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Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is the prototype member of a family of lipid mediators
and second messengers. LPA and its naturally occurring analogues interact with G protein-coupled receptors on the cell
surface and a nuclear hormone receptor within the cell. In addition, there are several enzymes that utilize LPA as a substrate
or generate it as a product and are under its regulatory control. LPA is present in biological fluids, and attempts have been
made to link changes in its concentration and molecular composition to specific disease conditions. Through their many
targets, members of the LPA family regulate cell survival, apoptosis, motility, shape, differentiation, gene transcription,
malignant transformation and more. The present review depicts arbitrary aspects of the physiological and pathophysiological
actions of LPA and attempts to link them with select targets. Many of us are now convinced that therapies targeting LPA
biosynthesis and signalling are feasible for the treatment of devastating human diseases such as cancer, fibrosis and
degenerative conditions. However, successful targeting of the pathways associated with this pleiotropic lipid will depend on
the future development of as yet undeveloped pharmacons.
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phosphatidic acid (1-acyl-sn-glycerol-2,3-cyclic phosphate); CTGF, connective tissue growth factor; CYR61, cysteine-rich
protein 61; DRG, dorsal root ganglion; EDG, endothelial gene; GPAT, glycerol-3-phosphate acyl transferase; GPCR, G
protein-coupled receptor; HUVEC, human umbilical vein endothelial cells; iPLA2, Ca2+-independent phospholipase A2;
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1-acyl-2-hydroxy-sn-glycero-3-phosphate; LPC, lysophosphatidylcholine; LPS, lysophosphatidyl serine; MEF, mouse
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The lysophosphatidic acid-like lipid
mediator family

Lysophosphatidic acid (1-acyl-2-hydroxy-sn-
glycero-3-phosphate; LPA) represents the minimal

glycerophospholipid based on the radyl-glycerol-
phosphate scaffold. However, LPA is only one
member of a family of endogenous lipid-like sub-
stances endowed with a host of biological actions
that are often mediated through high-affinity
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interactions with specific cell surface and intracellu-
lar proteins (Figure 1). The specific recognition of
LPA-like molecules by several receptors and enzymes
provides a diversity of biological actions that have
fascinated many investigators. What biomolecules
constitute the LPA family? First, for the sake of
brevity, we will ignore lysophospholipids built up
on the sphingoid backbone. Although this creates
an artificial oversimplification, it nevertheless
allows for a single focus on a distinct subset of lipids,
which in many instances interact with the same
molecular targets. In most cases, sphingolipids, best
represented by sphingosine-1-phosphate (S1P), have
their own set of distinct targets that rarely overlap
(but in some instances do; discussed below) with
those of LPA.

Different molecular species of LPA, dominated by
16-, 18- and 20-carbon long acyl chains, have been
detected in biological fluids as saturated, and mono-
and poly-unsaturated variants of either the sn1 or
the sn2 regioisomers. This natural variety within the
LPA class leads to important biological and pharma-
cological consequences. First, most LPA G protein-
coupled receptors (GPCR) show lower EC50 values
(higher potency) for unsaturated species (Bandoh
et al., 2000; Fujiwara et al., 2005; Williams et al.,
2009). An extreme case of target selectivity is found
for the peroxisome proliferator-activated receptor
gamma (PPARg), an intracellular target of LPA that is
exclusively activated by unsaturated acyl species of
LPA (Tsukahara et al., 2006). The LPA concentration
in plasma is in the low nanomolar range, whereas in

serum it increases to several micromoles (Baker
et al., 2001; Watanabe et al., 2007b; Hosogaya et al.,
2008). The poly-unsaturated 18:2 (38%) and 20:4
(39%) and the mono-unsaturated 18:1 (9%) LPA
species constitute the overwhelming majority (86%)
of LPA in serum (Sano et al., 2002). This enrichment
in the unsaturated species increases the likelihood
of the activation of those LPA targets that show
preference for these fatty acyl species. In addition,
sn1 and sn2 regioisomers of acyl LPA have been
detected, and the LPA3, the purinoreceptor-5 (P2Y5)
and GPR35 receptors have been suggested to show a
slight preference for sn2 over sn1 LPA containing
identical fatty acid chains (Bandoh et al., 2000;
Yanagida et al., 2009; Oka et al., 2010). One unre-
solved concern is the stability of these regioisomers
in vivo due to the relatively fast rate of acyl migra-
tion towards a 9:1 (sn1 : sn2) equilibrium ratio of
the isomers (Wang et al., 1997; Croset et al., 2000).

There are two mouse phospholipase A1 enzymes
that have been linked to production of unsaturated
sn-2 LPA. A phosphatidic acid-specific PLA1a and b
(Sonoda et al., 2002; Hiramatsu et al., 2003) from
mice have been cloned, which are the equivalents of
the human enzymes LIPH and LIPI respectively
(Kazantseva et al., 2006; Aoki et al., 2007; Aoki et al.,
2008; Pasternack et al., 2009; Shimomura et al.,
2009a,b). Mutations in the LIPH/mPA-PLA1a gene
have been identified as the cause of the hereditary
disorder woolly hair, as it’s gene product supplies
LPA to the P2Y5 receptor expressed in the hair bulb
(Kazantseva et al., 2006; Pasternack et al., 2008;

Figure 1
Naturally occurring ligands of LPA targets. LPA 18:1, oleoyl-lysophosphatidic acid; AGP 18:1, 1-O-octadecyl glycerophosphate; CPA 18:1,

oleoyl-cyclic phosphatidic acid; ALKENYL-GP, alkenyl glycerophosphate; NAG, N-arachidonoyl glycine; FMP, farnesyl monophosphate.
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2009; Shimomura et al., 2008; 2009a,b). Yet, another
mouse PLA1 enzyme, designated PS-PLA1, secreted
from rat platelets and specific to phosphati-
dylserine, has been identified by the Aoki group
(Horigome et al., 1987; Sato et al., 1997). However,
this enzyme is not found in human platelets and its
role in human pathophysiology is unclear.

Alkyl-ether (Sugiura et al., 1999; Nakane et al.,
2001) and alkenyl-ether analogues (Liliom et al.,
1998) of LPA have been described. These lower-
abundance mediators have been shown to be weaker
agonists of LPA-specific GPCR (Bandoh et al., 2000;
Fujiwara et al., 2005; Williams et al., 2009) with one
exception. The LPA5/GPR92 receptor shows a prefer-
ence for 1-O-alkyl glycerophosphate over the acyl
analogues with the same chain length (Williams
et al., 2009). Human platelets show preferential acti-
vation by 1-O-alkyl glycerophosphate over LPA; and
the structure-activity relationship of the platelet
response is similar, although not identical, to that of
LPA5 (Simon et al., 1982; Williams et al., 2009). Inter-
estingly, 1-O-alkyl glycerophosphate shows a higher
potency than LPA with respect to PPARg activation
(Zhang et al., 2004; Tsukahara et al., 2006).

Cyclic phosphatidic acid (1-acyl-sn-glycerol-2,3-
cyclic phosphate; CPA) is an additional class of acyl
LPA analogues in which the sn-2 hydroxyl group has
formed a 5-membered ring with the sn-3 phosphate
via the elimination of a water molecule. CPA is also
a naturally occurring analogue of LPA present in
mammalian blood and brain, as well as in slime
mold, the organism in which CPA was originally
identified (Murakami-Murofushi et al., 1993; Koba-
yashi et al., 1999). CPA can be generated by auto-
taxin (ATX) under non-physiological conditions
using a two-phase water/ether reaction system
(Tsuda et al., 2006), but whether this enzyme con-
tributes to the formation of CPA in blood remains
an open question. Bacterial phospholipase D (PLD)
can also yield CPA production (Friedman et al.,
1996). In mammalian cells, CPA is generated intra-
cellularly by PLD2 and acts as a second messenger
which inhibits PPARg (Tsukahara et al., 2010). CPA is
a weak agonist of many LPA GPCR (Fujiwara et al.,
2005; Williams et al., 2009). However, its synthetic
hydrolysis-resistant 3-carba analogue (3CCPA 18:1)
is a selective weak agonist of LPA5/GPR92 that fails
to activate LPA1/2/3/4 and also inhibits ATX (Baker
et al., 2006; Fujiwara, 2008). CPA and its synthetic
3CCPA analogues inhibit cancer metastasis through
an as yet unidentified mechanism, which includes
the inhibition of ATX (Baker et al., 2006; Uchiyama
et al., 2007; Fujiwara, 2008).

In search of the minimal pharmacophore that
activates LPA GPCR, we identified fatty alcohol
phosphates that, depending on the length of the

hydrocarbon chain and the headgroup (phosphate
or thiophosphate), function as either antagonists or
agonists (Durgam et al., 2005; Deng et al., 2007;
Zhang et al., 2009a). Naturally occurring farnesyl
phosphates are structurally similar to fatty alcohol
phosphates. This similarity prompted us to confirm
that farnesyl mono- and diphosphate activate
various LPA GPCR targets (Liliom et al., 2006). Oh
et al. (Oh da et al., 2008) reported that farnesyl
monophosphate and arachidonoyl glycerol were
more potent activators of LPA5 than LPA. However,
other groups have reported that LPA and 1-O-alkyl
glycerophosphate are the most potent agonists of
LPA5 identified so far (Kotarsky et al., 2006; Lee et al.,
2006; Williams et al., 2009). Despite this contro-
versy, farnesyl mono- and diphosphate are impor-
tant pharmacological tools that allow for the
selective activation of LPA5 (~50 nM EC50) without
activation of LPA1,2,3,4 (in fact these reagents are
weak inhibitors of LPA2,3,4 with IC50 values in the
mid-micromolar range) (Williams et al., 2009).

