
1 

AiCNNs (Artificially-integrated Convolutional Neural 
Networks) for Brain Tumor Prediction 

Ansh Mittal
1
, Deepika Kumar

2,*
 

1,2
Bharati Vidyapeeth’s College of Engineering, New Delhi, India 

Abstract 

INTRODUCTION: Accurate analysis of brain MRI images is vital for diagnosing brain tumor in its nascent stages. 

Automated classification of brain tumor is an important step for accurate diagnosis. 

OBJECTIVES: This paper propose a model named Artificially-integrated Convolutional Neural Networks (AiCNNs) that 

accurately classifies brain MRI scans to 3 classes of brain tumor and negative diagnosis results. 

METHODS: AiCNNs model integrates 5 already trained models including simple convolutional neural networks (one uses 

a simple CNN while the other utilizes data augmentation) and three pre-trained networks whose weights are transferred 

from ImageNet dataset. 

RESULTS: AiCNNs model was trained on 3501 augmented T1-weighted contrast enhanced MRI (CE-MRI) brain images. 

Validation results of 99.49% (loss=0.0303) had been achieved by AiCNNs on a set of 1167 images, which outperform its 

contemporaries which have got results upto 97.81% (loss=0.1794) and 97.79% (loss=0.1787). 

CONCLUSION: AiCNNs has been shown to obtained a test accuracy of 98.89 % on a set of 1167 images. 
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1. Introduction

The brain is the central nervous system of the body, and is 

responsible for all activities originating in, or from the body. 

When abnormal cells start forming within the brain, it leads 

to the condition known as a Brain Tumor. A tumor in this 

organ can be extremely threatening to anyone’s life. Among 

these, there can be of two types either cancerous or non-

cancerous (i.e. Malignant or Benign) [1]. Brain Tumors can 

further be divided into primary and secondary tumors. The 

primary brain tumors start within the brain while secondary 

brain tumors spread to the brain from somewhere else. The 

secondary brain tumors are one of the most complicated 

neurological cancers [2]. The symptoms for brain tumor 

may range from severe headaches and seizures to problems 

with vision and mental changes, depending on different 

parts of the body [3]. Nowadays, diagnosing brain tumors 

just on the basis of the given symptoms has become an 

arduous task. Even with the advent of CT (i.e. computed 

tomography) and MRI (i.e. magnetic resonance imaging) the 

amount of data that has to be analysed for detection, has 

increased. So, many mathematical and image processing 

techniques have been proposed to counter the 

aforementioned problem. These algorithms work mostly on 

T1, T1-weighted, T2, FLAIR MRI scans and CT scans and 

may not be that accurate to detect or classify brain tumors 

[4]. An image of a brain tumor in a T1-weighted CE-MRI 

brain image has been depicted in Figure 1.  

Figure 1. T1 Contrast-Enhanced MRI (CE-MRI) image 
depicting meningioma brain tumor (marked by arrow). 
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The discipline of Machine Learning has been 

proliferating in several domains while getting optimum 

results. These include disciplines such as Economics (for 

crisis detection [5]), Zoology (for animal migration) [6], 

psychology and psychiatry [7-8], Astronomy (for orbit 

transfers) [9], and even for Disaster Management (for robot 

that monitors and prevents disasters) [10]. Some other 

contributions of Machine learning also include handwritten 

character recognition [11], predicting chemical reactions 

[12], and stock price prediction [13]. Apart from this, 

Machine Learning has also been able to obtain significant 

results in domain of medicine. The discipline of Machine 

Learning has seen a rise in fields such as breast cancer, 

diabetes, heart cancer, skin cancer, and even psychological 

disorders [14-23]. There were attempts to create a 

framework for healthcare using Big Data and Machine 

Learning techniques [24]. The need for brain tumor 

classification as mentioned above hence led to many 

advances in mathematics and machine learning techniques 

being employed involving brain tumor area retrieval from 

images [25] and classification of brain tumors [26-28]. 

Hence, many other ANN models and transfer learned CN 

models have been proposed for the discipline of brain tumor 

classification such as [29- 31].  

This research’s contribution has been four-fold which 

have been summarized as follows.  
1. A dataset having T1-weighted contrast-enhanced

MRI (CEI-MRI) images of 3 types (i.e. Glioma,

Meningioma, and Pituitary) of brain tumors

samples which were previously MatLab data files,

has been prepared as a set of image files (.jpg)

while also augmenting some Negative brain tumor

results.

2. A comparative analysis of machine learning

algorithms has been conducted in Table 1. This

analysis tells us that among the commonly used

classifiers, the Random Forest classifier which is an

ensemble of decision trees provides one of the best

accuracies.

3. A brief comparison of 8 deep learning models (of

which some are commonly used) has been done in

Table 2 Section 3. Some trends have been analysed

in the text ensuing the table.

4. AiCNNs model has been trained using 5 pre-

trained models whose weights were loaded. It is a

model that is formed due to integrated level-0 sub-

models that are passed through a level-1 meta-

model which is essentially an Artificial Neural

Network. AiCNNs has been made robust to

overfitting due to one model which uses data

augmentation.

The rest of the paper is organized as follows. In section 2, 

the works related to the AiCNNs model have been studied. 

