applied in factor analy-
sis (e.g., Akaike, 1987), regression (e.g., Burnham &
Anderson, 2002; see also Efron, 1986), and latent class
analysis (e.g., Eid & Langeheine, 1999). A sample of
other recent contexts in which the AIC has been em-
ployed includes competitive testing of models of cate-
gorization (e.g., Maddox & Bohil, 2001; Nosofsky,
1998; Thomas, 2001), modeling of mixture distributions
(Raijmakers, Dolan, & Molenaar, 2001), modeling of lu-
minance detection (Smith, 1998), and modeling of per-
ception with the use of stochastic catastrophe models
(Ploeger, van der Maas, & Hartelman, 2002).

After a brief description of the AIC, we will discuss
how the usual manner in which results from an AIC
analysis are reported may often be imprecise or confus-
ing. We will then show how the raw AIC values can be
transformed to conditional probabilities for each model.
This transformation has been recommended by Akaike
(1978, 1979), Bozdogan (1987), and Burnham and An-
derson (2002), but hitherto it has not been applied in
cognitive psychology. By means of a hypothetical ex-
ample, we will illustrate how the proposed transforma-
tion makes the results of AIC analyses easier to interpret
and also increases the accessibility of the results for fur-
ther analysis. Finally, we will discuss some similarities
and differences between the AIC and another popular
model selection criterion, the Bayesian information cri-
terion (BIC).

AIC Model Selection
The objective of AIC model selection is to estimate

the information loss when the probability distribution f
associated with the true (generating) model is approxi-
mated by probability distribution g, associated with the
model that is to be evaluated. A measure for the dis-
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crepancy between the true model and the approximating
model is given by the Kullback–Leibler (1951) informa-
tion quantity I( f, g), which is equal to the negative of
Boltzmann’s (1877) generalized entropy (for details, see
Bozdogan, 1987; Burnham & Anderson, 2002; Golan,
2002; and Sakamoto et al., 1986).

Akaike (1973; Bozdogan,1987) has shown that choos-
ing the model with the lowest expected information loss
(i.e., the model that minimizes the expected Kullback–
Leibler discrepancy) is asymptotically equivalent to
choosing a model Mi, i 5 1, 2, . . ., K that has the lowest
AIC value. The AIC is defined as

(1)

where Li, the maximum likelihood for the candidate
model i, is determined by adjusting the Vi free param-
eters in such a way as to maximize the probability that
the candidate model has generated the observed data.
Equation 1 shows that the AIC rewards descriptive ac-
curacy via the maximum likelihood, and penalizes lack
of parsimony according to the number of free param-
eters (note that models with smaller AIC values are to be
preferred). Equation 1 is based on asymptotic approxi-
mations and is valid only for sufficiently large data sets.
The finite sample correction

(e.g., Hurvich & Tsai, 1995; Sugiura, 1978) is generally
recommended when n/V , 40 (Burnham & Anderson,
2002, p. 445).

Table 1 shows hypothetical results which might be ob-
tained from fitting five different models (i.e., A1, A2,
B1, B2, and C) to an experiment, in this case a catego-
rization task. The groups of Models A, B, and C can be
considered different models (e.g., an exemplar model, a
boundary model, and a prototype model). Models A2
and B2 differ from A1 and B1, respectively, by the in-
clusion of an extra parameter that might correspond, for
example, to the level of attention of the participants (see
Maddox & Ashby, 1993, for an example of such a set of
models).
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The first column of Table 1 shows the number of free
parameters, and the second column shows the log likeli-
hood for each model obtained by using maximum like-
lihood parameter estimation (MLE; e.g., Eliason, 1993;
Sakamoto et al., 1986). Given the number of free pa-
rameters and the log likelihood, Equation 1 can be ap-
plied to yield AIC values; these are shown in the third
column of Table 1. From an inspection of the AIC val-
ues it is apparent that Model A2 is the preferred model
(i.e., it has the lowest AIC value of the five candidate
models). However, it is difficult to intuit how much sta-
tistical importance we should attach to a difference in
the AIC values between the best model (A2, AIC 5 202)
and the next best model (A1, AIC 5 204). It is especially
important to assess the weight of evidence in favor of the
best model when a binary decision is made and the other
candidate models (with higher AIC values) are simply
discarded. When the AIC differences are very small, the
acceptance of a single model may lead to a false sense of
confidence. In addition, the raw AIC values cannot tell
us what the weight of evidence is in favor of Models A1
and A2 over Models B1 and B2—that is, the extent to
which the data support Model A over Model B. Such
considerations are important in situations where a spe-
cific Model A2 may have the lowest AIC, but Model B
may generally be the overall better model.