S1P is currently classified as a specific ligand for
five cognate receptors, S1P1,2,3,4,5, which are not acti-
vated by physiological concentrations of LPA. It is
important to recognize that LPA1,2,3 receptors, at
least when expressed heterologously, do show acti-
vation to S1P at concentrations in excess of 1 mM
(Valentine et al., 2008a). Conversely, LPA binds to
(Kd = 2.3 mM) and activates the S1P1 receptor as a
low-affinity agonist (Lee et al., 1998). Because LPA
concentrations can reach several micromoles in
serum and tumour cell effusates (Baker et al., 2001;
2002; Sutphen et al., 2004), promiscuous activation
of S1P1 by LPA in pathophysiological conditions
may occur. Murakami et al. (Murakami et al., 2008)
recently reported that P2Y10 is a receptor for LPA
that is also activated by S1P, making P2Y10, if con-
firmed, a dual-specificity receptor. To make things
even more interesting, heterologously expressed
P2Y10 is also activated by lysophosphatidyl serine,
although it is much less potent than LPA on this
target.

LPA GPCRs

The LPA GPCR are the most studied and best
understood targets of LPA. In mammals, LPA
GPCRs have been identified in two distinct gene
families (Figure 2). Chronologically, the endothelial
gene (EDG) family was the first shown to encode
GPCR specific for S1P and LPA. Within the EDG
family, three receptors – LPA1, LPA2 and LPA3 – are
activated by LPA and its analogues. These three
receptors share 45–56% overall amino acid identity.
The overall homology of the transmembrane
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domains of these three GPCR is 86%, whereas only
6% of the amino acids are conserved in their
C-terminal tails. In addition, five S1P-specific recep-
tors, S1P1, S1P2, S1P3, S1P4 and S1P5, belong to this
gene cluster. There are many excellent recent
reviews on the biological function and signal trans-
duction associated with the EDG family receptors;
we refer the reader to these for a more in-depth
description (Tigyi and Parrill, 2003; Choi et al.,
2008; Mutoh and Chun, 2008; Rivera and Chun,
2008; Ishii et al., 2009; Noguchi et al., 2009; Pey-
ruchaud, 2009).

A second cluster of LPA GPCR is found within
the P2Y gene cluster (Ishii et al., 2009). The better-
characterized LPA-sensitive members of this cluster
are P2Y9/GPR23/LPA4 (this will be abbreviated as
LPA4) (Noguchi et al., 2003; Yanagida et al., 2007)
and GPR92/LPA5 (this will be abbreviated as LPA5)
(Kotarsky et al., 2006; Lee et al., 2006; Williams
et al., 2009; Yin et al., 2009). There are additional
related GPCR that appear to be activated by LPA. In
chronological order based on the first publication,
these include the GPR87 (Tabata et al., 2007; Wetter
et al., 2009), P2Y5 (Pasternack et al., 2008; Shimo-
mura et al., 2008), P2Y10 (Murakami et al., 2008)
and GPR35 (Oka et al., 2010) gene products. The
LPA GPCR nomenclature was developed by the
International Union of Basic and Clinical Pharma-
cology (IUPHAR) nomenclature committee (Chun
et al., 2002), which has not met since 2002; but
efforts to update this nomenclature are underway.

Hence, the assignment of numbers to LPA GPCR
beyond LPA5 has been arbitrary and confusing.
According to the IUPHAR committee, numbering
assignments should follow the chronological order
of publication, yet some authors tend to ignore the
report on GPR87 in 2007 (Tabata et al., 2007) that
preceded publications on P2Y5 in 2008 (Pasternack
et al., 2008; Shimomura et al., 2008). Now that
GPR87 has been shown independently to be acti-
vated by LPA (Wetter et al., 2009), it might qualify
for the designation LPA6; consequently, P2Y5
would be LPA7, P2Y10 and GPR35, if confirmed,
would be LPA8 and LPA9, respectively. However,
these designations will have to be officially
assigned by the IUPHAR pending the publication of
additional confirmatory evidence concerning the
identity of their most potent natural ligand. A
summary of the different established and putative
LPA receptors and their ligands is shown in Table 1
and Figure 3.

LPA4 shows a wide tissue distribution with the
highest density of transcripts in the ovary, uterus
and placenta (Ishii et al., 2009). Interestingly, this
receptor was not detectable by Northern blotting in
the liver, spleen and testis. LPA4 has high transcript
abundance at sites of implantation within the
uterus and increased expression in the ovary during
pregnancy. The ligand preference of LPA4 is LPA 18:1
> 18:0 > 16:0 > 14:0 > 1-O-alkyl glycerophosphate
>1-O-alkenyl glycerophosphate, and the Kd for LPA
18:1 binding to the human orthologue is 77 nM
(Noguchi et al., 2003). The brain expresses relatively
high levels of LPA4; and it has been shown, using
heterologous expression in B103 neuroblastoma
cells, to cause LPA-dependent growth cone collapse
and neurite retraction through G12/13-RhoA-Rho-
associated kinase (ROCK) activation (Lee et al.,
2007). Although a practical issue, it is important to
note that heterologous expression of the non-EDG
family receptors is often difficult and requires
special plasmids and/or receptor-G protein fusion
constructs (Noguchi et al., 2003; Tabata et al., 2007;
Murakami et al., 2008). Knockout mice for LPA4 do
not display a noticeable phenotype, although
mouse embryonic fibroblasts (MEF) isolated from
the knockouts show increased migration in response
to LPA, supporting the hypothesis that this receptor
inhibits cell motility (Lee et al., 2008). Along with
LPA5, LPA4 has been implicated in the inhibition of
neurosphere formation and neuronal differentiation
of human embryonic stem cells (Dottori et al.,
2008). LPA4 shows high expression in platelets
(Khandoga et al., 2008), and Smyth et al. proposed
that it might mediate LPA-induced inhibition of
platelet activation (Pamuklar et al., 2008). In
patients whose platelets do not respond to LPA, LPA4

Figure 2
Phylogenetic tree of established and putative LPA GPCR generated by

the NGBW program (http://www.ngbw.org). GPCR, G protein-

coupled receptor.
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mRNA is increased sixfold over platelets from
patients that are LPA-responsive. Thus, LPA4 might
be a cardioprotective receptor as patients with LPA-
non-responsive platelets are less likely to suffer from
coronary heart disease.

LPA5 is present in the heart, placenta, brain,
dorsal root ganglia, small intestine and spleen.
Intestinal CD8+ lymphocytes, as well as B cells, show
abundant expression of LPA5 (Kotarsky et al., 2006),
suggesting an immunoregulatory role. This receptor
subtype is also highly expressed in human platelets,
and pharmacological evidence of its preference for
1-O-alkyl glycerophosphate suggests that it medi-
ates platelet activation (Williams et al., 2009). The
ligand preference of LPA5 is 1-O-alkyl glycerophos-
phate 18:1 � 1-O-alkyl glycerophosphate 18:0 > LPA

18:1 > LPA 20:4 = LPA 16:0 = LPA 18:3 > farnesyl
monophosphate > farnesyl diphosphate > LPA 18:0
> LPA 20:4 > CPA 18:1 > CPA 16:0 > N-arachidonyl
glycine (Williams et al., 2009), and the Kd for LPA
18:1 binding is 6.4 nM (Kotarsky et al., 2006). The
physiological/pathophysiological classification of
this receptor subtype is rudimentary at the present
time. Analysis of LPA5 is currently limited to heter-
ologous expression studies, and experiments using
farnesyl phosphate as a selective, although not a
specific, agonist. LPA5 knockout mice have deficits
in the response to neuropathic pain (Sheardown
et al., 2004; Kinloch and Cox, 2005). LPA5-lacZ
reporter gene-expressing mice showed the strongest
expression in cell bodies of dorsal root ganglion cells
that extend C-fibres (sensory nerves conveying pain

Figure 3
Synthetic ligands of LPA GPCR (see Table 1 for details). GPCR, G protein-coupled receptor; LPA, lysophosphatidic acid.
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signals) but not in those neurons with Ab fibres
(sensory nerves conveying non-pain signals). In
these animals, LPA5 staining was noted in the
trigeminal ganglia but not the spinal cord or brain.
Behavioural testing showed that the mutant mice
had no abnormalities on a wide range of standard
tests, including von Frey responses. There was,
however, a significant delay in the tail flick test,
indicating impaired nociceptive function. In vivo
electrophysiological recordings (Kinloch and Cox,
2005) from the dorsal horn of mutant animals
revealed significantly lower numbers of action
potentials in response to noxious mechanical,
thermal and cold stimuli applied to the hind foot
than in wild-type mice. However, there was no dif-
ference in the number of action potentials recorded
in response to non-noxious brush stimulation or to
temperature in the non-noxious range. Knockout
mice failed to develop allodynia using the Chung
model of neuropathic pain for 13 days as measured
by von Frey thresholds. In contrast wild-type mice
developed allodynia in this model (Sheardown
et al., 2004; Kinloch and Cox, 2005). In another
study, LPA5 protein was detected using immunohis-
tology in dorsal root ganglion cells of mice and
humans (Oh da et al., 2008). In cultured small dorsal
root ganglion (DRG) cell neurons, farnesyl diphos-
phate and N-arachidonoyl glycine both elicited Ca2+

transients that were abolished by LPA5 small inter-
fering RNA (siRNA) transfection, suggesting a poten-
tial role in nociception (Oh da et al., 2008). These in
vitro findings are consistent with the role of LPA5 in
pain processing. Hence, antagonists of LPA5 might
offer a therapeutic approach to the treatment of
neuropathic pain.