These are then used for comparison analysis in section 3 

which compares the performance of state-of-the-art 

algorithms and most conventional algorithms after 

extracting global features from the image dataset. Section 4 

delineates the proposed AiCNNs model in detail along with 

the dataset used and augmentations done. Section 5 enlists 

the results that were obtained when the AiCNNs model had 

been trained and these results were compared in a table to 

some common deep learning models. Finally, the research is 

concluded by stating some inferences derived from Table 3 

about the AiCNNs model and outlines a possible future 

scope.  

2. Related Work

The earliest works in MRI image evaluation, processing,

and classification date back to November 1999 [32]. This 

research essentially made it possible for MRI simulators to 

efficiently create 3D brain images. MRI scans had been used 

in medical imaging for a while then, from their advent in 

1971 by Paul Lauterbur [33]. Research like [34] provided a 

direction of machine learning algorithms in the discipline of 

medicine. It briefly discussed the significance of decision 

trees, neural networks, and Naive Bayes classifier and hence 

became a trailblazer in the aforementioned domains. Later in 

2003, Fatemizadeh proposed MGNG (modified neural-gas) 

algorithm for automated landmark extraction. This was a 

neural network-based unsupervised algorithm that split and 

then merged SOMs (Self Organizing Maps) [35] which were 

used for CT-scans. In 2006, Shang used Principal 

Component Analysis (PCA) and neural networks to register 

several computed tomography (CT) and magnetic resonance 

(MR) brain images automatically. This was done using the 

first finding principal directions using both the algorithms 

aforementioned. 

In 2009, revolutionary research [36] shaped the 

application of machine learning in the discipline of Brain 

Tumor. It used pattern classification to differentiate between 

gliomas and metastases while determining the stages of 

gliomas in Brain MRI scans. It used many steps for 

classification such as region-of-interest (ROI) (which is 

essentially the ratio of the area of the intersection to the area 

of the union), feature extraction and feature selection. The 

classification was done using support vector machines in the 

support of 102 images. The results for accuracy were found 

out to be 85 % for binary classification of metastasis and 

gliomas. Here, only 4 images of meningiomas were found. 

But this model performed badly as has been discussed later. 

The research aimed at the classification of meningioma 

tumors was conducted in 2010. It used optimum channel 

amongst RGB color channels for histopathological images 

for optimum texture combinations. The texture features 

were extracted using 4 feature extractors amongst which 2 

were model-based and 2 were statistics-based. These 

features had then been fused together in different 

combinations while excluding the correlated features to 

reduce redundancy and in turn avoiding the model from 

overfitting. Then a Bayesian classifier classified the images 

if they represented meningiomas tumor or not. Finally, a 

model-based Gaussian Markov field and a statistics-based 

run-length matrix texture were used to obtain an accuracy 

of 92.50 % [37]. Benign and Malignant Brain tumors or 

normal and abnormal images had been classified by El-
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Dahshan et al [38]. Although they used just 101 images, 

they had been able to achieve a train and test accuracy of 

99% on this set. Their approach utilized feedback pulse-

coupled neural networks, discrete wavelet transforms, 

principal component analysis, and feed-forward back-

propagation neural network for image segmentation, feature 

extraction, minimizing the dimensions of coefficients of 

wavelets and final classification, respectively. Later, SVM 

based approach for medical diagnosis and automated tumor 

detection was introduced [39]. This approach had been 

developed, keeping in mind that large volumes of MR 

images that couldn’t be inspected by manual intervention. 

An anisotropic filter had been used here as a means of pre-

processing. The connected component pixels and edge 

segmentation had been used together for image 

segmentation tasks. Further, feature extraction was 

conducted using global histogram features while SVR 

algorithm analysed and extracted these features to give ~95 

% accuracy whereas feedforward backpropagation neural 

network (BPNN), gradient descent (GD) and levenberg-

marquardt (LM) got an accuracy of ~93.15 % on average, 

92.21 %, and 94.14 %, respectively. In 2015, Yan Xu et al 

[40] proposed a deep convolutional activation feature 
(CNNs) model for classification and segmentation for 
MICCAI 2014 brain tumor digital pathology challenge. The 
proposed model transferred the features from the ImageNet 
dataset to get 97.5 % classification accuracy and 84 %

segmentation accuracy. Later, Jun Cheng et al [41] 
performed brain tumor classification using ROI (as 
described in [36]) on 3 classes (i.e. meningioma, glioma, 
and pituitary brain tumors). This was performed on the 
dataset that this model is trained on. They initiated their 
work by augmenting the region of the tumor with image 
dilation which was used as ROI instead of the original tumor 
region. They then split the tumor region into concentric 
ring-form sub-regions. Three feature extraction methods had 
been used - intensity histogram, bag-of-words (BoW) and 
gray level co-occurrence matrix which gave them an 
accuracy of 87.54 %, 89.72 %, and 91.28 %. These work 
will hold vital significance to our research as would be seen 
in section 3 and later on when the results would be 
discussed.