Akaike Weights
We now show how these questions can be easily and

satisfactorily addressed by considering a simple trans-
formation of the raw AIC values. First, we compute, for
each model, the differences in AIC with respect to the
AIC of the best candidate model (e.g., Akaike, 1978;
Burnham & Anderson, 2002); that is,

(2)

Continuing our example, column 4 of Table 1 gives
Di(AIC) for each of the five models. This procedure re-
flects our interest in the relative performance of the
models, not their absolute AIC values. For the next step,
we note that the AIC is an unbiased estimator of minus
twice the expected log likelihood of the model (Akaike,

D i i( ) min .AIC AIC AIC= -

Table 1
Results of AIC and BIC Analysis for Five Competing Models (Hypothetical Data)

Model No. Pari log(Li) AICi D i (AIC) wi (AIC) BICi Di (BIC) wi (BIC)

A1 2 2100 204 2 .2242 211.0 0.00 .6439
A2 3 298 202 0 .6094 212.4 1.48 .3071
B1 3 2100 206 4 .0824 216.4 5.48 .0416
B2 4 299 206 4 .0824 219.9 8.96 .0073
C 4 2103 214 12 .0015 227.9 16.96 .0001

Note—No. Pari 5 number of estimated parameters for model i; log(Li ) 5 natural logarithm of the
maximum likelihood for model i; D i (AIC) 5 [AIC i – min(AIC)]; wi (AIC) 5 the rounded Akaike
weights; Di (BIC) 5 [BICi – min(BIC)]; wi (BIC) 5 the rounded Schwarz weights. The number of
observations that enters into the calculation of the maximum likelihood is 240. See text for details.
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1978, pp. 218–220, and 1979, p. 239; Bozdogan, 1987,
pp. 353–356). From the differences in AIC, we can then
obtain an estimate of the relative likelihood L of model
i by the simple transform:

(3)

where ~ stands for “is proportional to.” In the last step,
the relative model likelihoods are normalized (i.e., di-
vided by the sum of the likelihoods of all models) to ob-
tain Akaike weights wi(AIC) (e.g., Burnham & Ander-
son, 2002), where

(4)

so that åwi (AIC) 5 1. Table 1, column 5, shows the set
of Akaike weights for the illustrative data.2 Weight
wi (AIC) can be interpreted as the probability that Mi is
the best model (in the AIC sense, that it minimizes the
Kullback–Leibler discrepancy), given the data and the set
of candidate models (e.g., Burnham & Anderson, 2001).
Thus, the strength of evidence in favor of one model over
the other is obtained by dividing their Akaike weights.
Note that the Akaike weights are subject to samplingvari-
ability, and that a different sample will most likely gen-
erate a different set of weights for the models in the can-
didate set.

Recall that the conclusion from the raw AIC values
was that Model A2 is the preferred model. From an in-
spection of the Akaike weights in Table 1, it can be eas-
ily inferred that the best-fitting Model A2 is

times more likely to be the best model in terms of
Kullback–Leibler discrepancy than is the next-best
Model A1. Note that the evidence ratio of Akaike weights
for model i over model j can also be directly calculated by

To get an intuitive feeling for how much support this ev-
idence ratio provides in favor of A2 over A1, we can also
express the evidence ratio as the normalized probability
that Model A2 is to be preferred over Model A1:

Thus, using Akaike weights, we will again arrive at the
conclusion that Model A2 is to be preferred over its
competitors, but in addition the Akaike weights provide
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a continuous measure of strength of evidence. Finally,
using the evidence ratio of the weights, we can also com-
pute that Model A (i.e., both A1 and A2) is

more likely than Model B (normalized probability .83).
Similarly, the evidence ratio for models including an at-
tentional parameter (i.e., A2 and B2) versus models
without such a parameter (i.e., A1 and B1) is

(giving a normalized probability of .69).

Comparison Between AIC and BIC
Despite the widespread use of the AIC, some believe

that it is too liberal and tends to select overly complex
models (e.g., Kass & Raftery, 1995). It has been pointed
out that the AIC neglects the sampling variability of the
estimated parameters. When the likelihood values for
these parameters are not highly concentrated around
their maximum value, this can lead to overly optimistic
assessments (for an illustration, see Aitchison & Duns-
more, 1975, pp. 227–234). Furthermore, the AIC is not
consistent. That is, as the number of observations n
grows very large, the probability that the AIC recovers a
true low-dimensional model does not approach unity
(e.g., Bozdogan, 1987, p. 357). A popular alternative
model selection criterion is the Bayesian information
criterion or BIC (e.g., Burnham & Anderson, 2002;
Hastie, Tibshirani, & Friedman, 2001; Kass & Raftery,
1995; Schwarz, 1978; Wasserman, 2000). The BIC
(Schwarz, 1978) for model i is defined as

