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Abstract: Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that
is attracting more and more attention due to the advantages of minimal side effects and high
precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the
pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were
usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed.
Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have
been developed with biocompatibility, effective ROS generation, and superior absorption, bringing
about great interest for applications in oncotherapy. In this review, we review the development
of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating
photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS
generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and
modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed
for the first time, including consideration of the aggregation of photosensitizers, polymerization, and
aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the
cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy,
and synergistic treatment are also outlined.

Keywords: aggregation-induced emission; photosensitizer; reactive oxygen species; photodynamic
therapy; aggregation microenvironment

1. Introduction

Light has been used in the treatment of diseases for thousands of years. In ancient
Egypt, Ammi majus Linnaeus was used to treat vitiligo, followed by exposing the patients
to sunlight, and extracts from certain plants that contained photosensitizers were expanded
to deal with other skin diseases. In the early 20th century, von Tappeiner discovered
that photosensitizers could be used with light to kill cells, and defined this process as
photodynamic therapy (PDT). Thereafter, the oxygen-dependence of PDT was revealed
and the foundational principles of PDT were first described [1,2]. PDT became a special
therapeutic strategy in treating patients, and the development of PDT as a non-invasive
therapy flourished in the following decades.

PDT is generally implemented with the basic components of photosensitizers, light,
and oxygen. Each component is basically non-toxic to the human body, and PDT can
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precisely control the killing of cancer cells and microorganisms by manipulating the wave-
length, intensity, and irradiation range of light to reduce side effects in the treatment
process, thereby boosting the development of antitumor treatments [3–5] and antibacterial
applications [6–8].

The key factors for effective PDT applications are the reactive oxygen species (ROS)
that originate from photosensitizers upon light irradiation. This process works by inducing
tumor cell death by damaging the organelle and by suppressing cell proliferation by
blocking the signaling pathway and inhibiting the cell cycle. Cell death caused by ROS has
been well studied. As ROS are generated in cell, they can react with cellular components
such as lipids, proteins, nucleic acids, and carbohydrates [9], leading to metabolic and
cellular disturbances to achieve antitumor effects.

Accordingly, three main models of cell death caused by ROS in PDT, involving necro-
sis, apoptosis, and autophagy, are proposed [10,11]. Necrosis is a kind of passive cell
death caused by ROS, and generally occurs as lipids and proteins in cellar membranes are
subjected to damage by ROS, leading to the destruction of membrane integrity and ion
homeostasis for the necrosis of cell. Apoptosis of cells in PDT is a programmed pathway
triggered by initial damage to the organelles by ROS. It generally occurs as the signaling
pathways from a cell’s surface or from a site of cell damage are converged into a small
number of central pathways, resulting in the final “execution” of the whole cell, followed by
morphological changes in the cell [12]. Autophagy is a catabolic process that plays a pivotal
role in renewing damaged organelles in cytoplasm, a mechanism that is considered impor-
tant for cytoprotection. However, autophagy can also be stimulated by ROS, depending
on the type of ROS and the degree of oxidative injury; alternatively, autophagy may occur
abnormally by the destruction of organelles by ROS, eventually inducing cell death [11].

Generally, the response of cells to damage depends on several factors, such as the
photosensitizer selected, the light dose applied, and the cellular metabolic state. The pho-
tosensitizer that is employed plays a critical role in the entire PDT process. Previously,
many photosensitizers that involved inorganic and organic materials were developed and
implemented for PDT. However, for purposes of biocompatibility and tunable photosen-
sitization, organic photosensitizers exhibit superiority over other photosensitizers. Some
examples of organic photosensitizers are provided in Figure 1.

With the development of organic photosensitizers in recent decades, the photosensi-
tization mechanism has been well-studied. The general photosensitization mechanism a
photosensitizer is illustrated in the Jablonski diagram, as shown in Figure 2 [13]. Upon
absorbing a photon, the photosensitizer is excited into a higher-energy state from the
singlet ground state (S0), depending on the excitation wavelength, and it relaxes to the
lowest excited single state (S1) for the subsequent photophysical processes, according to
Kasha’s rule [14]. Although the excited molecule always undergoes an S1 → S0 transition
by releasing energy through a nonradiative pathway to yield heat or via radiative decay to
produce fluorescence, it could also be transferred into the lowest excited triplet state (T1)
via S1 → T1 intersystem crossing (ISC) processes, if the energy difference between S1 and
T1 (∆EST) is small enough or if their spin orbit coupling (SOC) effect is strong. Compared
with the S1 state, the high-energy T1 exhibits a longer lifetime due to the prevention of spin
in T1 → S0, resulting in phosphorescence emission and possible ROS production.

According to the pathway of ROS generation, the obtained ROS could be classified in
one of two types, type I and type II. Generally, type II ROS of singlet oxygen (1O2) could be
harvested from the excited triplet state via energy transfer, covering the most commonly
used organic photosensitizers, while type I ROS, including superoxide anion (O2

•−), hy-
droxyl radical (•OH), and hydrogen peroxide (H2O2) etc., are commonly obtained via a
one-electron oxidation–reduction reaction with a neighboring oxygen molecule through
electron transfer from an excited triplet state, which is more efficient for oxygen utilization
and is usually considered to solve anoxia in the tumor microenvironment during PDT.
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Although PDT has been implemented in the treatment of disease for a long time, the
first organic photosensitizers were developed in the 1970s, and were considered to be the
typical first-generation photosensitizers. They included a hematoporphyrin derivative
(HpD) (containing a proprietary mix of porphyrin monomers, dimers, and oligomers) with
porfimer sodium (the active material in HpD). Although they were the earliest and most
useful photosensitizers in clinical trials, these photosensitizers suffered from relatively
weak absorption of light, especially infrared or near-infrared (NIR) absorption. Such de-
fects, as well as the unknown structures of the first-generation photosensitizers, hindered
further applications, and encouraged the development of second-generation photosensi-



Biosensors 2022, 12, 348 4 of 24

tizers. Porphyrinoid compounds comprising porphyrin or porphyrin-based macrocyclic
analogues (such aschlorins and bacteriochlorins) and nonporphyrinoid compounds (an-
thraquinones, phenothiazines, and curcuminoids) with identified chemical structures were
the second-generation photosensitizers [15]. These photosensitizers usually exhibited
expanded absorption with wavelengths longer than 630 nm, as well as high extinction
coefficients. Compared to the first-generation photosensitizers, the second-generation pho-
tosensitizers presented higher quantum yields of 1O2, a higher tumor-to-normal tissue ratio,
and, accordingly, a better antitumor effect. However, due to their hydrophobicity and lack
of targeting, the applications of second-generation photosensitizers were also greatly lim-
ited. Many researchers in the field focused on developing third-generation photosensitizers
with infrared absorption, better tumor specificity, and higher ROS generation.