Authors proposed deep convolutional neural networks 

with significant dropouts, leaky rectified linear units, and 

small kernels for convolutions for the 2015 Multimodal 

Brain Tumor Segmentation (BraTS) [42]. They aimed at 

distinguishing LGG (Low-Grade Gliomas) against HGG 

(High-Grade Gliomas). In [43], Jocelyn Barker et al. 

introduced a method to overcome inefficiencies in 

computerized analysis of whole slide pathology and mislead 

diagnosis algorithms (happening due to diverse tissue 

regions in whole slide). This has been done using analysing 

regions that were coarse in slide images, then extracting 

localized features of the tiled region of the slide images, and 

then reducing their dimensions, they achieved an accuracy 

of 93.1% on binary classification among gliomas and 

glioblastoma multiforme. Later, Liya Zhao [44] introduced a 

multiscale CNN for the BraTS challenge that was designed 

to combine information from different sizes of the region 

around the ROI. This model had also combined features 

from T1, T1- enhanced, T2 and FLAIR MRI images and it 

achieved an accuracy of about 90 % or 0.9. The research 

done in [45-49] should be referred for a detailed analysis of 

other segmentation-related research which utilized deep 

learning models. Kaur B et al. proposed a Beaming Edge 

SAlient (BE-SAL) approach for the segmentation of images 

[50]. In 2017, R. Anjali and S. Priya [51] proposed a model 

having different stages such as image pre-processing (or 

noise removal), enhancing texture features, feature 

segmentation, feature selection, and classification. They 

utilized a hybrid of CART (Classification and Regression 

Trees) and an ensemble of SVM (Support Vector Machine) 

for classifying if an MRI scan has a tumor or not. This 

hybrid achieved an accuracy of 92.31 %. Later, Ali Ari and 

Davut Hanbay [52] proposed a model having 3 stages. The 

first stage cleaned the data of noise, while, in the second 

stage cranial MRI were classified using extreme learning 

machine local receptive fields (ELM-LRF), as benign and 

malignant. Later, segmentation of the tumors was done. 

3. Methodology

Various Machine learning algorithms have been used for 

Brain tumor classification as had been studied in [53] (that 

used Random Forest Approach) which gave an accuracy of 

79.67 %, [54] (which used Support Vector Classification) 

which resulted in an accuracy of 94 %, and [55] (which used 

Naïve Bayes) that had a detection rate of upto 90.63 %. 

These algorithms were tested on a different dataset which 

consisted of only 50 brain MRI scans. A comparative 

analysis of all the existing machine learning algorithms has 

been done in this section for brain tumor classification for 

the dataset that we used. It has been done for comparing 

accuracies that utilized dataset combined using 2 different 

datasets. The first dataset used here is a combination of three 

types of tumors, namely Glioma, Meningioma, and Pituitary 

[56]. A fourth class depicting negative results has also been 

augmented to the dataset from [57]. Figure 2 represent a 

sample of 5 instances from each class discussed above.  
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Figure 2. Sample of T1 Contrast-Enhanced MRI (CE-
MRI) class images. 

Then Global features from datasets such as Moments, 

Haralick Texture Features and color histograms have been 

extracted from it. A comparative analysis of various 

machine learning algorithms like Logistic Regression, LDA, 

K-nearest neighbours, Classification and Regression Trees

(CART), Random Forest, Gaussian Naive Bayes and

Support Vector Machine (SVM) have been done and results

for the same have been depicted in Table 1. The aim of

doing this had been to determine which algorithm performed

well on the aforementioned dataset.

Table 1. Comparative Analysis of various machine 
learning algorithms 

ALGORITHMS USED
MEAN 

ACCURACY 

ACHIEVED

LOGISTIC REGRESSION 63.56 % ( ± 1.41 %)

LDA 73.84 % ( ± 1.02 %)

K-NEAREST
NEIGHBOURS

61.23 % ( ± 1.80 %)

CLASSIFICATION & 

REGRESSION TREES
78.41 % ( ± 1  %)

RANDOM FOREST 

CLASSIFIER
85.31 % ( ± 0.77 %)

GAUSSIAN NAÏVE BAYES 57.20 % ( ± 1.93 %)

SUPPORT VECTOR 

CLASSIFICATION
48.91 % ( ± 1.66 %)

A further extrapolation of Table 1 has been done in figure 

3 given below. It shows that the Random Forest Classifier 

has achieved maximum accuracy of up to ~86.08%. On the 

other hand, SVC (or Support Vector Classification) got a 

maximum accuracy of 50.57 %, which has just been a little 

over a simple random classifier which may give an accuracy 

of 50 %. Figure 3 represents a comparative analysis of 

algorithms using the Box Plot which depicts the maximum 

and the minimum accuracy that they had achieved. 

Figure 3. Comparative Analysis (using Boxplot) of 
different machine learning algorithms for classification. 

This analysis leads to the conclusion that instead of using 

global features, a better classification can be done using the 

pixel values of MRI scans of the brain. Hence, deep 

learning-based approach utilizing data augmentation and 

simple convolutions had been used to classify tumors. The 

algorithms comprise of CNNs, different transfer learning 

methods like VGG16, VGG19, Xception, VGG19 (with 

ELU). The results for the same are shown in Table 2. 

Table 2. Comparative Analysis of different CNN 
models. 

MODEL 
NAME 

CNN 
ALGORITHMS 

DA 
USED 

TRAIN 
(acctrain) 

VALIDATION 
(accvalidation) 

TEST 
(acctest) 

MODEL 
(1) 

SIMPLE CNN  97.00 % 94.00 % 92.63 % 

MODEL 
(2) 

SIMPLE CNN  90.02 % 94.09 % 94.60 % 

MODEL 
(3) 

VGG16  86.62 % 91.95 % 89.97 % 

MODEL 
(4) 

VGG19  81.74 % 91.26 % 88.95 % 

MODEL 
(5) 

XCEPTION  99.03 % 68.55 % 66.32 % 

MODEL 
(6) 

VGG19 (WITH 
ELU) 

 97.29 % 94.26 % 97.43 % 

MODEL 
(7) 

VGG16  99.52 % 97.79 % 97.43 % 

MODEL 
(8) 