Chronologically GPR87 was the next
de-orphaned GPCR showing activation by LPA
(Tabata et al., 2007; Wetter et al., 2009). GPR87 has a
modest 27% and 25% homology with LPA4 and LPA5

respectively. Its sequence shows 41–48% identity
with the P2Y12-13-14 receptors and is nestled into this
cluster of genes on human chromosome 3q25.
Fujita et al. developed an in silico screening method
to discover surrogate ligands for the P2Y receptor
family (Hiramoto et al., 2002; 2004; Nonaka et al.,
2005). The data supporting LPA as a ligand for
GPR87 come from heterologous expression studies
conducted in stably transfected Chinese hamster
ovary (CHO) cells with a GPR87-G16 fusion protein
(Tabata et al., 2007) and from using the Tango™
b-arrestin recruitment-based assay in U2OS cells
(Wetter et al., 2009). Expression of GPR87 alone is
difficult, suggesting that the posttranslational pro-
cessing of this receptor might be complex and that
attaching G16 to the putative receptor increases
plasma membrane expression of the fusion con-

struct (Dr Norihisa Fujita – personal communica-
tion). GPR87-G16-transfected CHO cells mobilize
Ca2+ in response to LPA with an EC50 of 36 nM. This
response is completely abolished with a GPR87
siRNA. These cells fail to respond to uridine diphos-
phate (UDP) and UDP-glucose; however, uridine
triphosphate (UTP) treatment of the cells elicits a
desensitization-like phenomenon of the LPA
response. GPR87 transcripts were detected in the
brain, skeletal muscle and the reproductive organs.
The initial report on GPR87 also showed that the
response to LPA (100 nM) was blocked by Ki16425
(1 mM) and diacylglycerol pyrophosphate (50 mM),
which have been previously identified as antago-
nists of the LPA1-3 receptors (Tabata et al., 2007).
Clearly, more information is necessary to fully char-
acterize this receptor’s ligand selectivity and signal
transduction properties, both of which should be
derived from LPA-hyporesponsive cells. GPR87 is
under the transcriptional regulation of p53; shows a
very high expression level in squamous cell carcino-
mas, lung adenocarcinomas and transitional carci-
nomas of the urinary bladder and is involved in
promoting cell survival and proliferation (Glatt
et al., 2008; Gugger et al., 2008; Zhang et al., 2009b).

An unbiased genetic search for the gene causing
familial Hypotrichosis simplex and autosomal reces-
sive woolly hair has identified mutations in the
P2Y5 receptor gene on chromosome 13q14.2–14.3
(Z = 17.97) (Pasternack et al., 2008; Shimomura
et al., 2008) underlying the disease. Woolly hair is
characterized by the presence of fine and tightly
curled hair and is also linked to another locus on
chromosome 3q27. This region contains the lipase
H (LIPH) gene, which has been recently shown to
underlie an autosomal-recessive form of hypotricho-
sis (Pasternack et al., 2009; Shimomura et al.,
2009a,b). Lipase H is the human orthologue of the
PA-PLA1 enzyme that produces sn2-LPA from PA.
The phenotypically indistinguishable autosomal-
recessive woolly hair syndrome caused either by
mutations in the P2Y5 or PA-PLA1/LIPH genes
points to the signalling axis that is colocalized to the
Henle’s and Huxley’s layers of the inner root of the
hair follicle. There are differences in LPA receptor
expression between hair follicles in the eyebrow and
those in the scalp. The former express LPA5 in addi-
tion to P2Y5, whereas the latter express P2Y5 only;
hence, hypotrichosis manifests only in the scalp
(Pasternack et al., 2008). LIPH was originally identi-
fied by Kazantseva et al. (Kazantseva et al., 2006) as a
gene linked to hair growth deficiency in Finno-Ugric
families in current-day Russia. LIPH is homologous
to mPA-PLA1a, the enzyme that cleaves the sn1 fatty
acid in phosphatidate to generate sn2-LPA (Sonoda
et al., 2002). LIPH/mPA-PLA1a is expressed in the

BJPNovel LPA targets

British Journal of Pharmacology (2010) 161 241–270 247



skin concentrated near the hair bulb and follicle,
lung, kidney and pancreas. Currently, the tissue
expression of P2Y5 is not known outside the skin
and the hair. P2Y5 shows a Kd of 88.6 nM for sn1
LPA 18:1 binding and a rank order of activation of
LPA 18:2 > LPA 18:1 > LPA 20:4 > LPA 18:0 > LPA 16:0
> LPA 14:0 (Yanagida et al., 2009). Yanagida et al.
also compared the activation properties of P2Y5 by
sn1 and sn2-LPA species and found that the sn2-
substituted regioisomers were more potent and, in
the case of arachidonoyl LPA, more efficacious
than the corresponding sn1 regioisomer (Yanagida
et al., 2009). D-sn-1-O-oleyl-2-O-methyl-glyceryl-3-
phosphothionate (OMPT), a previously proposed
LPA3-selective agonist, was more potent at the P2Y5
receptor than LPA 18:1 (Yanagida et al., 2009). P2Y5
in heterologous expression systems has been found
to couple to G12/13 and Gs, whereas its ability to elicit
Ca2+ transients is disputed [(Yanagida et al., 2009) vs.
(Pasternack et al., 2008)]. Interestingly, human
umbilical vein endothelial cells (HUVEC) express
LPA1 and P2Y5; and knock-down of the latter par-
tially inhibited LPA-induced contraction, suggesting
a role for this receptor in the barrier properties of
vascular endothelia (Yanagida et al., 2009). Of note
is the observation that transgenic mice overexpress-
ing lipid phosphate phosphatase-1 (LPP1/PAP2a), an
ectoenzyme thought to degrade LPA, show hair
growth defects that is consistent with LPP1-
mediated degradation of LPA in the skin (Yue et al.,
2004). The physiological and pathophysiological
functions of P2Y5 other than in hair growth will
have to be addressed in future studies.

P2Y10 was de-orphaned as an LPA-activated
receptor by the Fujita group, using the same in
silico process that led to their discovery of GPR87’s
responsiveness to LPA (Murakami et al., 2008). The
P2Y10 gene is localized to region 21.1 of the X
chromosome near the gene for the LPA4 receptor.
LPA4, LPA5 and GPR87/LPA6 show high 56%, 52%
and 45% homology to P2Y10, which is similar to
the 45% amino acid sequence identity among
LPA1, LPA2 and LPA3. Transcripts for this putative
LPA receptor were detected in the uterus, prostate,
brain, lung, placenta and skeletal muscle. P2Y10 is
transcriptionally regulated by PU.1 and Spi-B of
the Ets transcription factor family in B cells (Rao
et al., 1999) and also expressed in platelets
(Amisten et al., 2008). P2Y10 have been expressed
functionally in Flp-In™ CHO cells either alone or
as a G16 fusion construct. In the stable transfec-
tants, LPA and S1P evoke Ca2+ transients with EC50

values of 53 nM and 130 nM respectively. Empty
vector-transfected or G16-transfected CHO cells do
not show Ca2+ transients in response to S1P, and
their endogenous LPA response is augmented in its

size with a dose–response shifted to the left. These
authors found no activation by dihydro-S1P or
sphingosylphosphorylcholine or other lysophos-
pholipids. Kitamura et al. (Kitamura et al., 2009)
expressed P2Y10 in NIH3T3 and HEK293 cells and
found that transfectants show morphological
changes and TNFa secretion in response to lyso-
phosphatidyl serine (LPS); the latter was inhibited
by Y-27632, an inhibitor of the RhoA-ROCK signal-
ling axis. These cells were highly responsive to LPA
and S1P, and these lipids elicited similar responses
in P2Y- and mock-transfected cells. In our hands,
P2Y10-CHO cells respond to LPA > S1P > LPS
(Figure 4), which is consistent with the findings of
the Fujita and Aoki groups. GPR34, another P2Y
family GPCR, has been recently de-orphaned as a
receptor for LPS (Sugo et al., 2006). As for GPR87,
also for P2Y10: additional studies will be needed to
establish whether LPA is their most potent endog-
enous ligand. During the redaction of this article,
Oka et al. (2010) reported that GPR35 responds to
LPA with a unique preference for sn2-substituted
LPAs. The rank order of ligand efficacy at GPR35
was sn2-18:2 > sn2-18:1 > sn2-20:4 > sn1-18:1.
GPR35 activates the Rho GTPase and the ERK1/2
mitogen activated kinase. Kynurenic acid at con-
centrations � 100 mM activated GPR35.