In order to improve the efficiency of PDT, it is important to design photosensitizers
that enhance ROS production. According to the mechanism of photosensitization, ROS
are commonly generated from the excited triplet state via energy or electron transfer
to surrounding oxygen molecules. Many strategies have been proposed to boost ROS
generation, in which aggregation is one of the strategies for developing the photosensitizers
required by promoting intersystem crossing (ISC) [16]. With appropriate aggregation,
the enhanced photosensitization capability of various traditional photosensitizers, such
as the photosensitization of pentamethine indocyanine [17], phthalocyanine [1,18], and
porphyrin [19], has been demonstrated. However, due to the hydrophobicity of traditional
photosensitizers, they aggregate in physiological circumstances, with aggregation-caused
quenching (ACQ) effects that make it difficult to enhance ROS generation via aggregation
because of the strong π-π interaction in aggregates [5]. Although scientists have developed
a number of strategies to balance the notorious ACQ effects and aggregation-enhanced
ROS generation, such as molecular modification [20] and polymer isolation [21], most of
these strategies relied heavily on complicated chemical syntheses or low concentrations of
photosensitizers in the photodynamic agents.

Fortunately, the concept of aggregate-induced emission (AIE) was proposed in 2001 [22–25].
Luminogens with aggregation-induced emission characteristics (AIEgens) commonly emit-
ted weakly in solution, while they would exhibit intense fluorescence as they aggregated
(Figure 3a), overcoming the obstacle of ACQ as the dyes aggregated and providing new
opportunities for constructing functional luminogens. To achieve insights into AIE, much
effort was devoted by researchers, and the primary mechanism for interpreting the AIE
phenomenon was widely regarded as the restriction of intramolecular motions (RIM),
including the restriction of intramolecular rotations (RIR) and the restriction of intramolec-
ular vibrations (RIV), as shown in Figure 3b. As the photosensitizers were designed with
AIE characteristics, they could be utilized in a high concentration for pursuing effective
PDT without the disadvantages of the ACQ effects. Therefore, photosensitizers with AIE
characteristics have been well-studied, and numerous of AIE-active photosensitizers with
effective ROS generation and infrared absorption have been developed, boosting the devel-
opment of PDT. A number of reviews have been published to summarize the development
of AIE-active photosensitizers and the subsequent PDT, which made it convenient for us in
understanding the progress of related fields [26–34]. However, those reviews concentrated
mostly on the applications of PDT, with less focus on the design of AIE-active photo-
sensitizers and manipulation of ROS generation. Hence, in this review, we focus on the
AIE-active photosensitizer by summarizing the strategies for designing and manipulating
ROS generation and related advanced therapy strategies adopted for PDT in recent years.
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2. Manipulated Photosensitization of AIE-Active Photosensitizers
2.1. Manipulation Based on Molecular Design
2.1.1. Attaching Heavy Atoms to the Molecular Skeleton

According to the mechanism of ROS production, ISC processes from excited singlet states
to excited triplet states dominate ROS generation. Previous literature [35] indicated that ISC
rate constants could be estimated from Equation (1), where HSO is the Hamiltonian for the
spin–orbit perturbations (SOP) and ∆EST is the energy gap between the S1 and T1 states.

KISC ∝
<T1|HSO|S1>

2

∆EST
(1)

Note that attaching heavy atoms to chromophores favors HSO by enhancing SOP,
leading to higher ISC rates. A heavy atom effect is the commonly used strategy in a
wide range of molecular structures to yield an effective photosensitizer by prompting the
ISC processes via an SOC process between singlet and triplet [36]. Various AIE-active
photosensitizers have been developed with efficient photosensitization by introducing
heavy atoms into chemical structures. For example, Xu et al. [37] synthesized a series of
photosensitizers—PHE1 (λabs = 420 nm, λem = 581 nm), PHE2 (λabs = 414 nm, λem = 578 nm),
and PHE3 (λabs = 429 nm, λem = 608 nm)—by taking advantage of the heavy atom effect
that originated from sulfur and nitrogen atoms, as shown in Figure 4a. The mechanism in
ROS generation could be assigned to the enhancement of the ICT by the heavy-atom, which
facilitated ISC processes to generate triplet excitons and the generation of O2

•−. Similarly,
aided by the unique electronic structure of phosphindole oxide (PIO) and the heavy atom
effect of the phosphorus atom in PIO, Tang et al. [38] introduced triphenylamine and
pyridine groups in the molecular structure of PIO and synthesized the two isomers, α-TPA-
PIO (λabs = 411 nm, λem = 563 nm) and β-TPA-PIO (λabs = 393 nm, λem = 560 nm), as shown
in Figure 4b. According to their results, β-TPA-PIO exhibited an efficient generation of type
I ROS, both in solution and in cells. Furthermore, the theoretical calculation studies revealed
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that the efficient intersystem crossing and electrophilic ability of β-TPA-PIO provided it
with type I ROS generation ability. However, the introduction of heavy atoms was always
followed by the unexpected cytotoxicity, which limited the further development of this
strategy; many alternative approaches were proposed [39].
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2.1.2. Constructing Donor-Acceptor Effect in Molecular Structures

From Equation (1), it can be found that the rate of ISC is inversely proportional
to ∆EST, which implied that ISC processes could be promoted by reducing ∆EST. The
smaller the ∆EST, the higher the ISC rate. Further, according to photophysical prin-
ciples, the effective reduction of ∆EST relies on the separation of the highest energy
occupied molecular orbital (HOMO) and the lowest energy unoccupied molecular or-
bital (LUMO) distribution [40]. On that basis, numerous approaches to the promotion
the photosensitization by reducing ∆EST, such as constructing donor-acceptor moieties
into the molecular structure and extending the π-spacers between donor and acceptor,
have been developed. Based on the typical AIE molecule of tetraphenylethylene (TPE),
Liu et al. [41] synthesized a series of photosensitizers—TPDC (λex = 400 nm, λem = 602 nm),
TPPDC (λex = 390 nm, λem = 632 nm), and PPDC (λex = 420 nm, λem = 595 nm)—through
molecular engineering strategies by inducing donor-acceptor moieties into the molecular
structure, as shown in Figure 5a. The results showed that the ∆EST of the photosensitizers
was reduced from 1.22 eV to 0.27 eV, with the donor-acceptor interactions enhanced, and a
3.2-fold improvement in 1O2 yield was achieved, indicating the potential to enhance ROS
generation by introducing the donor and the acceptor into molecular photosensitization.