VGG19  99.64 % 97.81 % 97.51 % 

This analysis suggests that most of the models that were 

trained had been subjected to overfitting of some kind, 

except those that used data augmentation (that can be 

referred from “DA used” column). But, the models that had 

used data augmentation have given a low accuracy. Hence, 
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an inference can be derived from Table 2 that the models 

with data augmentation suffer from low accuracy while 

avoiding overfitting. Examples of this can be seen in the 

case of simple CNN, VGG16 or VGG19 which obtain a 

training accuracy of 90.02 %, 86.62 %, and 81.74 %, while a 

validation and test accuracy of 94.09 % and 94.60 %, 91.95 

% and 89.97 % and 91.26 % and 88.95 % had been achieved 

for these models respectively. On the other hand, all other 

models have been shown to suffer from overfitting while 

they usually achieve high training accuracy. The best 

example of this can be seen in the case of the Xception 

transfer-learned model which achieves a training accuracy 

of 99.03 %, validation accuracy of 68.55 % and test 

accuracy of 66.32 %. We observe that model (6) has been an 

exception to the rule (acctrain > accvalidation > acctest) among the 

models not using data augmentation. It may be due to the 

exponential linear unit (or elu) activation function 

(described later in eq. (5) and figure 7(e)). A final 

comparison of all these algorithms has been done with the 

AiCNNs (whose framework has been proposed in the next 

section) in Section 5. 

4. Proposed Methodology

4.1 Dataset Description 

The dataset consists of 3064 T1-weighted contrast-enhanced 
MRI (CEI-MRI) images of 3 types (i.e. Glioma, 
Meningioma, and Pituitary) of brain tumor samples. The 
images were in MatLab data file format (.mat) which had to 
be converted to Image File format (.jpg) This had been done 

using the steps mentioned below. 

Step i. The Matlab data files had been read through h5py 

[58] object.

Step ii. That object had been used to get its Image array 

file.  

Step iii. The Image array file had been converted to a 

NumPy [59] array. 

Step iv. Label had been extracted to a Label object from 

cjdata/label.  

Step v. Label object had been used to check the type of 

tumor and save it to Meningioma, Glioma or 

Pituitary folders using SciPy [60] (i.e. 

misc.imsave() function) 

The second dataset consisted of 266 Brain MRI images in 

(.jpg) format. The negative folder contained about 111 

images while the positive contained 155 images [57]. A 

brief summary of images taken for each tumor has been 

described below along with a class distribution in Figure 4. 

A set of 802 images for Meningioma Brain Tumor had been 

extracted from the dataset and placed under the class of 

Meningioma. A set of 1486 images for Glioma Brain Tumor 

has been extracted from the dataset and placed under the 

class of Meningioma. A set of 936 images for Pituitary 

Brain tumors had been extracted and placed under the 

Pituitary class. Finally, a set of 111 images for Negative 

tumors has been extracted from the dataset. 

Figure 4. Initial Class Distribution of Brain Tumor 
Images 

4.2 Data Augmentation 

To overcome imbalances in the datasets of images, an 

augmenter module had been implemented. The number of 

image files in the dataset had been artificially increased by 

using transformations which didn’t change the vectors of 

pixel intensities for specific classes that the images belonged 

to. Each image had been transformed according to the steps 

mentioned below. 

Step i. PIL (or Python Imaging Library) [61] had been 

used to open the files in the class folders and saved 

as PNG files (as JPG format doesn’t support RGBA 

channels while PNG does) 

Step ii. A pipeline object had been defined using 

Augmentor [62] which conducted the following 

augmentations to the images. 

a. Rotation: rotating an image with 0.9 probability with

maximum left rotation as 10° and maximum right

rotation as 15°.

b. Flipping: flipping of image horizontally and

vertically with a probability of 0.5 and 0.5,

respectively.

c. Resize: resizing at a probability of 35% to 512×512.

Step iii. This had been done till the following number of 

images had been obtained. 

a. 1402 images for Meningioma Brain Tumor (after

adding 600 images from augmentor module);

b. 1486 original images for Glioma Tumor;

c. 1536 images for Pituitary Brain Tumor (after adding

600 images from augmentor module); and

d. 1411 images for Negative (after adding 1300 images

from augmentor module).

The class distribution for different classes (as have been 

mentioned in figure 4) after passing the images through 

augmentor pipeline has been depicted in figure 5, given 

below. The total no. of images after data augmentation had 

been 5835 whose class distribution has been 

aforementioned. In addition to artificially increase the size 

of the data set, data augmentation can make the resulting 
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model more invariant to rotation, reflection, translation, and 

small noise in the pixel values. After this, each image has 

been resized to 250×250 pixel which has then been given as 

an input to the input layers Conv2d_16_input, 

Conv2d_24_input, xception_input, vgg16_input and vgg_19 

input of models (1), (2), (5), (7) and (8) from Table 2, 

respectively.  

Figure 5. Uniform Class Distribution of Brain Tumor 
Images after dataset has been pipelined to the 

Augmentor module.  

4.3 Dropouts 

To reduce overfitting of the individual models (1-8), 

regularization technique called dropout had been employed 

at the fully connected layers, after three input layers, as can 

be seen from figure 6. Dropout had been set to 0.25 for most 

of the models, which depicts that the weights of the one-

quarter of the neurons are randomly set to zero while 

remaining give their original inputs multiplied by the 

weights. This ensures that the neurons in convolution 

functions and ANN layers are mostly independent of each 

other, in the same layer in which they are introduce.  