Figure 4
Activation of Ca2+ transients in P2Y10-transfected (filled symbols) and

empty vector-transfected Ga16-expressing CHO cells (open

symbols) by LPA, AGP, CPA, S1P and LPS. Note that P2Y10-

transfected cells dose-dependently respond to low micromolar CPA,

S1P and LPS. These ligands either elicit no response (S1P and LPS) or

greatly diminished response (CPA) in the vector transfected Ga16-

expressing CHO cells. All ligands display lower EC50 and higher Emax

values in P2Y10-transfected cells compared with controls. The dose–

response curves were generated using Fura2 in a FLEXStation.
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Intracellular actions of LPA

Identification of its many GPCR shifted the interest
to the mediator role of LPA while many early reports
on its intracellular actions became ignored (Tsai
et al., 1989; Sando and Chertihin, 1996; Yang et al.,
2000; Chemin et al., 2005). LPA is generated intrac-
ellularly through several pathways. Glycerol-3-
phosphate acyl transferase (GPAT) links fatty acyl-
CoA with glycerol-3-phosphate to yield LPA. The
metabolic fate of fatty acids taken up into cells goes
through this important lipid biosynthetic pathway.
In cells with the ability to take up fatty acids, this
LPA production pathway might have an important
regulatory role through activation of the nuclear
hormone receptor PPARg. PPARg plays an essential
role in regulating lipid and glucose homeostasis
(Evans, 2005), as well as cell proliferation (Mueller
et al., 1998), apoptosis (Elstner et al., 1998), and
inflammation (Ricote and Glass, 2007). These
responses have a direct impact on human diseases,
particularly diabetes (Lehmann et al., 1995), athero-
sclerosis (Li et al., 2000) and cancer (Sarraf et al.,
1998). Synthetic agonists of PPARg include the thia-
zolidinedione (TZD) class, widely used to treat type
2 diabetes. Physiological agonists of PPARg include
15d-PGJ2 (Forman et al., 1995), modified fatty acids
(Baker et al., 2005) (Nagy et al., 1998), oxidized
phospholipids (Davies et al., 2001) and select forms
of LPA (McIntyre et al., 2003). The structure-activity
relationship of PPARg’s activation by LPA differs
from that of the GPCR (Tsukahara et al., 2006).
Whereas LPA GPCR are activated by both saturated
and unsaturated fatty acid-substituted LPAs, PPARg
is only activated by unsaturated LPA. LPA GPCR do
not show stereoselective responses to the S- and
R-isomers of LPA; in contrast, PPARg is only acti-
vated by the S-stereoisomer. Furthermore, with the
exception of LPA5, the alkyl analogues of LPA are less
potent agonists of the remaining LPA GPCR;
however, 1-O-alkyl glycerophosphate is consider-
ably more potent than LPA at PPARg (Zhang et al.,
2004; Tsukahara et al., 2006). The apparent Kd of
1-O-octadecenyl glycerophosphate binding was
60 nM in the PPARg ligand binding domain, which
is similar to that of rosiglitazone at 40 nM (Tsuka-
hara et al., 2006). Some of the residues required for
activation of PPARg by 1-O-octadecenyl glycero-
phosphate differ from those required by rosiglita-
zone. When mutated to alanine, histidines 323 and
449 within the ligand-binding domain of PPARg
failed to abolish binding to and activation by 1-O-
octadecenyl glycerophosphate but completely abol-
ished the binding of and activation induced by
rosiglitazone. Alanine mutation of arginine 288
significantly reduced binding and activation

induced by 1-O-octadecenyl glycerophosphate but
not those induced by rosiglitazone. Mutation of
tyrosine 273 to phenylalanine abolished binding
to and activation by both agonists (Tsukahara
et al., 2006).

What is the physiological role of PPARg activa-
tion by LPA? LPA is a key intermediate of fatty acid
metabolism. Fatty acids taken up by cells are acti-
vated to form acyl-CoAs. Acyl-CoAs can be targeted
for b-oxidation by conversion to acyl-carnitine or
converted to LPA by different isoforms of GPAT. The
resulting LPA can feed either phospholipid synthesis
or fuel triacylglycerol synthesis and lipid storage.
The LPA formed by GPAT can up-regulate PPARg
target genes involved in lipogenesis, lipid storage
and adipocytic differentiation. In a pathophysi-
ological context, LPA might be a key factor in non-
alcoholic fatty liver disease (Nagle et al., 2009;
Wendel et al., 2009). Thus, LPA might be a molecu-
lar link between fatty acid uptake and lipid storage.
This hypothesis, although plausible, awaits experi-
mental proof.

Another mechanism regulated by LPA-mediated
activation of PPARg is arterial wall remodelling,
which can lead to plaque formation. All major cell
types of the arterial wall respond to LPA. In endot-
helial cells, LPA has been shown to regulate the
expression of adhesion molecules and stimulate pro-
liferation, apoptosis, permeability, motility and cell-
to-cell contacts responsible for transendothelial
permeability (Rizza et al., 1999; Lin et al., 2006). LPA
induces vascular smooth muscle cell (VSMC) con-
traction, proliferation (Tokumura et al., 1994) and
phenotypic transdifferentiation in vitro (Hayashi
et al., 2001; Zhang et al., 2004). LPA and oxidized
low-density lipoprotein (LDL) inhibit macrophage/
dendritic cell egress across endothelial cell monolay-
ers (Angeli et al., 2004; Llodra et al., 2004). LPA also
stimulates the formation of platelet-monocyte
aggregates, which are considered an early marker of
acute myocardial infarction (Fueller et al., 2003;
Siess, 2006).

Yoshida et al. were the first to test the effects of
lumenally applied LPA on non-injured arterial wall
in vivo (Yoshida et al., 2003). These authors infused
LPA through the external carotid artery of rats into
a ligated section of the common/internal carotid
artery that was previously rinsed free of blood and
maintained near the mean arterial perfusion pres-
sure. In this model, which involves no mechanical
injury or removal of endothelial cells within the
common carotid artery, a 1-hour exposure to unsat-
urated but not to saturated species of LPA at low
micromolar concentrations leads to neointima
development. The structure-activity relationship of
neointima induction does not match that of the
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known LPA GPCR but matches that for PPARg acti-
vation by LPA. PPARg has long been implicated in
atherogenesis (Diep and Schiffrin, 2001; Li and
Glass, 2002). GW9662, a specific irreversible antago-
nist of PPARg (Leesnitzer et al., 2002), completely
abolished 1-O-octadecenyl glycerophosphate-, LPA-
and rosiglitazone-induced neointima formation in
the rat model (Zhang et al., 2004). In addition to
this pharmacological evidence, studies conducted
with LPA1&2 and PPARg conditional knockout mice
confirmed the requirement of PPARg and not LPA1&2

GPCR for arterial wall remodelling in the non-injury
model (Cheng et al., 2009). Several investigators
have reported that systemic and chronic adminis-
tration of rosiglitazone attenuates neointima in
models with mechanical injury of the arterial wall,
which differs from findings reported using the non-
injury model (Lim et al., 2006; Lee et al., 2009).
When 1-O-octadecenyl glycerophosphate was
applied to an injured carotid artery, neointima for-
mation was augmented, whereas rosiglitazone
attenuated it. These observations underscore the dif-
ferences between the non-injury and injury-induced
models. It is important to note that circulating LPA
bound to carrier proteins such as albumin is unable
to activate PPARg due to limited internalization of
the lipid-protein complex (Zhang et al., 2004). Thus,
the source of LPA is ether intracellular or although
the uptake of lipid particles such as oxidized LDL
(Siess et al., 1999; Zhang et al., 2004). The role of
LPA in regulating vascular wall physiology is a very
promising area for future research.

The LPA-PPARg axis is also involved in mast cell
and dendritic cell differentiation (Bagga et al.,
2004; Leslie et al., 2008). Bagga et al. have shown
that LPA caused mast cell hyperplasia by inducing
the proliferation and maturation of these cells.
These cellular responses are under dual control of
LPA1/3 GPCR and PPARg as they were partially
inhibited by GW9662, pertussis toxin or VPC-
32179. Dendritic cells play an important role in
antigen presentation. Serum lipids promote the
expression of CD1d antigen-presenting molecules
and enhance the activation of immune responses
mediated by CD1d-restricted T cells. LPA and car-
diolipin were identified as the two active ingredi-
ents in serum (Leslie et al., 2008). CD1 expression
in immature dendritic cells was under the tran-
scriptional control of PPARg. This finding raises the
hypothesis that LPA can regulate antigen presenta-
tion by dendritic cells through the expression of
CD1 molecules. Although not mediated by PPARg,
another important immunoregulatory role of LPA
has been described by Kanda et al. (Kanda et al.,
2008), who found high expression of ATX in the
high endothelial venules of lymph nodes. LPA

induces chemokinesis in T lymphocytes and could
regulate their homing into the lymph node. These
observations combined with the role of S1P in
lymphocyte egress underscore the importance of
lysophospholipids in lymphocyte trafficking and
assign LPA and S1P to distinct steps, homing and
egress respectively.

