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Aims, scope, methods, history and unified terminology of
computer-aided topology optimization in structural mechanics*

G.I.N. Rozvany

Abstract Topology optimization of structures and com-
posite continua has two main subfields: Layout Optimi-
zation (LO) deals with grid-like structures having very
low volume fractions and Generalized Shape Optimiza-
tion (GSO) is concerned with higher volume fractions,
optimizing simultaneously the topology and shape of in-
ternal boundaries of porous or composite continua. The
solutions for both problem classes can be exact/analytical
or discretized /FE-based.

This review article discusses FE-based generalized shape
optimization, which can be classified with respect to
the types of topologies involved, namely Isotropic-Solid/
Empty (ISE), Anisotropic-Solid/Empty (ASE), and
Isotropic-Solid/Empty/Porous (ISEP) topologies.

Considering in detail the most important class of (i.e.
ISE) topologies, the computational efficiency of various
solution strategies, such as SIMP (Solid Isotropic Micro-
structure with Penalization), OMP (Optimal Micro-
structure with Penalization) and NOM (NonOptimal
Microstructures) are compared.

The SIMP method was proposed under the terms
“direct approach” or “artificial density approach” by
Bendsge over a decade ago; it was derived independently,
used extensively and promoted by the author’s research
group since 1990. The term “SIMP” was introducted by
the author in 1992. After being out of favour with most
other research schools until recently, SIMP is becoming
generally accepted in topology optimization as a tech-
nique of considerable advantages. It seems, therefore,
useful to review in greater detail the origins, theoretical
background, history, range of validity and major advan-
tages of this method.
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1
Introduction

Topology optimization is a relatively new and rapidly ex-
panding field of structural mechanics, which can result in
much greater savings than mere cross-section or shape op-
timization. Owing to its complexity, it is an intellectually
challenging field; its progress, however, has often been
hampered by conceptual inconsistencies and terminolog-
ical confusion. For this reason, a critical and systematic
re-examination of the relevant issues seems warranted.

This review deals mainly with mechanical, struc-
tural and computational aspects, whilst investigations of
purely mathematical interest are outside its scope.

For very low volume fractions, important principles
of topology optimization were established already around
the turn of the century, in the context of trusses, by
the versatile Australian inventor Michell (1904). These
were extended to grillages (beam systems) some seventy
years later by Rozvany (e.g. 1972a,b). Drawing on these
applications, the basic principles of optimal layout the-
ory were formulated by Prager and Rozvany (e.g. 1977a)
and generalized considerably by the latter in the eight-
ies and nineties (e.g. Rozvany 1992; Rozvany and Birker
1994).

Topology optimization for higher volume fractions
is now termed Generalized Shape Optimization (GSO)
(Rozvany and Zhou 1991) or Variable Topology Shape
Optimization (Haber et al. 1996). It involves the simul-
taneous optimization of the topology and shape of inter-
nal boundaries in porous and composite continua.

In the context of discretized mechanics, this devel-
opment was prompted by the observation of Cheng and
Olhoff (e.g. 1981) that optimized solid plates contain sys-
tems of ribs which are similar to optimized grillages. For
compliance design of perforated plates (disks) in plane
stress, optimal microstructures were studied by various



mathematicians (e.g. Lurie et al. 1982; Kohn and Strang
1986; Vigdergauz 1986).

The first exact analytical solutions for optimal perfo-
rated plates and the correct expressions for the rigidity
tensor of homogenized optimal microstructures were ob-
tained by Rozvany, Olhoff, Bendsge et al. (1985/87), and
Ong, Rozvany and Szeto (1988).

The birth of practical, FE-based topology optimiza-
tion for higher volume fractions was brought about by
extensive pioneering research of (e.g. 1989, for a review
see Bendsge 1995), and his “homogenization” school (e.g.
Bendsge and Kikuchi 1988, Bendsge, Diaz and Kiku-
chi 1993). This was followed by a parallel exploration
of the SIMP approach, suggested orignally by Bendsge
(1989) and used extensively by Zhou and the author (e.g.
Rozvany and Zhou 1991, presented in 1990), who also
suggested the term “SIMP” (Rozvany, Zhou and Birker
1992).