4.4 One hot encoding 

It’s important to mention that encoding of the brain tumor as 

0 for negative, 1 for Meningioma, 2 for Glioma and 3 for 

Pituitary Brain Tumor has been done using one-hot 

encoding. This can be depicted as below:  

[1., 0., 0., 0.] = 0 for Negative; 
[0., 1., 0., 0.] = 1 for Meningioma Brain Tumor; 
[0., 0., 1., 0.] = 2 for Glioma Brain Tumor; and 
[0., 0., 0., 1.] = 3 for Pituitary Brain Tumor 

4.5 Model Architecture 

The final architecture for AiCNNs has been shown in Figure 

8. AiCNNs has utilized models (1), (2), (5), (7), (8) from

Table 2 which are described below along with Figures 6(a-

e). These models are cascaded and concatenated together as

an input to the Artificial Neural Network layer of AiCNNs

The kernel size taken has been 3×3, uniformly with an input

image size of 250×250 and batch size of 32. Figures 6 and 8

have been generated using Matplotlib [63] and Keras [64].
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(a) (b) 
Figure 6(a) The Architecture of model (1) of AiCNNs from Table 2. This is a normal CNN model that doesn’t utilize 
Data Augmentation. (b) The Architecture of model (2) of AiCNNs from Table 2. This is a normal CNN model that 

utilize Data Augmentation. 

Model (1) has been depicted in figure 6(a). This model 

has its first convolutional layer (i.e. Conv2d_16) as an input 

with a kernel size of (3,3), along with tanh(s) (or hyperbolic 

tangent) (as per equation (1)) as an activation function for 

introducing non-linearity. The equation for the hyperbolic 

tangent activation function as used in [65] has been given 

below in equation (1). 

(1) 

where s is considered as the output values of pixels from the 

previous layer of the Convolutional Neural Network for 

individual images. This function creates a S-shaped curve 

(as shown in figure 7(a)) due to its exponential (i.e. e
s
 or e

-s
) 

terms. This is because the function defined above 

asymptotes at -1 and +1 as the value of s increases or 

decreases, respectively. This further helps map negative 

inputs to be strongly negative while zero inputs to be 

mapped near zero. Furthermore, this function is 

differentiable, monotonic, while its derivative is non-

monotonic. Here, this function plays an integral role to 
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classify the images into positive and negative classes of 

brain tumor. 

The layer (discussed earlier i.e. Conv2d_16) gives 16 

feature maps in all. In the second convolutional layer (i.e. 

Conv2d_17), the same kernel size has been used and it gives 

32 feature maps of 125×125 when it's passed through the 

leaky rectified linear unit as an activation function. The 

equations for Leaky Rectified Linear Unit (LReLU) 

activation function [66] has been described by the equation 

(2) given below.

(2) 

where α had been kept at a value of 0.08 for optimality 
purposes. This function is used to augment to the range of 

the ReLU function (discussed for next layer). This function 

is used to counter the dying ReLU problem in which the 

model becomes unfit to be trained on the data due to loss of 

important features in negative pixels. It and its derivative are 

both monotonic in nature.  

Subsequently, the first max-pooling layer (i.e. 

max_poolingd_16) of 2×2 kernel has been utilized to get 32 

feature maps, each of 62×62 pixels. Then, a dropout of 0.25 

(in dropout_20) i.e. 25 % (i.e. 25% values are randomly set 

to zero). Similarly, the third convolutional layer (i.e. 

conv2d_18) gives 64 feature maps with 31×31 pixels each 

and second max-pooling layer (i.e. max_pooling2d_17) of 

2×2 kernel size has been utilized to get 64 feature maps with 

15×15 pixels. The convolutional layer described here 

utilizes a ReLU (i.e. Rectified Linear Unit) activation 

function. The equation for the ReLU activation function has 

been described in equation (3) given below. 

(3) 

As can be seen ReLU, has been used to introduce 

nonlinearity in the form of half rectified (from bottom). 

ReLU gives a zero output for any value of vectors that is 

less than 0, while it behaves as an identity function for any 

vector values that is equal to 0 or greater than 0. It and its 

derivatives both are monotonic function. Despite this fact, 

the fact that all negative values become 0, reduce its 

functionality for the models to train from data. Hence, here 

it has been used in conjunction with other activation 

functions. 

Further, a dropout of 0.25 has been introduced after this 

layer again (in dropout_21). Another convolutional-

maxpool-dropout block (conv2d_19, max_poolingd_18, 

dropout_22, respectively) with the same configuration as the 

previous block has been utilized to obtain 128 feature maps 

of 4×4 pixels each. These are then flattened (in flatten_5) to 

get 2048 values which are passed through a fully connected 

layer of 128 neurons (in dense_9). The last dropout of 0.25 

has been introduced in this model which has then been 

passed through a fully connected or dense layer (dense_10) 

to get the output as per one hot encoding defined earlier 

using softmax function. The equation for softmax activation 

function which has been mathematically described in 

equation (4). 

(4) 

where i = 1, 2…, K and z = (z1, z2…, zK) ∈ ℝk
. The main 

reason to use softmax function is because it gives a 

probability for each class in multiclass-classification. This 

probability is calculated using equation described above; 

where value for specific neuron in the last layers is used as 

numerator and the sum of all the values in neurons of the 

last layer is added to get denominator. This provides a 

probability for image to be classified as a class when a 

corresponding neuron (hence, it corresponds to that specific 

class) has the highest value. This function is monotonic and 

differentiable but its derivative is not monotonic. 