Biosensors 2022, 12, 348 7 of 24

Biosensors 2022, 12, x FOR PEER REVIEW 8 of 26 
 

increased beyond 0.98 eV of 1O2, facilitating the production of 1O2. Further, the addition 
of the π-spacer would extend the red-shift of the synthesized photosensitizers on the ab-
sorption tail, from 530 nm to 600 nm, benefiting their applications in PDT.  

 
Figure 5. Donor-acceptor molecular engineering strategies to enhance ROS. (a) Molecular structure, 
calculated HOMO-LUMO distributions, and ROS generation of TPDC, TPPDC, and PPDC. Re-
printed with the permission the authors of [41]. Copyright 2015, by the author(s). Published by the 
Royal Society of Chemistry. (b) Molecular structure with extended π-spacer between donor and 
acceptor and calculated HOMO-LUMO distributions of the TPE-based photosensitizers. Reprinted 
with the permission of the authors of [42]. Copyright 2017, Royal Society of Chemistry. 

2.1.3. Manipulating ROS Generation upon Ionization 
Currently, the introduction of donor-acceptor moieties and heavy atoms into photo-

sensitizers is widely used to enhance ROS by reducing the ΔEST and promoting ISC pro-
cesses. However, little attention has been paid to the typological alternation of ROS. Due 
to hypoxic microenvironment, type I ROS of O2•−, •OH, and H2O2, are more adaptive to 
tumor treatment with oxygen independence, generating widespread attention. According 
to the mechanism of ROS generation, type I ROS are produced by a charge transfer pro-
cess. Therefore, improving the electron affinity of photosensitizers and promoting the 
electron capture of molecules are of significance; introducing ionization to photosensitiz-
ers would facilitate the generation of type I ROS. Tang et al. [43] proposed an effective 
strategy for improving photosensitizer performance through cationization. As shown in 
Figure 6a, a series of photosensitizers of TPAN, TPAPy, TPANPF6, and TPAPyPF6 were 
synthesized by using the morpholine-modified nitrofluorene acceptor and the triphenyl-
amine donor. By altering the different substituents, including dimethylaniline, pyridine, 
trimethylphenylammonium hexafluorophosphate, and 1-methylpyridin-1-ium hex-
afluorophosphate, the ionization effect on ROS generation was investigated. TPAN (λabs = 
417 nm, λem = 601 nm) was incapable of producing ROS, while TPAPy (λabs = 409 nm, λem 
= 593 nm) could only produce 1O2. By introducing the ionization effect, ROS generation 
was enhanced by TPANPF6 (λabs = 408 nm, λem = 595 nm) and TPAPyPF6 (λabs = 437 nm, λem 

Figure 5. Donor-acceptor molecular engineering strategies to enhance ROS. (a) Molecular structure,
calculated HOMO-LUMO distributions, and ROS generation of TPDC, TPPDC, and PPDC. Reprinted
with the permission the authors of [41]. Copyright 2015, by the author(s). Published by the Royal
Society of Chemistry. (b) Molecular structure with extended π-spacer between donor and acceptor
and calculated HOMO-LUMO distributions of the TPE-based photosensitizers. Reprinted with the
permission of the authors of [42]. Copyright 2017, Royal Society of Chemistry.

Extending the π-spacer between the donor and the acceptor is another strategy to
reduce the ∆EST of photosensitizers by separating the HOMO and LUMO. In Figure 5b,
three TPE-based photosensitizers are shown with the difference of the π-spacer between
the acceptor and the donor [42]. By enlarging the π-spacer, HOMO and LUMO becoming
separated, leading to the ∆EST being varied from 0.33 to 0.30 eV, and the triplet state
increased beyond 0.98 eV of 1O2, facilitating the production of 1O2. Further, the addition
of the π-spacer would extend the red-shift of the synthesized photosensitizers on the
absorption tail, from 530 nm to 600 nm, benefiting their applications in PDT.

2.1.3. Manipulating ROS Generation upon Ionization

Currently, the introduction of donor-acceptor moieties and heavy atoms into pho-
tosensitizers is widely used to enhance ROS by reducing the ∆EST and promoting ISC
processes. However, little attention has been paid to the typological alternation of ROS.
Due to hypoxic microenvironment, type I ROS of O2

•−, •OH, and H2O2, are more adaptive
to tumor treatment with oxygen independence, generating widespread attention. Accord-
ing to the mechanism of ROS generation, type I ROS are produced by a charge transfer
process. Therefore, improving the electron affinity of photosensitizers and promoting the
electron capture of molecules are of significance; introducing ionization to photosensitizers
would facilitate the generation of type I ROS. Tang et al. [43] proposed an effective strategy
for improving photosensitizer performance through cationization. As shown in Figure 6a,
a series of photosensitizers of TPAN, TPAPy, TPANPF6, and TPAPyPF6 were synthesized
by using the morpholine-modified nitrofluorene acceptor and the triphenylamine donor.
By altering the different substituents, including dimethylaniline, pyridine, trimethylpheny-
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lammonium hexafluorophosphate, and 1-methylpyridin-1-ium hexafluorophosphate, the
ionization effect on ROS generation was investigated. TPAN (λabs = 417 nm, λem = 601 nm)
was incapable of producing ROS, while TPAPy (λabs = 409 nm, λem = 593 nm) could
only produce 1O2. By introducing the ionization effect, ROS generation was enhanced
by TPANPF6 (λabs = 408 nm, λem = 595 nm) and TPAPyPF6 (λabs = 437 nm, λem = 578 nm)
molecules, which were modified by a positive charge, with an excellent O2

•−. This work
demonstrated that the introduction of cations could separate molecular charges and capture
electrons more easily, benefitting the generation of type I ROS. Furthermore, Tang et al. [44]
synthesized two molecules (DTPAPy (λabs = 495 nm, λem = 675 nm) and DTPAN) and
ionized them to produce DTPANPF6 (λabs = 498 nm, λem = 675 nm) and DTPAPyPF6
(λabs = 480 nm, λem = 675 nm), as shown in Figure 6b, which exhibited excellent type I and
type II ROS generation performance.
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Figure 6. Cationic molecular engineering strategy to enhance ROS. (a) Molecular structure and
ROS generation of TPAN, TPAPy, TPANPF6 and TPAPyPF6 indicated by H2DCF-DA and ABDA.
Reprinted with the permission of the authors of [43]. Copyright 2019, American Chemical Society.
(b) Molecular structure, ROS generation of DTPAPy, DTPAN, DTPAPyPF6, and DTPANPF6 indicated
by HPF or DHR123, and summary of different ROS generation of photosensitizers. Reprinted with
the permission of the authors of [44]. Copyright 2022, Elsevier.