Lysophosphatidic acid is also produced in a spa-
tially regulated fashion by the Ca2+-independent
phospholipase A2 (iPLA2) at the leading edge of
the migrating monocyte (Carnevale and Cathcart,
2001; Mishra et al., 2008). Cathcart et al. have
shown that whereas cPLA2a generates arachidonic
acid in the cytoplasm and localizes to the trailing
edge in monocytes migrating towards MCP-1
chemokine, iPLA2 produces LPA and is localized to
the pseudopods where actin polymerization is
actively regulated. LPA GPCR have long been
known to signal through the Rho-Rac-Cdc42 small
GTPase-coupled pathways regulating the actin
cytoskeleton (Ridley and Hall, 1992; 1994; Ridley
et al., 1992; Ridley et al., 2004). However, there is
compelling evidence for the interaction of LPA
with actin-binding proteins, including gelsolin,
formin, adseverin (Meerschaert et al., 1998; Goetzl
et al., 2000b; Mintzer et al., 2006) and villin, the
later of which is restricted to epithelial cells
(Khurana et al., 2008; Tomar et al., 2009). LPA gen-
eration via iPLA2 in migrating cells could regulate
actin capping, severing and polymerization
through direct high-affinity interactions with these
actin-binding proteins. The high-affinity interac-
tion of acting binding proteins with phosphatidyli-
nositol 4,5-bisphosphate (PIP2) has long been
known among cell biologists. In this context, find-
ings of the Khurana group are of importance
(Khurana et al., 2008; Tomar et al., 2009). These
authors showed higher affinity binding of LPA to
villin (Kd 22 mM) than that of PIP2 (Kd 39.5 mM)
and demonstrated the LPA displaced villin-bound
PIP2 in vivo. They also provided evidence that LPA
can regulate actin nucleation, depolymerization
and capping, the latter of which is not affected by
PIP2. LPA has been found to enhance Src-mediated
phosphorylation of villin (Khurana et al., 2008;
Tomar et al., 2009) and gelsolin (Meerschaert et al.,
1998). This polarized production coupled with the
direct interaction of LPA with members of the
gelsolin-villin family proteins implicates it in the
cellular compass mechanism underlying direc-
tional cell migration. Extracellularly applied LPA
induces cell polarization, directional motility and
metabolic burst in human neutrophils (Chettibi
et al., 1994). It is intriguing to speculate how iPLA2
could be redistributed to the leading edge of the
cell exposed to a chemokinetic gradient and
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whether extracellular LPA signals originating from
LPA GPCR through an inside-out mechanism could
feed back into the regulation of iPLA2 and the cel-
lular compass (Figure 5).

Lysophosphatidic acid can also be produced
intracellularly by PLD from lysophosphatidyl
choline and potentially be a source of ligand for
intracellular and/or cell surface LPA receptors (Xie
et al., 2002).

Autotaxin – how to target it in vivo?

In extracellular biological fluids, LPA production is
linked to ATX, which is a lysophospholipase D that
cleaves the headgroup from lysophospholipids to
generate LPA. ATX is a member of the nucleotide
pyrophosphatase/phosphodiesterase (NPP) family
and is also known as NPP2. ATX was originally iden-
tified as a secreted phosphatase in melanoma
culture supernatant that promoted the motility of
cancer cells (Stracke et al., 1992). Ten years after its
original discovery, ATX was identified as a lysophos-
pholipase D responsible for the production of LPA in
serum (Umezu-Goto et al., 2002; Tokumura et al.,
2002a). Knocking out ATX leads to embryonic
lethality due to a defect in blood vessel formation
(van Meeteren et al., 2006; Tanaka et al., 2006) and a
lack of large lysosomes in the yolk sac visceral endo-

derm cells (Koike et al., 2009). This latter defect is
due to a lack of LPA-mediated constitutive activa-
tion of the Rho-ROCK and LIM kinase pathways.
Conditional knockout of ATX in the nervous system
causes a neural tube defect that can be corrected in
explants by the addition of LPA in the culture
medium (Fotopoulou et al., 2010). Neural tube
closure involves LPA-mediated activation of the
hypoxia-inducible factor HIF-1a. In the developing
nervous system, ATX also regulates the differentia-
tion of oligodendrocytes (Fuss et al., 1997; Fox et al.,
2003; 2004; Dennis et al., 2005; 2008; Yuelling and
Fuss, 2008; Nogaroli et al., 2009). In adult mice, the
level of ATX affects haemostasis and thrombosis
(Pamuklar et al., 2009).

Many cancers secrete ATX, which contributes to
their invasive properties. Gene copy numbers
increase in ovarian cancer in chromosomal region
8q24, which also contains the genes encoding the
Myc oncogene (Dimova et al., 2006). This raises the
possibility that the ATX gene might be amplified in
ovarian cancer. Ectopic expression of ATX in mice
has recently been shown to lead to the development
of chronic mastitis, hyperplasia, mammary intraepi-
thelial neoplasia, and invasive and metastatic
tumours (Liu et al., 2009). Ovarian cancer cells
produce high levels of LPA in tumour ascites (Baker
et al., 2002; Sutphen et al., 2004). ATX inhibits
paclitaxel-induced apoptosis in breast cancer cells

Figure 5
Intracellular sources, targets and actions of LPA. LPA can be generated by iPLA2b in response to MCP1 or insulin stimulation at the leading-edge

of migrating macrophages and regulate actin-binding/severing proteins. LPA is also generated by GPAT from fatty acids and can interact with

PPARg, which in turn up-regulates genes involved in adipogenesis and lipid storage. LPA can potentially excreted from cells and stimulate cell

surface LPA GPCR setting up an inside-out signalling paradigm. LPA GPCR can synergize with the activation of intracellular targets as it may happen

in the case of regulation of the actin cytoskeleton via Rho and Rac.
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(Samadi et al., 2009), and LPA renders ovarian
cancer cells chemoresistant to cisplatin and adria-
mycin (E et al., 2009). ATX is overexpressed in
patients with recurrent disease after prior treatment
with chemotherapy (Jazaeri et al., 2005). An siRNA
screen has identified ATX as a candidate drug-
resistance gene in ovarian cancer (Vidot et al., 2010).

Autotaxin shows product feedback inhibition,
meaning that LPA and S1P inhibit its activity
(Durgam et al., 2005; van Meeteren et al., 2005).
This feedback inhibition of ATX by LPA has been
proposed to be a factor in maintaining plasma levels
of LPA in the low nanomolar range (van Meeteren
et al., 2005). However, the rate of ATX production
seems to be an overriding factor because ATX knock-
out heterozygous mice have half the normal plasma
level of LPA (van Meeteren et al., 2006; Tanaka et al.,
2006). Nevertheless, the search for ATX inhibitors is
intensifying due to the potential therapeutic appli-
cability of such compounds in cancer therapy (Clair
et al., 2005; Baker et al., 2006; Ferry et al., 2008; van
Meeteren et al., 2008; Parrill and Baker, 2008; Parrill
et al., 2008; North et al., 2009; Zhang et al., 2009a).
As proof of this concept, we and others have shown
that CCPA analogues inhibit ATX-mediated mela-
noma invasion in vitro and metastasis in vivo (Baker
et al., 2006; Uchiyama et al., 2007). However, inhibi-
tion of ATX does not lead to an anti-tumour effect, as
cancer cells continue to proliferate although their
metastasis is reduced. Zhang et al. (Zhang et al.,
2009a) have developed alpha-bromophosphonate
analogues of LPA that inhibit ATX activity and also
are antagonists of LPA1,2,3,4,5 GPCR and showed that
these dual-action compounds not only reduce breast
cancer metastasis but also inhibit tumour growth.
Hence, the challenge now is to combine receptor
antagonism with the inhibition of ATX to obtain
anti-tumour and anti-metastatic drug candidates.
Pure ATX inhibitors also face another challenge;
intravenously injected recombinant ATX is very
rapidly >10-min cleared within the liver sinusoids
(Jansen et al., 2009). This rapid clearance might also
apply to endogenous ATX. Another new direction is
to explore agonists of LPA4 and LPA5 that also inhibit
ATX. LPA4 inhibits invasion and migration elicited by
the EDG-family LPA receptors LPA1 and LPA2 (Lee
et al., 2008). Hence, selective agonists of this receptor
subtype that inhibit ATX might prove to be useful in
limiting cancer invasion and metastasis (Baker et al.,
2006; Williams et al., 2009). LPA receptors of the EDG
family are dysregulated in ovarian cancer. In a study
with 30 ovarian cancer patients, LPA1 expression was
decreased, whereas LPA2 and LPA3 were increased
(Murph et al., 2008) in the tumour tissue. siRNA-
mediated knock-down of LPA2 and LPA3 in SKOV
and OVCAR-3 ovarian cancer cell lines reduced

aggressiveness and increased survival after xenograft-
ing (Yu et al., 2008).

LPA in malignant transformation,
cancer metastasis, and radiation- and
chemo-resistance

Lysophosphatidic acid is a mitogen, motogen and
anti-apoptotic agent, all of which combined provide
survival advantages to cells that generate LPA and
utilize it in an autocrine or paracrine fashion. In the
last decade, many reports have confirmed that
several types of cancer cells secrete ATX, which in
turn generates LPA in the immediate vicinity of the
cell, so long as lysophosphatidylcholine is available.
Biological fluids are rich in lysophosphatidylcho-
line. Perhaps the best-established example for the
role of LPA in cancer pathobiology is ovarian cancer.
Ovarian cancer ascites has highly elevated levels of
LPA (Xu et al., 1995; Baker et al., 2002; Sutphen
et al., 2004) due to increased ATX expression
(Dimova et al., 2006). Ovarian cancers predomi-
nantly express LPA2 receptors, whereas this receptor
is barely detected in ovarian epithelial cells (Goetzl
et al., 1999a). In addition to LPA2, LPA4 is highly
expressed in normal ovarian tissues (Noguchi et al.,
2003). LPA2 might play an important role in the
aggressive behaviour of ovarian cancer in at least
two ways. First, LPA2 promotes the production of
vascular endothelial growth factor (VEGF), uroki-
nase (uPA) and matrix metalloproteinases (MMP)
(Zebrowski et al., 1999; Hu et al., 2001; Huang et al.,
2004; So et al., 2004; 2005). LPA increases VEGF
production, and VEGF in turn up-regulates ATX pro-
duction, which increases LPA levels (Ptaszynska
et al., 2008) – a potential feed-forward loop. LPA-
induced uPA production promotes invasion by
several ovarian cancer cell lines (Pustilnik et al.,
1999; Gil et al., 2008). uPA levels carry a prognostic
value in ovarian cancer and correlate with poor
prognosis (Schmalfeldt et al., 2001; Murthi et al.,
2004). LPA conveys resistance to chemo- and
radiation-therapy through its anti-apoptotic action
(Fang et al., 2000; Deng et al., 2007; E et al., 2009).
The LPA2 receptor plays a unique role in chemore-
sistance, mediated through its C-terminal interac-
tion with the thyroid receptor-interacting protein 6
(TRIP6), the pro-apoptotic transcription factor
Siva-1 and the PSD-95/Disc-large/ZO-1 domain (PDZ
domain)-binding proteins NHERF2 and MAGI-3
(Yamada et al., 2005; Lin et al., 2007; Zhang et al.,
2007a,b; E et al., 2009). LPA2 binds Siva-1 through
a–C 311XXC motif and the complex becomes poly-
ubiquitinated and degraded by the proteasome,
which leads to the attenuation of the DNA-damage-
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induced apoptosis. Siva-1 has also been shown to
bind and sequester the anti-apoptotic BCL-XL