Model (2) introduced using figure 6(b) has the same 

layout as that of model (1) except that it utilizes Keras [64] 

API’s ImageDataGenerator which has a shear range, width 

shift range, height shift range, and a zoom range of 0.1 and a 

rotation range of 20°. It horizontally flips the image as well. 

Due to the aforementioned augmentations, test and 

validation images had been rescaled as well. Figure 6 (c – e) 

are the transfer learning models (corresponding to model 

(5), (7) and (8)) that have been utilized in the AiCNNs 

model. They have briefly been described below.  

The model (5) has been depicted in Figure 6(c). Here, the 

xception model [67] has been loaded from keras.application 

package with model pre-trained on the ImageNet dataset 

[68-69]. Now, the weights obtained from Xception 

(xception_input in figure 8) for this dataset (2048 feature 

maps of 8×8) have been flattened (flatten_11) to get 131072 

features which are then passed through a fully connected or 

dense layer (dense_32) of 128 neurons through a dropout of 

0.25 (in dropout_22). This configuration of the dense-

dropout layer has been repeated again (as dense_33 and 

dropout_23, respectively). This model only utilizes rectified 

linear unit (eq. (3)) as its activation function in 2 blocks 

mentioned before. Finally, the output from 64 neurons has 

been passed through the final fully connected layer (i.e. 

dense_34) by a softmax activation function (eq. (4)).  
The model (7) has been depicted in Figure 6(d). Here, the 

VGG16 model has been loaded from keras.application 

package with model pre-trained on the ImageNet dataset. 

The weights obtained from VGG16 (vgg16_input in figure 

8) for this dataset (512 feature maps of 7×7) have been

flattened (flatten_9) to get 25088 features which are then

passed through a fully connected or dense layer (dense_25)

of 128 neurons through a dropout of 0.4 (in dropout_16).

This model only utilizes a rectified linear unit (eq. (3)) as its

activation function in the block mentioned earlier. Finally,

the output from 128 neurons has been passed through the

final fully connected layer (i.e. dense_26) by a softmax

activation function (eq. (4)).
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(c) (d) (e) 

Figure 6(c) The Architecture of model (5) of AiCNNs (i.e. Artificially integrated Convolution Neural Networks) 
from Table 2. This is a transfer-learned Xception model. (d) The Architecture of model (7) of AiCNNs (i.e. 

Artificially integrated Convolution Neural Networks) from Table 2. This is a transfer-learned VGG16 model. (e) 
The Architecture of model (8) of AiCNNs (i.e. Artificially integrated Convolution Neural Networks) from Table 2. 
This is a transfer-learned VGG19 model. None of these models use data augmentation as it tends to increase 

the overfitting which will be discussed later. 

The model (8) has been depicted in Figure 6(e). Here, the 

vgg19 model has been loaded from keras.application 

package with model pre-trained on the ImageNet dataset. 

The weights that are obtained from VGG19 model 

(vgg19_input in figure 8) for this dataset (512 feature maps 

of 7×7) have to be flattened (flatten_11) to get 25088 

features which are then passed through a fully connected or 

dense layer (dense_29) of 256 neurons through a dropout of 

0.25 (in dropout_18). This configuration of the dense-

dropout layer has been repeated again (as dense_30 and 

dropout_19, respectively). This model only utilizes a 

rectified linear unit (eq. (3)) as its activation function in 2 

blocks mentioned before. Finally, the output from 64 

neurons has been passed through the final fully connected 

layer (i.e. dense_31) by a softmax activation function (eq. 

(4)).  

Finally, the model (6) utilized the exponential linear unit 

(ELU) as an activation function in all its dense layers, the 

formula for which has been described in equation (3). 

(5) 

where α had been kept at a value of 1 as per Keras [64] 

documentation of Tensorflow. ELU is very similar to ReLU 

and it slowly smoothens until its output equals -α whereas 
ReLU smoothens sharply. Finally, ELU tends to account for 

negative results and hence can be comparatively better than 

ReLU. Its monotonic and differentiable.  

The graphs for all 5 of the activation functions that have 

been mentioned from eq. (1) – (5) have been given below in 

figure 7(a)-(e), respectively.
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(a) (b) 

(c) (d) 

(e) 

Figure 7(a). A representation of hyperbolic tangent activation function; (b).  Leaky Rectified Linear Unit activation 
function; (c). A representation of Exponential Linear Unit activation function; (d). A representation of Rectified 

Linear Unit activation function; and (e). A representation of Softmax function. 
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Figure 8. The Architecture of AiCNNs which is cascade of 5 classifiers (models (1), (2), (5), (7), (8)) from Table 2. 

Now, the AiCNNs model has been depicted in figure 8 

and has been cascaded and concatenated from models (1), 

(2), (5), (7) and (8) of Table 2. Here, all the 5 models 

discussed above had been loaded using the load_model() 

function of keras.models package. The inputs that had been 

fed to all models remained the same except that of the model 

(2) whose inputs had been scaled by a factor of 255.0 to

normalize the pixel values around 1. The outputs of these

models had then been concatenated together using

concatenate() function of keras.layers.merge package. This

concatenated layer of outputs had been passed through 2

hidden layers, first having 32 hidden layer neurons

(dense_1), and the second having 16 hidden layer neurons

(dense_2). Both these hidden layers used ReLU (eq. (3))

activation layer. Finally, the output layer has 4 output layer

neurons corresponding to the 4 classes discussed earlier.