Anionization could also be employed to tune the generation of type I ROS, and the
mechanism was always assigned to efficient ISC to ensure sufficient triplet energy genera-
tion and a rich electron environment to supply electrons to the excited photosensitizers.
Tang et al. [45] synthesized four molecules of TBZPy (λabs = 447 nm, λem = 627 nm),
MTBZPy (λabs = 476 nm, λem = 653 nm), MTNZPy (λabs = 528 nm, λem = 686 nm), and
TNZPy (λabs = 511 nm, λem = 662 nm) with iodide ion as the coordination system, as shown
in Figure 7a. The four molecules exhibited a classic donor-acceptor structure, where the
donors were composed of benzo-2,1,3-thiadiozole (BZ)/naphtho [2,3-c][1,2,5]thiadiazole
(NZ) groups modified with triphenylamine and its methoxy-substituted derivatives, and
the acceptors were comprised of styrenylpyridine. TBZpy could only produce 1O2, due to
the weak intramolecular charge transfer (ICT) effect, while the enhancement of electron-
donor ability enabled the other molecules to produce other types of ROS, which demon-
strated that iodide ions and highly reductive donors provided the electron-rich aggregation
microenvironment for excited photosensitizers, promoting the production of type I ROS.
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Similarly, as shown in Figure 7b, Tang et al. [46] synthesized the photosensitizer of TIdBO
(λabs = 372 nm, λem = 547 nm), an isoquinoline organic salt derivative with excellent pho-
tosensitization performance. Owing to the strong ICT that originated from the anion−π+

effect and the cyclization reaction upon irradiation, oxygen molecules in the surrounding
environment participated in this electron transfer process and interacted with intermediate
active radicals, generating type I ROS. ROS measurement revealed that the anionic TIdBO
exhibited significant ROS production, with the intense generation of •OH and the weak
generation of 1O2.
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the permission of the authors of [46]. Copyright 2021, American Chemical Society.

2.1.4. Switching the ROS Generation by Activation of Photosensitization

Although photosensitizers with AIE characteristics have been developed rapidly, they
have not yet completely overcome the shortcomings of traditional photosensitizers. As pho-
tosensitizers were injected into circulatory systems, they remained in an “always-on” state
to activate and kill cancer and normal cells indistinguishably under light irradiation, and
these side effects greatly weakened the treatment of the diseases. Therefore, it was necessary
to develop a new type of activatable photosensitizer for the special circumstances [47,48].

Unlike normal cells, specific tumor microenvironments, such as pH [49,50], specific
enzymes [51], and high concentrations of glutathione (GSH) [52], have received widespread
attention from researchers in designing activatable photosensitizers based on tumor mi-
croenvironment activation strategies. Previous studies showed that GSH could react with a
disulfide (S-S) bond [53], providing the “switch” for an activatable photosensitizer. Mean-
while, due to the interaction of GSH and intracellular ROS, the consumption of GSH leads
to an improvement of intracellular ROS and PDT efficiency [54–56]. Therefore, employ-
ing GSH to activate photosensitizers is an appropriate strategy. As shown in Figure 8a,
Kim et al. [57] reported that a TPE derivative comprising an AIE molecule (TPEPY-S-Fc)
was developed as a GSH-activated photosensitizer for PDT. As shown in Figure 8a, TPEPY-
S-Fc was synthesized by covalently conjoining a TPE derivative with ferrocene diethylene
and vinylpyridine by disulfide bonds. As a well-known quenching agent, ferrocene could
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quench the fluorescence of organic fluorophores through a photo-induced electron transfer
(PET) process. Therefore, the fluorescence and the ROS production of TPEPY-S-Fc was
blocked by ferrocene. As GSH added, the S-S bond was split to produce an activatable
photosensitizer of TPEPY-SH (λabs = 430 nm, λem = 620 nm) with the fluorescence en-
hanced, which could be used for effective PDT. Based on this strategy, various activatable
photosensitizers have been developed [58,59].

Similarly, excessive H2O2 in tumors’ microenvironment could also be employed as a
factor to active photosensitization [60]. For example, as shown in Figure 8b, Wang et al. [61]
synthesized the H2O2 activatable amphiphilic photosensitizer of TPECNPB, comprising
the positively charged pyridine pendant that could target the negatively charged lipid
droplets by electrostatic interactions. However, in this molecule, boronate attached to
the pyridine chain would be split by H2O2 and subsequently release the hydrophobic
AIE-active photosensitizer of TPECNP (λex = 450 nm, λem = 625 nm). After that, ROS
generation was triggered and emitted red emission, leading to fluorescence-guided and
activatable PDT.
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(a) Molecular structure of TPEPY-S-Fc and the proposed mechanism of GSH-activated PDT. Reprinted
with the permission of the authors of [57]. Copyright 2020, Royal Society of Chemistry. (b) Molecular
structure of TPECNPB and the schematic illustration of H2O2 activation of PDT. Reprinted with the
permission of the authors of [61]. Copyright 2020, Wiley-VCH GmbH.