(5)

where n is the number of observations that enter into the
likelihood calculation. The BIC is an asymptotic approxi-
mation to a Bayesian model selection (BMS) analysis, in
which one integrates over the parameter space. Specifi-
cally, BMS requires the computation of the probability of
the data given the model, P(D |Mi), by incorporating the
variability in the parameter vectorui: P(D |Mi)5 ò P(D |ui,
Mi) p(ui |Mi)dui, where p(ui |Mi) is the prior density. The
choice of an adequate prior density is often a delicate
matter that is left to the better judgment of the re-
searcher. The BIC is much easier to compute than BMS,
and it does not require the researcher to determine prior
densities for the parameters. In contrast to the AIC, the
BIC is consistent as n®` and does take parameter un-
certainty into account.

A comparison of BIC (Equation 5) and AIC (Equa-
tion 1) shows that the BIC penalty term is larger than the
AIC penalty term when n . e2. Although the equations
of AIC and BIC look very similar, they originate from
quite different frameworks. The BIC assumes that the
true generation model is in the set of candidate models,

BICi i iL V n= - +2 log log ,

w w
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and it measures the degree of belief that a certain model
is the true data-generating model. The AIC does not as-
sume that any of the candidate models is necessarily
true, but rather calculates for each model the Kullback–
Leibler discrepancy, which is a measure of distance be-
tween the probability density generated by the model
and reality. The merits and debits of AIC and BIC have
been discussed elsewhere (cf. Burnham & Anderson,
2002, pp. 293–305, for a pro-AIC account, and Kass &
Raftery, 1995, for a pro-BIC account). A formal com-
parison in terms of performance between AIC and BIC
is very difficult, particularly because AIC and BIC ad-
dress different questions. Most simulations that show
BIC to perform better than AIC assume that the true
model is in the candidate set and that it is relatively low
dimensional. In contrast, most simulations that favor AIC
over BIC assume that reality is infinitelydimensional,and
hence the true model is not in the candidate set.

Just as raw AIC values may be converted to Akaike
weights, a well-known procedure exists for transform-
ing raw BIC values to BIC model weights (or “Schwarz
weights”). Schwarz weights can be obtained by replac-
ing the AIC values in Equation 4 by BIC values (cf.
Buckland, Burnham, & Augustin, 1997; Burnham &
Anderson, 2002, p. 297; Hastie et al., 2001, p. 207). The
evidence ratio for model i over model j can also be cal-
culated directly by

For our hypothetical data set, we set the sample size n to
a reasonable value of 240, and we calculated the Schwarz
weight for each model (Table 1, last column). As can be
seen from a comparison of the Schwarz weights and the
Akaike weights, the BIC favors simple models (i.e.,
those with fewer parameters) to a greater extent than
does the AIC. Note that in contrast to the AIC, the BIC
prefers Model A1 over the more complex Model A2.
Both the Akaike weights and the Schwarz weights, how-
ever, prefer Model A over Model B. According to the
Schwarz weights, Model A (i.e., both A1 and A2) is

more likely than Model B (normalized probability .95).3

Conclusion
Akaike weights are easy to compute from the raw AIC

values and provide a straightforward interpretationas the
probabilities of each model’s being the best model in an
AIC sense (i.e., the model that has the smallest Kullback–
Leibler distance, given the data and the set of candidate
models). The use of Akaike weights gives the reader
greater insight into the relative merits of the competing
models. In addition, Akaike weights quantify conclu-
sions based on AIC analyses by specifying the amount
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of statistical confidence for the model with the lowest
AIC value.4 Given these considerable advantages,we be-
lieve that it is in many circumstances very useful to sup-
plement the standard results of AIC model comparison
analysis with presentation of Akaike weights.
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NOTES

1. For recent discussions on the AIC and alternative model selection
methods (which may be preferable to the AIC under certain circum-
stances, see Myung & Pitt, 1997), the interested reader is referred to
the special issue of the Journal of Mathematical Psychology (Myung
et al., 2000) on Model Selection.

2. The same Akaike weights are obtained from Equation 4 regard-
less of whether the raw AIC values or the AIC differences are used.
The use of differences is encouraged because these are easier to un-
derstand in a table and because use of raw AIC values can result in ex-
treme values when the exponential scaling is applied.

3. We should like to point out that a recently developed Bayesian
model selection method, the deviance information criterion or DIC
(Spiegelhalter, Best, Carlin, & van der Linde, 2002) is approximately
equivalent to the AIC when the impact of prior information is negligi-
ble.

4. Akaike weights find further application in model-based param-
eter averaging (e.g., Buckland et al., 1997) and a Bayesian extension
of the AIC procedure using priors (e.g., Akaike, 1979, 1983). A dis-
cussion of these issues is beyond the scope of this note.
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