This model also calculates categorical cross-entropy loss

with AdaDelta optimizer. The complete architecture of the

AiCNNs model has been depicted in Figure 8. AiCNNs

have been inspired by the integrated stacking model [70]

which utilizes a similar cascade of classifiers where ANN 

layer is used as a meta-learner model or level 1 learner (or 

model) while CNNs are used as sub-models or level 0 

learners (or models).  

5. Results & Analysis

Initially, the 5 models (i.e. model (1), model (2), model (5), 

model (7), and model (8) of Table 2) have been trained on 

the same dataset, with only model (2) taking the input as 

scaled values (on 255.0 for proper normalization). These 

were trained on 3501 images, validated on 1167 images and 

tested on 1167 images. The training curve for these models 

has been given below. A detailed comparison of these 

models along with models (3), (4), and (6) has been done in 

Table 3 while their training history has been depicted in 

figure 9 (a – e) and figure 10 (a – e), which respectively 

represent their training history for model accuracy and 

model loss. 
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(a) (a) 

(b) (b) 

(c) (c) 

(d) (d) 

(e) (e) 
Figure 9 (a) – (e). History of Validation (in orange) & 

Training Accuracy (in blue) during the training of models 
(1), (2), (5), (7) and (8), resp. for the classification of 

MRI scans. 

Figure 10 (a) – (e). History of Validation (in orange) & 
Training Loss (in blue) during the training of models 
(1), (2), (5), (7) and (8), resp. for the classification of 

MRI scans. 
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The model had been run on 100 epochs with batch size 

32. This resulted in a training accuracy of 99.20% and

training loss (categorical cross-entropy) of 0.0306. While

the validation and testing accuracy had considerably been

reduced to approximately 99.486 % and 98.886 %

respectively. Also, the validation loss (categorical cross-

entropy) for the model has been noted to be 0.0303 which

depicts that this model doesn’t overfit the dataset that had 

been taken. 
AiCNNs had been trained on a set of 3501 images, 

validated on a set of 1167 images and tested on a set of 1167 

images. The curves for validation and training history has 

been displayed in figure 11 and figure 12. These curves 

represent the history of training of the AiCNNs (not 

including the 5 models that have been trained earlier). 

Figure 11. Validation (in orange) & Training Accuracy (in 
blue) during the training of AiCNNs for the classification 

of MRI scans. 

Figure 12: Validation (in orange) & Training Loss (in 
blue) during the training of AiCNNs for classification of 

MRI scans. 
The confusion matrix for all the models whose training 

history has been mentioned earlier in figure 9 (a – e) and 

figure 10 (a – e), has been given in figure 13 (a – e). We can 

observe that the simple CNN model (1) inaccurately 

classifies 14 instances of Meningioma brain tumor as 

negative, 1 instance of Glioma and 3 instances of Pituitary 

brain tumor as Negative. On the other hand, the model (2) 

which utilizes data augmentation has misclassified only 8 

instances of brain tumors as negative which had been a 

much more desirable result as compared to the earlier 

models. All these wrongly classified instances are known as 

False Negatives (FNs). In real-world scenarios, less false 

negatives are requirement for a medical system, as a system 

detecting FNs may give a negative result to those suffering 

from brain tumor, which can prove fatal. 

Model (5), whose confusion matrix has been plotted 

alongside model (1-2) (7-8), performs the worst out of the 5 

models. This has been subjected to its low accuracy and 

high overfitting of the data to the model. This model also 

has a low validation accuracy and loss as can be seen in 

figure 9(c) and figure 10(c). The value and performance of 

model (7) and (8) in real-life scenario lies in-between model 

(1) and (2) as these classify 9 and 11 MRI (20 in total) scans

as FNs. So, these confusion matrices have been used for

cross-checking the previous test accuracies (acctest) that had

been described in Table 2 and have finally been stated in

Table 3. Figure 14 depicts the confusion matrix

corresponding to AiCNNs (architecture for which has been

defined in figure 8 and whose history of training (with

accuracy and categorical cross-entropy loss) had been

depicted in figure 11 and figure 12). AiCNNs has reduced

the FNs (for brain tumor (all 3 types)) instances to 3 which

has been the best achievable amongst all the models

discussed and worked upon, so far. It also has less

misclassified points, better validation accuracy, and

validation loss compared to models (1), (2), (5), (7) and (8)

(discussed earlier in Table 2) as has been discussed with

reference to Table 3.

(a) (b) 
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(c) (d) 

(e) 
Figure 13 (a – e). Confusion Matrix for 4 classes namely, Negative, Meningioma, Glioma, and Pituitary when 

using Model (1), Model (2), Model (5), Model (7) and Model (8). 

 

Figure 14. Confusion Matrix for 4 classes, namely, Negative, Meningioma, Glioma, and Pituitary when using 
AiCNNs (i.e. Artificially integrated Convolutional Neural Networks) Model. 

A detailed comparison of all the models that have been 

implemented has been done in Table 3, which has been 

given below. Note that AiCNNs has been one of the best 

models among all the models mentioned here. This has been 

due to the fact that 5 models compute the weights to be 

given to the concatenation layer which is a vital part for 

AiCNNs, discussed in section 4. The calculation of features 

from the 5 models (namely model (1), (2), (5), (7), and (8)) 

make AiCNNs more robust. If the model had to be fine-

tuned it may work even better than it currently does. 