Cathepsin B is a lysosomal protease that is always overexpressed in a variety of
tumors [62]. Generally, cathepsin B can cleave polypeptide with Gly-Phe-Leu-Gly (GFLG)
sequences, providing the possibility of designing photosensitizers activated by cathepsin
B. Liu et al. [63] developed an activatable photosensitizer of TPECM-2GFLGD3-cRGD
initiated by cathepsin B (Figure 9). The photosensitizer was composed by the following
four parts: (a) the AIE-active TPECM as a photosensitizer; (b) GFLG peptides as trigger
points; (c) hydrophilic units used for increasing hydrophilicity; and (d) cRGD as targeting
units. The AIE characteristic of the photosensitizer, TPECM-2GFLGD3-cRGD, exhibited
almost no fluorescence in aqueous media and low ROS generation. After it was taken by
cancer cells, intercellular cathepsin B lysed the GFLG sequence, resulting in the release
and aggregation of TPECM, which enhanced its fluorescence emission and simultaneously
triggered ROS production.
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of the functionalize TPE derivative TPECM and the bioprobe TPECM-2GFLGD3-cRGD, and the
schematic illustration of probe activation by cathepsin B. Reprinted with the permission of the authors
of [63]. Copyright 2015, Wiley-VCH GmbH.

The pH response of AIE-active molecules is an alternative strategy for constructing
an activatable photosensitizer [64,65]. For example, Huang et al. [66] developed a new
method to achieve an activatable photosensitizer through pH-responsive supramolecular
host-guest interactions. As shown in Figure 10, molecule G consists of three parts: an AIE
unit of TPE, an electron-deficient pyridine unit, and a hexyl chain with another pyridine
unit at the end. In molecule G, TPE acts as an electron donor, and the pyridine was taken
as the electron acceptor, which separated HOMO and LUMO to promote the ICT from the
S1 to T1 states for ROS generation. However, after modifying the G molecule with anionic
water-soluble column aromatic hydrocarbons (WP5), a supramolecular construction of
host-guest interactions between molecule G and WP5 was established, and the PET process
between molecule G and WP5 inhibited the production of fluorescence and ROS. Due to the
hydrophilic-hydrophobic transition of carboxyl groups, WP5, as well as the supramolecular
construction, exhibited pH sensitivity at pH 5.0. Hence, by changing the environmental pH,
the PET interaction between G molecules and WP5 molecules could be regulated, realizing
activatable ROS production.
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2.2. Manipulation Based on Aggregation

Aggregation of elements usually leads to a unique aggregation microenvironment
within the aggregates, involving intermolecular interactions, a confined space, and so
on, which greatly promote the photosensitization properties of the aggregates [67]. The
strategy of aggregation has been employed to enhance ROS production for traditional
photosensitizers. While such a strategy would be more appropriate for AIE-active photo-
sensitizers, there are two main reasons for this enhancement originating from aggregation:
(1) the energy transfer from S1 to T1 would be facilitated, as the energy dissipation through
nonradiative channels are inhibited as the photosensitizers aggregated; and (2) aggregation
would effectively enhance ISC processes [16,41,68].

2.2.1. Molecule Aggregation

AIE-active photosensitizers overcome the deficiency of traditional photosensitizers,
making it easier to implement aggregation strategies to tune the photosensitizers. For exam-
ple, Tian et al. [69] synthesized the AIE-active photosensitizer of 2,3-bis(4′-(diphenylamino)-
[1,1′-biphenyl]-4-yl) fumaronitrile (BDBF, λem = 585 nm), as shown in Figure 11a; they
found that the aggregation of BDBF in either self-assembly or in an F127 matrix facilitated
the generation of 1O2. However, they did not provide a clear mechanism for this effect. Fur-
ther, Li et al. [70] synthesized the planar AIEgens of DMA-AB-F (λem = 467 nm), as shown
in Figure 11b. By analyzing the ROS production and energy level, they demonstrated that
aggregation could enhance photosensitization by the suppressed nonradiative processes
and the reduced energy barrier of ∆EST.

Biosensors 2022, 12, x FOR PEER REVIEW 14 of 26 
 

 
Figure 11. Molecule aggregation strategy to enhance ROS. (a) Molecular structure of BDBF and sche-
matic illustration of BDBF NRs and F127@BDBF NPs for image-guided PDT. Reprinted with the 
permission of the authors of [69]. Copyright 2020, Springer Nature. (b) Molecular structure of DMA-
AB-F and G and changes in ROS production with different degrees of aggregation. Reprinted with 
the permission of the authors of [70]. Copyright 2020, Wiley-VCH GmbH. 

2.2.2. Polymerization 
To some extent, polymerization could be considered as a well-organized aggregation 

of photosensitizers, providing a facile strategy for tailoring the ideal photosensitizer. For 
example, Liu et al. [71] proposed a new strategy of “polymerization-enhanced photosen-
sitization”, with about four times greater 1O2 production than that of the small-molecule 
analogs as the degree of the polymer reached four units. The mechanism for the enhance-
ment was supported by time-dependent density functional theory (TD-DFT) calculations. 
As shown in Figure 12a, the theoretical investigations clearly revealed that the difference 
between the energy levels of the upper excited states (Sn and Tn) and the lowest excited 
states (S1 and T1) was decreased as the repeated conjugated units of the conjugated poly-
mer increased. As a consequence, ISC processes were promoted as the energy levels grew 
close, which was confirmed by Kohn-Sham frontier orbital analysis. Although Liu demon-
strated the feasibility of constructing polymerized photosensitizers by this proposed strat-
egy, they ignored the influence caused by the acceptor-donor effect. Hence, Tang et al. 
[72] further investigated the acceptor-donor effect in polymer chains for photosensitiza-
tion. In their study, triphenylamine was taken as the donor, while benzo-thiadiazole was 
selected as the acceptor. By the Suzuki reaction, a series of photosensitizers with the ac-
ceptor-donor structure were synthesized, and the ROS quantum yield was measured via 
a chemical method with Rose bengal (RB) as the standard photosensitizer. As shown in 
Figure 12b, an obvious enhancement in ROS quantum yield could be found as the num-
bers of acceptor exceeded that of donors, demonstrating the special even–odd effect in 
polymerization-enhanced photosensitization. 