protein and promote the progression of apoptosis
via the mithochondrial pathway. LPA-induced
molecular complex between LPA2 and Siva-1 plays a
major role in the anti-apoptotic effect of LPA. LPA2

can form a ternary complex with TRIP6 and
NHERF2 in such a way that TRIP6 and NHERF2 also
attach to each other. This ternary complex is formed
via the –347DSTL PDZ motif of LPA2 and the PDZ2
domain of NHERF2. NHERF2 homodimerizes with
an other NHERF2 via its PDZ1 binding domain,
leaving the second PDZ2 domain available to bind
the –TTDC PDZ motif of TRIP6. TRIP6 also binds to
the –CXXC motif in LPA2 via its LIM3 domain com-
pleting the ternary complex (Figure 6). The ternary
complex is required for the full activation of ERK1/2
and AKT kinases and through them essential for
LPA-induced protection against radiation- and DNA-
damage-induced apoptosis. LPA2-associated macro-
molecular signalosomes have been detected in
ovarian cancer cells and for this reason also represent
novel targets for prevention of therapeutic resistance
of cancer (Figure 6). MMPs represent yet another
group of important effectors of LPA in cancer cells
(Fishman et al., 2001; Meng et al., 2004; So et al.,
2004; 2005; Hope et al., 2009). LPA up-regulates
MMP production, which in turn promotes the pro-
liferation of cancer cells and invasion. Increased

MMP production correlates with poor prognosis of
ovarian cancer (Davidson et al., 1999a,b; Schmalfeldt
et al., 2001). In view of the mitogenic, motogenic,
pro-invasive and anti-apoptotic effects of LPA, recep-
tor antagonists and ATX inhibitors offer potential for
anti-cancer therapeutics.

LPA in the nervous system

The LPA1 receptor was originally identified from
neuronal progenitor cells in the ventricular zone of
the developing brain (Hecht et al., 1996). LPA is
important in myelination and Schwann cell survival
(Weiner et al., 1998; Moller et al., 1999; Li et al.,
2003; Nogaroli et al., 2009). Perhaps the most
profound morphological effect of LPA is on the
development of cortical folds that lead to the devel-
opment of gyri in the cerebral cortex (Kingsbury
et al., 2003; Estivill-Torrus et al., 2008; Matas-Rico
et al., 2008). There are several reviews dedicated to
the topic of LPA in the brain, and the reader is
referred to those for a more in-depth coverage of
this exciting aspect of LPA developmental neurobi-
ology (Birgbauer and Chun, 2006; Herr and Chun,
2007; Choi et al., 2008; Rivera and Chun, 2008;
Noguchi et al., 2009).

One significant therapeutic effect of LPA
appears to be its mediator role in neuropathic pain.

Figure 6
Macromolecular complex-mediated anti-apoptotic signalling by the LPA2 receptor. The C-terminal tail of LPA2 contains docking sites for

PDZ-binding proteins (NHERF2) and LIM family proteins (Siva-1 and TRIP6). LPA2 activation captures the pro-apoptotic Siva-1 and targets it to

proteasomal degradation. LPA2 receptor activation recruits a ternary complex formed with NHERF2 and TRIP6, which augments anti-apoptotic

signals mediated via ERK1/2 and Akt kinase pathways.
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Intrathecally injected lysophosphatidylcholine
(LPC) has been shown to elicit neuropathic pain and
cause demyelination (Wallace et al., 2003; Inoue
et al., 2008b). These effects of LPC require ATX; and
the bioactive compound is LPA, the product of ATX-
mediated LPC hydrolysis (Inoue et al., 2008b; Ahn
et al., 2009). LPA initiates neuropathic pain and
regulates the production of pain-related molecules
through the LPA1 receptor (Inoue et al., 2004;
2008a,b; Ueda, 2006; Fujita et al., 2007; Xie et al.,
2008). Recently, Ueda et al. proposed a feed-forward
loop that involves LPA3 receptor-mediated produc-
tion of lysophosphatidylcholine, which supplies the
substrate to ATX, rich in the cerebrospinal fluid.
These authors showed that LPA produced by ATX in
turn can lead to LPA1-mediated neuropathic pain
(Ma et al., 2009).

LPA1 up-regulates the voltage-gated Ca2+ channel
in the dorsal root ganglion cell, through a Rho-Rho
kinase-coupled mechanism, causes demyelination
of the fibres originating from the ganglion cells and
leads to the reorganization of Ab-fibres (Inoue et al.,
2004; Fujita et al., 2007; Xie et al., 2008). In addition
to the LPA1 receptor, LPA5 has also been implicated
in neuropathic pain, although the mechanism
responsible remains to be elucidated (Sheardown
et al., 2004; Kinloch and Cox, 2005). Antagonists
targeting LPA1 and LPA5 receptors might provide
new ways to treat this currently difficult-to-manage
neurological condition. Perhaps more than a curios-
ity is the fact that B lymphocytes from patients with
bipolar disorders are hyper-responsive to LPA
(Wasserman et al., 2004; Perova et al., 2008; 2009);
and in patients with schizophrenia, LPA1 is among
18 genes that show close association with the
disease (Bowden et al., 2006).

LPA in bone metabolism

LPA1 knockout mice show decreased bone density,
shorter bones (J.P. Salles – personal communication)
and a craniofacial dysmorphic phenotype due to
abnormal development of the frontal bones of the
skull (Contos et al., 2000). This abnormality might
represent only one manifestation of defects in osteo-
clast and osteoblast function regulated by the LPA1

receptor. LPA has been identified as a mitogen for
osteoblasts (Caverzasio et al., 2000; Grey et al., 2001;
Lyons and Karin, 2001); it prevents osteoblast apo-
ptosis (Grey et al., 2002) and stimulates alkaline
phosphatase expression (Dziak et al., 2003) and cell
migration. Osteocytes develop a mechanosensory
network within the bone matrix and communicate
through gap junctions established at their dendritic
termini. LPA is a potent stimulator of dendrite out-

growth, which is blocked by the LPA1/LPA3 antago-
nist Ki16425 and pertussis toxin (Karagiosis and
Karin, 2007). Resting zone chondrocytes generate
LPA, which in turn promotes osteoblast differentia-
tion, proliferation and survival (Hurst-Kennedy
et al., 2009). Osteolytic metastasis of breast cancers
also utilizes LPA as a mediator. LPA1 regulates the
secretion of IL-6 and IL-8, which are potent bone
resorption stimulators. Silencing expression or uti-
lizing pharmacological inhibition of LPA1 in cancer
cells reduces bone metastasis progression. Future
pharmacological manipulation of LPA receptors
might provide opportunities to prevent bone loss
and reduce the bone metastasis of cancers.

LPA in reproductive disorders

The effects of LPA on cells from the female repro-
ductive system have been known since the late
1980s. We previously identified and purified LPA as
a serum factor based on its activation of oscillatory
Cl- currents in Xenopus oocytes (Tigyi et al., 1990;
Tigyi and Miledi, 1992). LPA enhances embryonic
development from the pronuclear stage to the blas-
tocyst stage in mice (Kobayashi et al., 1994). In
luteal cells, LPA stimulates type V adenylyl cyclase,
which is important for the maintenance of preg-
nancy (Budnik and Mukhopadhyay, 1997). This
response is likely to be mediated through LPA4,
which, in contrast to the EDG family receptors,
elevates cAMP and is highly expressed in the ovary
(Noguchi et al., 2003). LPA stimulates contraction in
uterine smooth muscle cells (Tokumura et al., 1980)
and increases embryo transport in the oviduct of
mice (Kunikata et al., 1999; Tokumura et al., 1999).
In the follicular fluid, LPA concentration is as high
as 25 nmol·mL-1, which is nearly double its serum
concentration of c. 15 nmol·mL-1 (Tokumura et al.,
1999). The LPA3 receptor, which is up-regulated by
progesterone and down-regulated by oestrogen, is
required for embryo implantation and affects
embryo spacing in the womb (Ye et al., 2005; Hama
et al., 2007). In view of its effects on implantation, it
is plausible that LPA is involved in placental
pathologies, including non-receptive endometrium,
decidualization, embryo crowding, placenta previa
and placenta acreta, any of which could lead to
sterility or loss of pregnancy (Ye, 2008). There are
some selective LPA3 antagonists available that
include diacylglycerol pyrophosphate (Fischer et al.,
2001), VPC12449 (Heise et al., 2001) and Ki16425
(Ohta et al., 2003). However, these antagonists also
inhibit LPA1. Recently, a specific non-lipid antago-
nist, NSC161613, has been identified showing an
IC50 of 24 nM (Fells et al., 2008).
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LPA1/2/3 are highly expressed in the male repro-
ductive system. Mice deficient in all three receptors
show a testosterone-independent reduction of
mating activity and sperm production, with an
increased prevalence of azoospermia in aging
animals. These triple knockouts show a significant
increase in germ cell apoptosis, leading to a reduc-
tion in germ cell proliferation (Ye et al., 2008).
Similar azoospermia and reduced germ cell numbers
were found in transgenic animals that overexpress
lipid phosphate phosphatase, an enzyme that
degrades LPA (Yue et al., 2004). There is a wealth of
evidence that links LPA, LPA3 and LPA1 to the regu-
lation of prostate cancer cells (Qi et al., 1998;
Prenzel et al., 1999; Im et al., 2000; Daaka, 2002;
Guo et al., 2006; Hwang et al., 2006). In contrast,
little is known about the physiological role of LPA in
the normal prostate. Selective ligands of the LPA3

receptor would likely offer novel drug candidates to
modulate both male and female reproduction.