One aim of this review article is to show that for the
most important classes of topology problems (ISE and IS
topologies) the so-called SIMP method has decisive ad-
vantages. The history and theoretical foundations of this
method are also explained.

2
Classes of problems in FE-based generalized shape
optimization (GSO) and their fields of application

In order to forestall possible conceptual and terminolog-
ical misunderstandings in this field, it is necessary to de-
fine clearly classes of problems in FE-based GSO.

2.1
Types of elements used in GSO

In the terminology of this paper, an element is called

Solid (S), if it is filled entirely with one material;
Empty (E), if it contains no material;
Porous (P), if it contains one material and void (i.e.
cavities or empty space);

e Composite (C), if it contains more than one material
but no void; and

e Composite-Porous (CP), if it contains more than one
material and void.

2.2
Topologies containing only isotropic-solid or empty
finite elements (ISE topologies)

For simplicity, our discussion of ISE topologies is re-
stricted to a given finite set of elements of fixed shape
which may be empty or filled entirely with one of several
isotropic materials of given properties.
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Fig. 1 Simple example involving an 1ISE topology: (a) prob-
lem statement, (b) infeasible solution, (c¢) optimal solution,
(d—f) feasible but nonoptimal solutions

Using the terminology in Sect. 2.1, ISE topologies con-
tain Isotropic-Solid or Empty elements.

The number of base materials (or “phases”) involved
may also be indicated: a topology consisting of four pos-
sible materials and void will be denoted 4ISE topology.
If all elements must be filled with material (i.e. there are
no empty elements) then the letter E is omitted from the
identifier for that topology. For example, a topology hav-
ing solid elements out of four materials (phases) but no
empty elements will be called a 4IS topology (choice of 4
materials for Isotropic-Solid elements).

The simplest subclass of problems in generalized
shape optimization is a 1ISE (or “black-and-white” or
0-1) topology involving the optimal distribution of a sin-
gle material within the design domain. An example of this
type of problems is a perforated plate in which the plate
thickness for any element is restricted to either zero or
a given nonzero value.

An elementary example of this class of problems is
given in Fig. 1a, in which we have 2 x 2 = 4 square finite
elements in plane stress; two elements (1,2) are supported
along their left edge and one element (4) is loaded uni-
formly along its bottom edge. The load is to be transmit-
ted to the supports, so that
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e the vertical displacement at the bottom right corner of
element 4 (point A) is minimized,
any element is either solid or empty, and
the volume fraction does not exceed 0.75.

At the limiting volume fraction of 0.75, we have
four possible solutions: one is infeasible! (Fig. 1b), one
is optimal (Fig. 1c), and two are feasible but nonopti-
mal (Figs. 1d and e). At the volume fraction of 0.5, we
have only one feasible solution (Fig. 1f) which is nonop-
timal. At the volume fraction of 0.25 we have no feasible
solution.

It is important to note the following.

e In practical topology optimization problems, the num-
ber of finite elements involved is very large, but the
governing basic principles are exactly the same as in
the above elementary example.

e The considered problem does not change essentially
if we prescribe the maximum displacement at Point
A and minimize the total volume or weight (with vari-
able but uniform thickness for all nonvanishing plate
elements), subject to a limit of 0.75 on the volume
fraction.

o We can easily add other design constraints, restricting
e.g. the stresses, natural frequencies, buckling loads,
etc., but all these refer to the finite element model.
This means that, for example, instead of the (theor-
etically) infinite stress at a reentrant corner, we con-
sider only discretized stresses at the nodes of the finite
elements or average stresses for each element. How-
ever, stress concentrations in the actual design can be
avoided by a second stage shape optimization.