 

Figure 11. Molecule aggregation strategy to enhance ROS. (a) Molecular structure of BDBF and
schematic illustration of BDBF NRs and F127@BDBF NPs for image-guided PDT. Reprinted with
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2.2.2. Polymerization

To some extent, polymerization could be considered as a well-organized aggregation
of photosensitizers, providing a facile strategy for tailoring the ideal photosensitizer. For
example, Liu et al. [71] proposed a new strategy of “polymerization-enhanced photosen-
sitization”, with about four times greater 1O2 production than that of the small-molecule
analogs as the degree of the polymer reached four units. The mechanism for the enhance-
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ment was supported by time-dependent density functional theory (TD-DFT) calculations.
As shown in Figure 12a, the theoretical investigations clearly revealed that the difference
between the energy levels of the upper excited states (Sn and Tn) and the lowest excited
states (S1 and T1) was decreased as the repeated conjugated units of the conjugated polymer
increased. As a consequence, ISC processes were promoted as the energy levels grew close,
which was confirmed by Kohn-Sham frontier orbital analysis. Although Liu demonstrated
the feasibility of constructing polymerized photosensitizers by this proposed strategy, they
ignored the influence caused by the acceptor-donor effect. Hence, Tang et al. [72] further
investigated the acceptor-donor effect in polymer chains for photosensitization. In their
study, triphenylamine was taken as the donor, while benzo-thiadiazole was selected as the
acceptor. By the Suzuki reaction, a series of photosensitizers with the acceptor-donor struc-
ture were synthesized, and the ROS quantum yield was measured via a chemical method
with Rose bengal (RB) as the standard photosensitizer. As shown in Figure 12b, an obvious
enhancement in ROS quantum yield could be found as the numbers of acceptor exceeded
that of donors, demonstrating the special even–odd effect in polymerization-enhanced
photosensitization.
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Figure 12. Polymerization strategy to enhance ROS generation. (a) Molecular structure of the model
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2.2.3. Aggregation Microenvironment

The aggregation microenvironment exhibits significant influence on the performance
of photosensitizers, relying on the intermolecular interaction between photosensitizers or
photosensitizer and guest molecules. By tuning the aggregation microenvironment of an
AIE-active photosensitizer, ROS generation can be manipulated. In our previous work [73],
we proposed a facile approach to manipulating the performance of photosensitizers via
altering the aggregation microenvironment of photosensitizers, as shown in Figure 13a.
Corannulene is a conjugated molecule with large steric hindrance and a more rigid struc-
ture than that of the alkyl chain. By synthesizing the Cor-PEG comprising corannulene in
the end of the PEG chain and taking Cor-PEG as the polymer matrix to encapsulate the
photosensitizer of TPP-TPA (λex = 440 nm, λem = 680 nm) via nanoprecipitation, nanodots
of the photosensitizer with a more rigid aggregation microenvironment in comparison with
that of the DSPE-PEG encapsulated nanodots were obtained. The results demonstrated
that rigidification of the aggregation microenvironment in Cor-PEG dots facilitated ROS
production with a 5.4-fold enhancement compared to that of DSPE-PEG dots. Hence, this
strategy, relying on aggregation microenvironment manipulation, provided a facile way to
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tailor ROS production without complicated chemical synthesis, exhibiting the potential for
enhanced PDT. Similarly, Liu [74] found that the aggregation of BTPEAQ (λabs = 335 nm,
λem = 650 nm) could not generate ROS in water, while 1O2 detected as BTPEAQ was encap-
sulated in the polymeric matrix with polymer or SiO2 shell. The different shells led to the
different aggregation microenvironments, which can be used to tune the photosensitization
of BTPEAQ aggregates. The results, as shown in Figure 13b, indicated that a higher ROS
productivity could be achieved in the polymeric matrix encapsulated BTPEAQ than in the
SiO2 matrix. Therefore, the manipulation of aggregation microenvironments is a simple
but effective strategy for tuning the high performance of aggregate photosensitizers.
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3. Advanced Development in PDT

Compared with traditional cancer treatment modalities, such as radiotherapy and
chemotherapy, PDT exhibits the advantages of safety and non-invasiveness. Employing
photosensitizers to generate ROS under a certain wavelength of light irradiation, PDT
has been widely implemented in oncotherapy. However, the efficiency of PDT relies on
the performance of the photosensitizers, and the development of the photosensitizers has
dominated the improvement of PDT. In this section, we review the cutting-edge progress
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achieved by PDT based on the AIE-active photosensitizer, including NIR-absorbent PDT,
activatable PDT, hypoxic PDT, and synergistic therapy.

3.1. Near Infrared Absorbent PDT

Compared to visible light, NIR light (700–1700 nm) demonstrated greater superiority
based on reduced photodamage, lower scattering, and deeper light penetration [67,75].
Therefore, photosensitizers with both excitation and emission in the NIR regions are
ideal candidates for PDT, and more and more studies were conducted to develop new
NIR-absorbent photosensitizers. Tang et al. [76] prepared a series of molecules with
far-red and NIR emission, good two-photon absorption, and efficient 1O2 generation
by modifying the electron-donating group of diphenylamine through an electron-rich
carbazole ring with different electron-withdrawing groups (malononitrile, isophorone,
methylpyridinium salt, and 3-cyano-4-phenyl-2(5H)-furanone), as shown in Figure 14a.
Notably, DCMa (λabs = 478 nm, λem = 665 nm), DCIs (λabs = 510 nm, λem = 709 nm), and
DCFu (λabs = 538 nm, λem = 755 nm) exhibited the ability to specifically target lipid droplets
(LDs), while the cationic lipophilic DCPy (λabs = 454 nm, λem = 698 nm) was endowed with
excellent mitochondrion-specific targeting ability. Upon cellular imaging, all molecules
exhibited good biocompatibility and high contrast, as well as higher photostability than
that of commercial probes. The efficient 1O2 generation of these fluorophores (especially
DCPy) under white light irradiation can be applied to effective PDT, demonstrating the
potential of AIE-active photosensitizers as two-photon fluorescence-imaging agents for
imaging-guided PDT. Similarly, as shown in Figure 14b, by encapsulating the AIE-active
TPE-PTB (λex = 488 nm, λem = 601 nm) within lipids, Tang et al. [77] prepared special
nanoparticles with two-photon absorption, bright far-red emission, high quantum yield,
and efficient 1O2 and •OH release. The obtained nanoparticles exhibited a maximum
two-photon absorption cross-section (δ) of 560 GM at NIR region with a quantum yield
of 23%, demonstrating high-resolution deep (up to 505 µm) tumor-imaging capability as
they accumulated at the tumor. In addition, the AIE nanoparticles demonstrated excellent
PDT efficiency in high ROS generation, indicating their great potential as powerful and
safe therapeutic agents for oncotherapy. In addition to the photosensitizers mentioned in
the works listed here, various NIR-absorbent photosensitizers have been developed, which
have become the cutting-edge area for AIE-active photosensitizers [68].
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of mice upon a 900 nm two-photon irradiation. Reprinted with the permission of the authors of [76].
Copyright 2018, American Chemical Society. (b) Molecular structure of TPE-PTB NPs, and cell
imaging and photostability of AIE nanoparticles in A375 cells under continuous two-photon laser
irradiation. Reprinted with the permission of the authors of [77]. Copyright 2020, American Chemical
Society.