LPA in vascular pathologies

In 1978, Tokumura et al. reported that soy lipid
extract contains a vasopressor lipid that they iden-
tified as LPA (Tokumura et al., 1978a; Tokumura
et al., 1978b). LPA had hypertensive effects in rats
and guinea pigs and hypotensive effects in cats and
rabbits. Schumacher et al. discovered that factors
developed during ‘aging’ of heparinized plasma kept
at 36°C for 18–24 h and that these factors activated
platelet aggregation and caused constriction of pul-
monary vessels (Schumacher et al., 1979). These
authors identified LPA as being one of the active
factors and noted that it caused desensitization of
the platelet response, a hallmark of GPCR action.
Simon et al. discovered that the alkyl-ether analogue
of LPA is a potent activator of human platelets at
concentrations as low as 10-10 M, making this ana-
logue nearly as potent as platelet-activating factor
(Simon et al., 1982; 1984). The barrier function of
vascular endothelial cells is altered by LPA (Schulze
et al., 1997; Alexander et al., 1998; English et al.,
1999), and LPA induces the expression of VCAM-1
and E-selectin on the surface of cultured human
endothelial cells (Rizza et al., 1999). LPA induces
endothelin-1 production in vitro and in vivo (Chua
et al., 1998; Yakubu and Leffler, 1999). LPA is a
mitogen for VSMC (Tokumura et al., 1994) and also
promotes their phenotypic dedifferentiation from a
contractile phenotype to a secretory phenotype
(Hayashi et al., 2001; Yoshida et al., 2003). Topical
application of unsaturated LPA species into the non-
injured carotid artery of rodents induces arterial
wall remodelling, and this response requires PPARg

but not LPA1 or LPA2 (Hayashi et al., 2001; Yoshida
et al., 2003; Zhang et al., 2004; Cheng et al., 2009).

Lysophosphatidic acid is required for normal vas-
cular development, as indicated by the embryonic
lethality of ATX knockout mice at a stage when
vascular stabilization begins (van Meeteren et al.,
2006; Tanaka et al., 2006). In adult mice, ATX over-
expression leads to haemorrhages due to an inhibi-
tory effect of LPA on platelets, whereas ATX �

heterozygotes, which have a reduced plasma LPA
concentration, are more prone to thrombosis (Pam-
uklar et al., 2009). LPA and ATX have been impli-
cated in wet-type macular degeneration by
promoting angiogenesis in the retina.

Nanomolar concentrations of LPA and minimally
oxidized LDL induce shape change of washed plate-
lets through LPA receptor-linked signal transduction
pathways that presumably involve the activation of
the heterotrimeric G12/G13 protein, the small GTPase
Rho and Rho kinase, the Rho kinase-mediated inhi-
bition of myosin light-chain phosphatase, and
stimulation of myosin light-chain phosphorylation
(Bauer et al., 1999; Retzer and Essler, 2000; Retzer
et al., 2000). It seems that there are two types of LPA
receptors that regulate LPA responsiveness in human
platelets. One subtype inhibits platelet responses by
elevating cAMP levels, which in turn attenuates acti-
vation, as proposed by Pamuklar et al. (Pamuklar
et al., 2008). These authors ascribed this effect to
LPA4. Khandoga et al. could not detect elevation in
cAMP in LPA-treated human platelets (Khandoga
et al., 2008). However, these authors found that the
structure-activity relationship, characterized by the
preference for alkyl over acyl LPA analogues, is
similar to that of LPA5, which makes this receptor a
candidate for the activating LPA receptor subtype in
platelets (Williams et al., 2009). Williams et al. iden-
tified two non-lipid antagonists of LPA5, H2L
5987411 and H2L 5765834, that also blocked platelet
activation by LPA (Williams et al., 2009). The former
compound but not the latter is also a weak antagonist
of LPA4 (Ki 741 nM), yet both inhibited platelet
responses to LPA. LPA4 and LPA5 transcripts are both
abundant in human platelets mixed from multiple
donors (Amisten et al., 2008). Tokumura et al.
described human donors whose platelets failed to
respond to alkyl glycerophosphate while maintain-
ing normal responsiveness to acyl analogues of LPA
(Tokumura et al., 2002b). This observation lends
support to the hypothesis that multiple receptors are
involved in platelet responses to LPA.

Lysophosphatidic acid also activates haptotactic
migration in monocytes/macrophages (Zhou et al.,
1995), inhibits the egress of dendritic cells from the
vessel wall (Llodra et al., 2004), and promotes the
formation of monocyte/platelet aggregates that are
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an early marker of acute myocardial infarction
(Fueller et al., 2003). Acyl and alkyl LPA accumulate
in human atherosclerotic plaques and likely activate
platelets and initiate thrombus formation upon
plaque rupture (Siess et al., 1999; Rother et al.,
2003). LPA production and the LPA receptor sub-
types expressed by different subsets of blood cells
and cells of the vessel wall are undoubtedly impor-
tant potential drug targets for manipulating patho-
logical angiogenesis and thrombosis.

LPA as a mediator of organ fibrosis

Lysophosphatidic acid has long been known for its
mitogenic effect on fibroblasts (van Corven et al.,
1989; 1992). In addition to being a mitogen, LPA
increases connective tissue growth factor produc-
tion, which promotes tissue fibrosis (Hahn et al.,
2000; Muehlich et al., 2004; Vial et al., 2008). LPA
induces the expression and activation of the CIC-3
chloride channel that is required for myofibroblast
dedifferentiation during wound healing (Wang
et al., 2002; Yin and Watsky, 2005; Yin et al., 2008).
In light of these findings, it is perhaps not surpris-
ing that LPA has been implicated in renal (Pradere
et al., 2007), hepatic (Watanabe et al., 2007a,b) and
pulmonary fibrosis (Tager et al., 2008; Xu et al.,
2009). In several models, inhibition of the LPA1

receptor inhibits the progression of fibrosis (Pradere
et al., 2007; Tager et al., 2008), but LPA-induced
aVb6 integrin-mediated TGF-b activity is mediated
via the LPA2 receptor (Xu et al., 2009). Tager et al.
showed that LPA levels increase in bronchoalveolar
lavage fluid following lung injury in the bleomycin
model of pulmonary fibrosis and that mice lacking
LPA1 are protected from fibrosis in this model.
These investigators showed that patients with idio-
pathic pulmonary fibrosis, had increased LPA levels
in bronchoalveolar lavage fluid and that inhibition
of LPA1 reduced fibroblast responses to the chemo-
tactic activity of the lavage fluid. A recent study
using plasma and serum samples from systemic
scleroderma patients found elevated LPA and S1P
levels. Furthermore, serum LPA : LPC ratios of the
18:2 and 20:4 molecular species, and also the ratio
of all species combined, were significantly higher
in systemic scleroderma patients versus controls
(Tokumura et al., 2009). Currently, a diagnosis of
organ fibrosis leaves the physician with very
limited therapeutic options that often come with
severe side effects. Exploration of the role of
LPA- and LPA receptor antagonist-based therapies
might offer an entirely new therapeutic avenue of
treatment.

LPA in infection and immunity

Activation of the RhoA GTPase and phospholipase
D-dependent acidification of phagolysosomes can
have profound effects on viral and bacterial entry
into cells and also on the intracellular killing of
bacteria. The cysteine-rich protein 61 (CYR61) and
connective tissue growth factor (CTGF) regulate
adhesion, migration, extracellular matrix deposition
and cell differentiation and play a role in wound
healing. Bacterial lipid extracts derived from Yers-
inia, E. coli, Pseudomonas aeruginosa, Enterococcus
faecalis or Staphylococcus aureus induce expression of
CYR61 and CTGF in epithelial cells. Wiedmaier et al.
have shown that Ki16425, a selective antagonist of
LPA1/3 receptors (Ohta et al., 2003), inhibits Cyr61
and CTGF expression (Wiedmaier et al., 2008). LPA-
induced CYR61 and CTGF mRNA expression
requires Rho GTPases because it is abolished by
Clostridium difficile toxin B, which inhibits RhoA and
Rac-1. These authors raised the hypothesis that LPA
GPCR could be involved in sensing bacterial lipid
products. thereby regulating the host’s response to
infection via CYR61 and CTGF expression.