Optimization of a 1ISE (or “black-and-white”) top-
ology is a discrete variable (0-1) problem, involving 2%
possible solutions where N is the given number of the fi-
nite elements. As can be seen from the example in Fig. 1,
many of the possible solutions may be infeasible. The
number of possible solutions for a nISE (n material) top-
ology is (n+1)V.

Finally, it is to be noted that ISE topologies can be
regarded as a special case of IS topologies, in which the
density and mechanical properties of one material tend to
zero and hence that material degenerates into void. For
example, a 1ISE (black and white) topology is a special
case of 2IS topologies.

2.2.1
Applications of ISE topologies

Discrete ISE topologies are used for practical design prob-
lems in which we want to finish up with chunks of given
isotropic materials which are at least as big as the size

L “nfeasible” here implies that the loaded edge is not con-

nected by nonvanishing elemets to the the support

of the elements used. Important applications are abun-
dant in all branches of manufacturing and construction
industries.

2.3
ASE topologies (anisotropic material, solid or empty
elements)

Anisotropic elements may also be employed in discretized
generalized shape optimization if we wish to finish up in
our design with relatively large chunks of materials, but
our choice of the latter includes anisotropic materials.

This class of topologies will be termed ASE topolo-
gies (involving Aanisotropic-Solid or Empty elements) in
which the orientation and magnitude of mechanical prop-
erties (e.g. elements of the rigidity tensor E;jx) are con-
stant for each element. A general formulation of this class
of problem was recently developed by Rodrigues et al.
(1999), see also Guedes and Taylor (1997) and Taylor
(1998). In ASE topologies, the relation between the usu-
ally continuously variable mechanical properties (E;je)
and the element cost (or weight or resource p) is given
and, therefore, we can use optimization with continuous
variables. However, an element is allowed to degenerate
into an empty element (with zero cost and zero rigidities)
during the optimization process.

Figure 2 shows an elementary conceptually optimal
ASE topology for the problem in Fig. 1a, assuming that
only the material properties F1111 and Foo99 are relevant.
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Fig. 2 Simple example of an ASE topology

2.4
ISEP, ISEC and ISECP topologies (isotropic base
material, solid, empty or porous elements)

Using an FE formulation, we may try to approximate
the “exact”, continuum-type optimal topology for a given
problem (in which the number of internal boundaries
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Table 1 Fundamental properties of various types of topologies in generalized or variable-topology shape optimization

ISE IS ASE ISEP, ISEC, ISECP
void allowed yes no yes yes
base material(s) isotropic isotropic anisotropic isotropic
original elements homogeneous homogeneous homogeneous (optimally)

nonhomogeneous

homogenized - - - anisotropic
elements homogeneous
types of optimization discrete value discrete value continuous! continuous!
problem (0-1 for 1ISE)
number of (n+1)N v infinite infinite

possible solutions™

fcan be formulated as discrete value problem

* some may be infeasible, N = number of elements, n = number of base materials (phases)

is allowed to tend to infinity). In this case, for each fi-
nite element we use the homogenized anisotropic prop-
erties of originally nonhomogeneous elements. The lat-
ter contain an optimal microstructure consisting of void
and one or several isotropic materials. The above top-
ology is called (before homogenization) an ISEP topology
(Isotropic base material; Solid, Empty or Porous elem-
ents). After homogenization, an ISEP topology reduces to
an ASE topology for computational purposes.

An elementary example of a conceptually optimal
ISEP topology is given in Fig. 3, having elements with
layered rank-2 microstructures.
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Fig. 3 Simple example of an ISEP topology

ISEC topologies are similar to ISEP topologies, but
their porous elements are replaced by composite ones.
Their elements are therefore solid, empty or composite.
In ISECP topologies, composite-porous elements are also
admitted.

2.5
Applications of ISEP topologies

ISEP (ISEC and ISECP) topologies have two very im-
portant applications.

e They may indicate the exact optimal topology for
a given problem, which can be compared with ex-
act analytical solutions for verification purposes (e.g.
Jog, Haber and Bendsge 1994). Exact solutions can
be used as the absolute limit of material economy for
a given design problem, providing a basis for assess-
ing the relative degree of material economy of practical
designs.

e We may wish to manufacture fibre-reinforced or other
densely structured composites on the basis of “exact”
optimal solutions.