3.2. Activatable PDT

Designing activatable photosensitizers is an effective strategy for overcoming the
uncontrolled phototoxicity of photosensitizers as they are implemented in vivo, providing
smart oncotherapy for clinical applications. Owing to the rapid proliferation and vigorous
metabolism of cancer cells, the tumor microenvironment always contains overexpressed
factors, such as H2O2, GSH, hydrogen ion, and some enzymes, making it possible to
construct activatable PDT [78–80]. As shown in Figure 15a, Liu et al. [81] synthesized an
AIE-active photosensitizer (λabs = 480 nm, λem = 690 nm), followed by loading it into iron
(III) carboxylate-based MOF, MIL-100 to produce PS@MIL-100. After that, a pH-sensitive
doxorubicin (Dox)-PEG matrix was synthesized by Dox and PEG via a hydrazone bond.
Using the self-assembly of Dox-PEG, PS@MIL-100 was encapsulated to prepare Dox-PEG-
PS@MIL-100 nanoparticles. As the Dox-PEG-PS@MIL nanoparticles reached the tumor site,
intertumoral H2O2 disorganized the nanoparticles and released the loaded photosensitizer
on the tumor surface, and PDT was eventually triggered in the tumor.
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Figure 15. Activatable photosensitizers to enhance theranostics. (a) Schemes of MIL-100 collapse, PS
release, and Dox-PEG self-assembly of Dox-PEG-PS@MIL-100 nanoparticles to tune PDT in H2O2.
Reprinted with the permission of the authors of [81]. Copyright 2021, Wiley-VCH GmbH. (b) Scheme
of the synthesis of TPATrzPy-3+ by two photochemically inert precursors under the catalysis of
copper (I) ions generated from GSH-reduced-MOF-199. Reprinted with the permission of the authors
of [82]. Copyright 2021, Wiley-VCH GmbH. (c) Schematic illustration of the self-assembly of TPE-
Py-FpYGpYGpY under the catalysis of ALP, which significantly activates fluorescence and ROS
generation. Reprinted with the permission of the authors of [83]. Copyright 2018, Royal Society
of Chemistry.
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GSH is considered as a reducing agent to balance intracell ROS production, and it
maintains a high concentration due to vigorous metabolism, which is usually used to
conduct activatable PDT. By introducing a GSH-activated click reaction, Liu et al. [82]
developed an MOF-assisted activatable photosensitization system for targeted PDT. In their
work, the Cu(II)-based metal-organic framework, MOF-199, was used as the carrier to load
the reactants TPA-alkyne-2+ and MePy-N3, and then encapsulated by F127 to obtain PMOF
nanoparticles. The obtained nanoparticles were effectively enriched in the tumor and
destroyed by GSH. As a result, the Cu(II) in the MOF was reduced into Cu(I), consequently
releasing the reactants of TPA-alkyne-2+ and MePy-N3. Catalyzed by Cu(I), the click
reaction was initiated and the photosensitizer of TPATrzPy-3+ was obtained. Additionally,
under light irradiation, mitochondrion-targeted TPATrzPy-3+ (λex = 400 nm, λem = 595 nm)
with an efficient generation of 1O2 exhibited excellent PDT effectiveness.

Enzymes are another factor used for constructing activatable PDT. Recently, Ding et al. [83]
synthesized the AIE-active photosensitizer of TPE-Py- FpYGpYGpY by modifying a short
peptide with three tyrosine phosphates (pY). Due to the hydrophilic phosphotyrosine
residue, the TPE-Py-FpYGpYGpY dissolved into water, resulting in weak fluorescence
and negligible ROS generation. However, upon exposing TPE-Py-FpYGpYGpY in al-
kaline phosphatase (ALP) circumstances, an enzymatic cleavage of dephosphorylated
precursors of TPE-Py-FpYGpYGpY was triggered, and the ALP-catalyzed products were
self-assembled, resulting in the ROS-active photosensitizer (λex = 405 nm, λem = 600 nm),
which demonstrated the potential of enzymatic-activated PDT.

3.3. Hypoxic PDT

Oxygen concentration in tumor tissue is varied, depending on tumor progression,
angiogenesis, metabolism, and metastasis. However, hypoxia of the microenvironment is
a characteristic feature of solid tumors. There is increasing evidence that PDT efficiency
that relies on traditional photosensitizers is limited, due to the oxygen dependence of those
photosensitizers [84]. Therefore, the development of therapeutic strategies to alleviate
tumor hypoxia, including catalyzing intracellular substrates to produce oxygen and pro-
moting ROS production through type I mechanism, have become the potential solutions.
Qi et al. [85] synthesized the electron-rich MeOTPPM (λabs = 452 nm, λem = 667 nm) with a
donor-acceptor structure, and proposed the concept of “more ICT effect in electron-rich
anion-π+ AIEgens, more effectively generate free radical ROS”. Through their strategy, the
synthesized MeOTPPM facilely generated type I ROS, exhibiting O2 independence and
an excellent PDT effect in a hypoxic microenvironment. In addition, MeOTPPM could
specifically target mitochondria without the help of any additional targeted ligands, and
its selective accumulation within cancer cells made it more PDT-efficient against cancer
cells. Furthermore, Tang et al. [46] synthesized an electron-rich isoquinoline organic salt
derivative, TIdBO, with excellent photoactivation properties, as shown in Figure 16a. From
their study, the production of type I ROS from TIdBO could be significantly enhanced, due
to the electron transfer during the photocyclization reaction. It is worth noting that the
fluorescence intensity was enhanced after the ROS were produced and the apoptosis of
cancer cells was subsequently triggered, realizing the self-monitoring of the PDT process.