Tsurudome et al. reported that LPA promotes cell-
cell fusion in parainfluenza virus-infected Vero cells
(Tsurudome et al., 2008). This process was sensitive
to the Rho kinase inhibitor Y-27632. Thus, LPA, at
least theoretically, could promote the cytopathic
effect of parainfluenza virus infection. This hypoth-
esis awaits experimental testing. Inhibition of RhoA
activation elicited by respiratory syncytial virus
infection is implicated in the antiviral mechanism
of the macrolide antibiotics bafilomycin and
clarithromycin (Asada et al., 2009). RhoA activation
is associated with entry and exocytosis of viruses,
and LPA might synergize with these events and
also attenuate the antiviral efficacy of macrolide
antibiotics.

Recent reports assign anti-microbial activity to
LPA in Mycobacterium tuberculosis infection (Garg
et al., 2006; Greco et al., 2010). LPA and S1P exert a
cytoprotective effect in Mycobacterium tuberculosis-
infected type II alveolar cells and activate PLD,
which in turn leads to phagolysosome maturation,
leading to mycobacterial killing and inhibition of
bacterial dissemination in vitro (Greco et al., 2010).
Garg et al. have shown that LPA enhances anti-
mycobacterial activity in vitro and ex vivo in cells
derived from the bronchoalveolar lavage of patients
with tuberculosis. LPA activated PLD-dependent
acidification of the phagolysosomes in these cells
that had been chronically infected with endogenous
mycobacteria in the lungs of the patients. The
molecular target(s) of LPA underlying its anti-
mycobacterial effect remain to be identified. None-
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theless, LPA is known to activate PLD (Qi et al.,
1998; Zhao et al., 2005) through a Ca2+-dependent
mechanism. Furthermore, ATX is important for
normal lysosomal morphology and function (Koike
et al., 2009). These exciting studies on the role of
LPA in infection are at a very early stage; hence, it is
difficult to predict whether LPA or LPA-based phar-
macons might have therapeutic value in infection
control.

The role of LPA in immune cells cannot be under-
estimated, and research in this field will likely lead
to therapeutically important new discoveries. T lym-
phocytes (Goetzl et al., 2000a), B cells (Rosskopf
et al., 1998; Satoh et al., 2007; Perova et al., 2008),
eosinophils (Idzko et al., 2004), neutrophils (Chet-
tibi et al., 1994), macrophages (Hornuss et al., 2001),
mast cells (Bagga et al., 2004) and dendritic cells
(Panther et al., 2002; Llodra et al., 2004; Chan et al.,
2007) express functional LPA receptors. Natural
killer cells respond to LPA with increased IFNg pro-
duction and chemotaxis (Jin et al., 2003; Maghaza-
chi, 2003; Jo et al., 2008), although it was also
found to inhibit their cytotoxic response through a
cAMP-PKA-dependent mechanism. Lipopolysaccha-
ride treatment of TH-1 lymphocytes increases ATX
expression that can supply LPA upon contact of the
T cell with other immune cells (Li and Zhang,
2009). These findings lend support to the role of
LPA in innate as well as acquired immunity. In the
preceding sections, we have already described some
effects of LPA on mast cell and dendritic cell differ-
entiation and the regulation of T cell homing regu-
lated by ATX-LPA GPCR and PPARg (Bagga et al.,
2004; Llodra et al., 2004; Kanda et al., 2008; Leslie
et al., 2008; Nakasaki et al., 2008). LPA has been
shown to stimulate proliferation, migration and
survival of T cells and macrophages (Koh et al.,
1998; Goetzl et al., 1999b; Zheng et al., 2000;
2001). LPA regulates chemokine and cytokine pro-
duction by immune cells that include IL-1b, IL-2,
IL-8, IL-13, TNFa, MCP-1 and MIP-1b (Zheng et al.,
2000; Lee et al., 2002; Panther et al., 2002; Gobeil
et al., 2003; Lin and Boyce, 2005; Rubenfeld et al.,
2006). Perhaps the most compelling evidence for
the immunomodulatory role of LPA comes from
Leslie et al. (Leslie et al., 2008), who showed that it
differentially regulates the development of group 1
(CD1a, CD1b and CD1c positive) and group 2
(CD1d) dendritic cells. LPA, in a completely revers-
ible PPARg-dependent mechanism, inhibited the
transcription and cell surface expression of group
1-specific CD1 markers, and conversely increased
CD1d, involved in lipid antigen presentation by
dendritic cells to T cells. Group 1-reactive T cells
display a cytotoxic phenotype and secrete T helper
type 1 cytokines, suggesting their role in microbial

infection (Brigl and Brenner, 2004). CD1 molecules
are also involved in T cell recognition of self-lipids
(Leslie et al., 2002; Vincent et al., 2002; 2003).
Thus, CD1-restricted T cells mediate not only host
defense mechanisms but also pro-inflammatory
responses in human autoimmune diseases. includ-
ing systemic lupus erythematodes (Sieling et al.,
2000), multiple sclerosis (De Libero et al., 2002) and
autoimmune thyroiditis (Roura-Mir et al., 2005).
Based on these reports, LPA through its effect on
dendritic cell maturation might promote the
expansion of T helper 2 type cells relative to T
helper 1 cells (Panther et al., 2002; Leslie et al.,
2008), which has far-reaching implications for the
physiological regulation of autoimmunity and host
defense.

Conclusion

In recent years, there has been an explosion in the
number of reports describing the numerous actions
of LPA, making it impossible to write a completely
up-to-date and comprehensive review of this rapidly
changing field. The objective of the present article
was not to be comprehensive but to highlight only
certain aspects of the LPA story. The reader is
referred to the many excellent and more in-depth
reviews on specific aspects of LPA biology. Our aim
in this article was to generate additional interest for
this exciting and novel field of lipid research.

Lysophosphatidic acid, with its pleiotropic
effects and simple structure, provides an enticing
opportunity for therapeutic exploration. LPA
engages targets both as a mediator and a second
messenger in almost every cell type in the body. The
many LPA receptors represent an unparalleled
redundancy of cellular signalling. The multiplicity
of cell surface and intracellular LPA targets/
receptors, often co-expressed in the same cell type
and coupling to overlapping signal transduction
pathways, poses an unmet challenge to designing
LPA-based therapeutics.

A fundamental problem often neglected is the
endogenous expression of LPA receptor transcripts
in every mammalian cell line. Although there are a
few cell lines that do not respond to LPA with Ca2+

transients (RH7777 and B103) and although heter-
ologous overexpression of LPA1,2,3,4,5 in these cell
lines conveys LPA-elicited Ca2+ responses, these cells
still express low levels of LPA GPCR transcripts and
show endogenous signalling responses to LPA (Val-
entine et al., 2008b). Functional expression of LPAR
of the purinergic subcluster often requires plasmids
with strong promoters such as pCXN2.1 (Niwa et al.,
1991) and/or co-expression of promiscuous G

BJPNovel LPA targets

British Journal of Pharmacology (2010) 161 241–270 257



protein a-subunits (G16) due to low coupling effi-
ciency of some LPAR. However, overexpression of
Ga16 can increase the coupling efficiency of the
endogenous LPAR and introduce Ca2+ transients into
RH7777 and B103 cells even in the absence of het-
erologous LPAR (Valentine and Tigyi, unpublished).
This complicates the characterization of the novel
LPAR and emphasizes the need for ‘cleaner’ assay
platforms (Wetter et al., 2009).

The S1P field has surpassed the LPA field in
therapeutic exploration because the S1P receptor
agonist FTY720 is now near completion of phase III
clinical trials for the treatment of multiple sclerosis,
whereas no LPA-based therapeutic has advanced
this far. What might be the reason for such dispar-
ity between the two lysophospholipid fields?
Perhaps one key difference lies in the obligatory
role of S1P1 in lymphocyte egress. Thus far, no
matching (patho-)physiologically essential cellular
response has been linked to a single LPAR,
although the role of LPA3 in embryo implantation
offers some degree of similarity. Thus, the greater
redundancy and overlapping signalling pathways
that prevail among the LPAR families might be the
reason that no LPA-based drug has emerged thus
far. Perhaps, the redundancy of LPA signalling is an
indicator of the fundamental necessity of this
mediator/second messenger for normal cell func-
tion. Indeed the S1P1 receptor knockout mouse is
the only embryonic lethal lysophospholipid recep-
tor knockout, whereas none of the LPAR knockouts
cause embryonic lethality. This contrasts with the
ATX knockout, which also causes embryonic lethal-
ity and indicates the essential requirement for LPA
during development. More thorough characteriza-
tion of LPAR knockouts under different patho-
physiological challenges will likely pinpoint
distinct and unique functions associated with a
single or a select few LPAR.

The field still lacks drug-like compounds with
the desired specificity or ubiquity for LPA targets.
Currently, identified lipid-like LPA analogues lack
the necessary potency and selectivity, and they
have suboptimal pharmacokinetic profiles. With
the identification of the novel LPAR, the selectivity
and specificity of the previously developed and
presumed ‘selective’ pharmacons begs further char-
acterization. From now on, any new compound
will have to be tested on the nine established and
putative LPAR and the five S1P receptors. While
the opportunity to control LPA-mediated patho-
physiologies is apparent, harnessing the LPA
system through pharmacological tools remains a
stimulating task for the academic community and
a lucrative opportunity for the pharmaceutical
industry.
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