The basic features of the above topologies are summa-
rized in Table 1.

ISE and ISEP topologies were termed, respectively,
SE and SEP topologies in earlier studies (e.g. Rozvany,
Zhou and Birker 1992; Rozvany, Kirsch and Bendsge
1995).

Naturally, we could restrict the material properties
and microstructure parameters in ASE and ISEP topolo-
gies, respectively, to given discrete values and then we
would again finish up with discrete value optimization.

3

Solution strategies of generalized shape optimization
with ISE and IS topologies

Since most practical problems are associated with ISE
and IS topologies at present, we will only discuss in detail
methods for these problems. As before, our investigation
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Table 2 Methods used for large ISE or IS topologies in generalized shape optimization

SIMP OMP NOM DDP
Microstructure of solid, optimal nonoptimal solid,
elements isotropic nonhomogeneous nonhomogeneous isotropic
additional yes yes no not
penalization necessary
homogenization no yes yes no
necessary
no. of free 2D*: 3 or 4
parameters 1 >1 1
per element 3D:5o0r 6
available for: all combinations compliance all combinations compliance
of design constraints of design constraints
penalization adequate yes yes no -

*orthogonal or nonorthogonal rank-2 laminates

is restricted to topologies with a given finite number of
elements.

3.1
The SIMP method

In this method, we are using Solid Isotropic Microstruct-
ures with Penalization for intermediate densities.

Note. Some authors interpret “S” and “M” in SIMP
as “Simple” and “Material”. In SIMP’s original defin-
ition (Rozvany, Zhou and Birker 1992; Rozvany, Bendsge
and Kirsch 1995), “S” stood for “Solid” (as opposite to
“Porous”, as e.g. in “solid gold”, meaning “entirely filled
with that material” and not as opposite to “Fluid”). The
meaning of “Simple Material” or “Simple Microstruc-
ture” would be too vague. “Microstructure” in this article
means the material configuration in a nonhomogeneous
element or “cell”. “Solid Microstructure” in SIMP was
meant to refer to the limiting (degenerate) case of (nonho-
mogeneous) microstructures in which the entire element
is occupied by one material (without cavities). Bendsge
and Sigmund (1999) use “M” for “Materials”, which is
a very useful alternative, but the term “materials” in
this article is already used for the base material(s), i.e.
phase(s) in porous or composite elements.

The justification of the SIMP method can be easily
understood if we consider the example of a perforated
plate in plane stress, in which the plate thickness is ei-
ther zero or a given value (tg). In order to explore all
possible solutions for a large number of elements (e.g.
40000), we would have to carry out a prohibitively large
number (240000 = 1012041) of analyses, and therefore we
must resort to iterative methods with initially continuous
variables.

We can, for example, assume that the plate thickness ¢
may vary continuously between zero and ¢ (after Rossow

and Taylor 1973). The mechanical properties of the plate
(e.g. stiffnesses? for in-plane forces, permissible values of
in-plane forces etc.) are linearly proportional to its thick-
ness. We can easily minimize the weight of the above plate
by using either an optimality criteria (OC) or a mathe-
matical programming (MP) method. In fact, for a compli-
ance constraint, this problem is convex and therefore the
(only) optimum is easily and quickly calculated.

2 In other studies these are expressed in terms of the “rigid-
ity tensor E;;r,”. In structural mechanics, the term “stiff-
ness” is used instead of “rigidity”

solid isotropic microstructure

——— rank-2 laminate

——- solid microstructure with penalty (SIMP)
-~ microstructure with sqare holes

Specific Cost

1.0-2 p=s" (n=5)
- i
/ 4
0.5¢/ P 2s
/ s p=—
7 1-s
4 p=s
7/
) S -
0% 1.0 Stiffness

Fig. 4 Stiffness (s)/specific cost or density (p) relation for
various types of microstructures (after Rozvany, Zhou and
Birker 1992)



The catch is that the resulting solution will contain
all sorts of thicknesses and in ISE topologies we want
only thicknesses of zero or tg. Our unwanted result can be
largely improved if we penalize intermediate thicknesses
(with 0 < t < tp).