Table 3. A holistic comparison of different CNN models for the classification of different types of tumors. These 
algorithms are compared on basis if data augmentation had been used or not, training accuracy (ACCTRAIN), 

training loss (LOSSTRAIN), validation accuracy (ACCVALID), validation loss (LOSSVALID), and test accuracy 
(ACCTEST).

MODEL NAME DA USED ACCTRAIN LOSSTRAIN ACCVALID LOSSVALID ACCTEST

MODEL (1) No 97.00 % 0.0847 94.00 % 0.2547 92.63 %
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MODEL (2) Yes 90.02 % 0.2765 94.09 % 0.1832 94.60 %

MODEL (3) Yes 86.62 % 0.3310 91.95 % 0.2199 89.97 %

MODEL (4) Yes 81.74 % 0.4286 91.26 % 0.2960 88.95 %

MODEL (5) No 99.03 % 0.0329 68.55 % 2.9137 66.32 %

MODEL (6) No 97.29 % 0.1924 94.26 % 0.4437 97.43 %

MODEL (7) No 99.52 % 0.0228 97.79 % 0.1787 97.43 %

MODEL (8) No 99.64 % 0.0239 97.81 % 0.1794 97.51 %

AiCNNs Partially‡ 99.20 % 0.0306 99.49 % 0.0303 98.89 %

‡ It partially uses data augmentation as Model (2) (which also utilizes data augmentation) has been cascaded into it.

An expeditious investigation of Table 3 depicts that 

Model (5) (i.e. Xception model) converges the fastest for 

the dataset described in section 4 but this model provides 

the least validation and test accuracy. It can also be 

observed that only AiCNNs utilizes data augmentation 

partially due to its nature of cascading models, in which 

model (2) (that uses data augmentation) has been used 

with model (1), model (5), model (7) and model (8) 

(which don’t use data augmentation). Model (8) (i.e. 

VGG19 transfer-learned model) has achieved the 

maximum training accuracy (ACCTRAIN). While the 

minimum training loss (LOSSTRAIN) had been observed with 

Model (7) (i.e. VGG16 transfer-learned model). Now, 

AiCNNs have been observed to achieve the best ACCVALID, 

LOSSVALID, and ACCTEST. The four models – namely, model 

(2), model (3), model (4), and AiCNNs are the only 

models that don’t follow the general trend of (ACCTRAIN > 

ACCVALID) and (LOSSVALID > LOSSTRAIN). This depicts that 

these models have been more robust to overfitting when 

being trained on mentioned combined dataset. It’s 

important to note that the introduction of only a single 

model robust to overfitting (i.e. model (2)) has made the 

AiCNNs robust to it as well.  

6. Discussions & Conclusion

The model introduced in this research, AiCNNs

achieved a training accuracy (ACCTRAIN) of 99.20 % and 

training loss (i.e. categorical cross-entropy loss) 

(LOSSTRAIN) of 0.0306 on a set of 3501 images. It had been 

robust to overfitting and achieved a validation accuracy 

(ACCVALID) of 99.49 % and validation loss (i.e. categorical 

cross-entropy loss) (LOSSVALID) of 0.0303 on a set of 1167 

images. This model has been tested on yet another 1167 

images and achieved an accuracy (ACCTEST) of 98.89 % as 

can be seen from figure 14. It used a cascaded ensemble 

of 5 models (i.e. model (1) (a simple CNN), model (2) 

(CNN with data augmentation), model (5) (Xception 

model), model (7) (VGG16 model) and model (8) 

(VGG19 model)) as discussed earlier in section 4 and 

depicted in figure 6 and 8. These all models had been 

trained on the ratio of 3:1:1 for train, validation, a test set 

of images (with 5835 being the total number of images) 

which is similar to AiCNNs as discussed above. It used 4 

types of activation function which have been best 

described by eq. (1 – 4) and figure 7 (a – d). And, it has 

been observed that the introduction of only one data 

augmented model (i.e. model (2)) resulted in the model 

becoming robust to overfitting.  
Although this model achieves the highest testing 

(ACCTEST) and validation accuracy (ACCVALID) and least 

validation loss (LOSSVALID) compared to the models 

mentioned earlier. This has been ascribed due to the fact 

that the 5 models first have to calculate 4 vectors by a 5-

way cascaded process and then these were then used to 

train the hidden layer (ANN layer) weights. 
This work can further be extended through the 

utilization of all the models. Some more areas where this 

work can be extended have been defined below. AiCNNs 

used convolution functions that were made through 

manual trial-and-error method which is not an efficient 

means for defining a good classification model. It’s 

important to mention that genetic algorithms may be 

utilized which can help to design an optimal CNN for 

classification purposes [71-72]. Along with this, 

generation of ANN layers can also be conducted through 

genetic algorithm [73-74] and evolutionary strategies [75] 

such as CMA-ES (Covariance Matrix Adaptation 

Evolution Strategy) [76-77] and PEPG (Parameter-

Exploring Policy Gradients) [78-79], for which a further 

perusal is needed. AiCNNs model can further be extended 

to include more types of brain tumors such as 

Neurofibroma and Osteoma. It can also be extended to 

certain subtypes of the tumors for Meningioma, Glioma, 

and Pituitary such as Convexity meningioma and Skull 

base meningioma, Astrocytoma and Brain stem glioma, 

and Craniopharyngioma and Pituitary adenoma [80], 

respectively. 
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