Except for producing type I ROS, strategies based on oxygen self-sufficient nanoplat-
form could be an alternative for overcoming hypoxic limitations. For example, as shown in
Figure 16b, Huang et al. [86] prepared a hypoxia-tropic nanozyme as an oxygen generator
(OGzyme) by the biomimetic synthesis of MnO2 nanoparticles inside the hollow cavity
of ferritin nanocages (FTn). After that, the obtained OGzyme and the AIE-active photo-
sensitizer were encapsulated into phospholipid bilayers. As the OGzymes aggregated
at the tumors’ tissue, they provided sufficient oxygen for the photosensitization of an
AIE-active photosensitizer by utilizing the H2O2 response of MnO2. Hence, this system
worked in hypoxic tumor tissue, and exhibited a strong PDT effect. Similarly, Liu et al. [87]
developed carrier-free hybrid nanospheres comprising an AIE-active photosensitizer, iron
ions, and a Bcl-2 inhibitor for hypoxic tumor PDT. Based on this strategy, the intracellular
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O2 concentration was increased via a Fe3+-derived Fenton reaction. Moreover, by inhibiting
the production of Bcl-2 protein, intracellular ROS of the tumor was increased, and the PDT
efficiency was improved synergistically.
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2020, Elsevier.

3.4. Synergistic Therapy

The therapeutic efficiency of a single modality of PDT is often limited. It is cru-
cial to develop a multifunctional treatment system for the synergistic therapy of tumors.
Currently, the commonly used strategy for constructing multimodal optical therapeutic
systems is a combination of multiple components in a single nanoplatform, such as syner-
gistic photothermal therapy (PTT)/PDT and synergistic chemotherapy/PDT. As shown in
Figure 17, by combining the positively charged and hydrophilic AIE-active photosensitizer
(NH2-PEG-TTPy) with the negatively charged surface black phosphorus nanosheets (BP
nanosheets) via electrostatic interactions, Tang et al. [88] developed the nanomaterial of
BP@PEG-TTPy (λex = 488 nm, λem = 672 nm), which not only exhibited excellent stability,
but also simultaneously integrated the advantages of the two components, including bright
NIR fluorescence, efficient ROS generation, and the PTT effect. As a result, BP@PEG-TTPy
achieves efficient imaging-guided PDT-PTT synergistic therapy under irradiation both
in vitro and in vivo, demonstrating the significant improvement of synergistic therapy
compared to that of single PDT.
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Synergistic chemotherapy/PDT was also implemented in oncotherapy. Xia et al. [89]
developed a reduction-sensitive co-delivery micelles TB@PMP for combinational therapy,
where the chemotherapeutic drug, paclitaxel, was modified to the amphiphilic polymer
through disulfide bonds, forming the reduction-sensitive polymer prodrug PMP, as shown
in Figure 18a. The amphiphilic polymer prodrug PMP self-assembled into micelles in aque-
ous solution, and then encapsulated the AIE-active photosensitizer TPA-BDTO through
a hydrophobic interaction. After that, TB@PMP (λex = 530 nm, λem = 684 nm) micelles
were passively enriched in the tumor site via the EPR effect. As the TB@PMP micelles were
taken up by tumor cells, the disulfide bonds in PMP were cleaved, due to the high con-
centration of GSH in the tumor cells, resulting in the release of the paclitaxel. At the same
time, TPA-BDTO produced cytotoxic ROS under light irradiation. As a result, when the
ROS and the paclitaxel were combined, the balance between the microtubule aggregation
and deaggregation was disrupted by the paclitaxel, which led to replication failure and,
ultimately, the cancer cell apoptosis. Moreover, Singh et al. [90] prepared one-component
organic nanoparticles for chemo-photodynamic therapy by conjugating a TPE moiety with
a p-hydroxy phenacyl-chlorambucil conjugate. When exposed to visible light, the obtained
nanoparticles simultaneously produced 1O2 and released the anticancer drug chlorambucil.
The cytotoxicity assay showed that the anticancer activity of the obtained nanoparticles
was significantly enhanced by the synergistic combination therapy.

A combination of PDT and immunotherapy has been emerging as a new strategy for
cancer treatment [91]. In the processes of combined PDT and immunotherapy, calreticulin
(CRT) would translocate to the cell membrane from the endoplasmic reticulum (ER) upon
the stimuli of ROS, facilitated dendritic cell (DC) recruitment, recognition, and antigen pre-
sentation, to strengthen the host’s immune response [92,93]. Based on that, Ding et al. [94]
synthesized the AIE-active photosensitizer of TPE-DPA-TCyP (λabs = 504 nm, λem = 697 nm)
with mitochondrial targeting. Employing the ROS generation of the TPE-DPA-TCyP, the
mitochondrial oxidative stress rose and resulted in immunogenic cell death (ICD). In their
work, the effective in vivo ICD immunogenicity of TPE-DPA-TCyP was demonstrated us-
ing a prophylactic tumor vaccination model, revealing that intracellular oxidative stress in
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mitochondria could also cause ICD, rather than the commonly accepted ICD that originated
from ER. The comprehensive mechanism of TPE-DPA-TCyP in ICD processes was verified
by immune cell analyses, which provided a highly effective strategy for evoking abundant
and large-scale ICD. Additional related works have been reviewed by Li [26] and Ding [95].
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processes was verified by immune cell analyses, which provided a highly effective strat-
egy for evoking abundant and large-scale ICD. Additional related works have been re-
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4. Summary

As a noninvasive treatment modality, PDT has been widely used in tumor and antibac-
terial therapies for decades; some of these applications have been approved by the Food and
Drug Administration for clinical treatment. Photosensitizers are the most important part
of the PDT process. However, the limitations of traditional photosensitizers are obvious,
including ACQ effects in the aggregated state, short absorption wavelength, poorly pro-
duced ROS, and oxygen dependence. In contrast to traditional photosensitizers, AIE-active
photosensitizers overcome some of these difficulties, endowing the photosensitizer with
greater flexibility and allowing for further modification. Many AIE-active photosensitizers
have been developed for clinical treatment, with features such as bright emission, effective
ROS generation, a large Stokes shift, and far red/NIR fluorescence. In this review, we
considered the development of AIE-active photosensitizers, involving the scope of the
ROS generation mechanism, manipulation strategies for photosensitization, and advanced
developments in PDT, which provided abundant information to guide molecular design
and applications in the future. However, in perspective, there are still huge challenges
with photosensitizers as they implemented in clinical treatments. The main focus is on
advanced photosensitizers with excellent biocompatibility, deep penetration, and effective
ROS generation. Additionally, the development of smart photosensitizers based on a facile
way of manipulating ROS production, as well as the development of different types of ROS,
will enhance PDT.
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