This procedure is shown graphically in Fig. 4, in which
the relation between the normalized plate stiffness s (in
plane stress) and the specific cost or density p (here: plate
thickness) is indicated. For a plate of varying thickness
without penalty, this relation is a straight line. We can pe-
nalize the intermediate thicknesses by using the relation
(after Bendsge 1989)

s=p", (1)

where p > 1. In our unpenalized procedure (after Rossow
and Taylor 1973), we had p =1 (continuous line in Fig. 4).
The inverse of the penalized relation in (1) is shown
graphically for p = 5 (dash-dot line in Fig. 4).

The above penalization will effectively suppress inter-
mediate thickness values but the problem becomes non-
convex even for compliance design and therefore globality
of the optimum cannot be guaranteed. The results are
usually improved if we start at the beginning of the iter-
ation with p = 1 and then increase p gradually to a higher
value (say p = 5).

3.2
The OMP method

In this method Optimal Microstructures with Penal-
ization for intermediate densities are used (e.g. Allaire
1997). This means that first the solution is optimized
using for each finite element an optimal microstructure,
derived rigorously for the particular type of design con-
straints and objective function(al). Such microstructures
have been studied completely at present only for “compli-
ance” design, in which the total amount of external work
is either minimized or constrained.

For a 2D problem, the optimal (rank-2, layered) mi-
crostructure of an element has three free parameters (two
layer densities and one orientation) and for 3D problems
it has five free parameters (three layer densities and two
orientations). For so-called nonselfadjoint problems (e.g.
Lurie 1995), the rank-2 layered microstructures are in
general nonorthogonal and hence the number of free pa-
rameters must be increased to four (2D) and six (3D).

However, optimal microstructures do not provide suf-
ficient penalization for ISE (black-and-white) topologies
(see Fig. 4, broken line). For this reason, some additional
penalization is usually introduced.

3.3
The NOM method

In this method NonOptimal Microstructures or Near
Optimal Microstuctures (e.g. Bendsge and Kikuchi 1988)

95

Specific Material Cost

Pm
Specific
Stiffness
s
(a)
Specific Fabrication Cost
P
s
(b)

Specific Total Cost
Pt

/ . .
/ Approximation

p= 31/1’

(c)

Fig. 5 Justification of the SIMP procedure on the basis of
fabrication costs (Rozvany and Zhou 1991)

are used without penalty. The fact that the microstruc-
ture is nonoptimal assures a certain degree of “fixed” pe-
nalization, but this is often not adequate for an ISE or
IS topology. For example, if we use square holes in our
microstructure, we obtain the curve indicated in Fig. 4
(dotted line), which is far from the strongly penalized re-
lation (with p = 5).

In the NOM method, the number of free parameters
per element may be somewhat lower than in the OMP
method (for 2D problems with square hole, for example,
two instead of three).

34
The DDP method

The SIMP, OMP and NOM methods may be used in
combination with either Optimality Criteria (OC) or
Mathematical Programming (MP) methods. The DDP
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(Dual Discrete Programming) method is discussed sep-
arately from SIMP, because it does not require penaliza-
tion, although it uses solid isotropic microstructures.

In this method, convex and separable approximation
schemes are used to generate a sequence of explicit ap-
proximate subproblems. Each of them is solved in the
dual space with a subgradient based algorithm. The very
high efficiency of this method has been demonstrated by
Beckers and Fleury (e.g. 1997; see also Beckers 1999), but
so far this technique has only been used for compliance
problems.

The four main methods used for ISE or IS topologies
are summarized in Table 2.

35
Other (“emerging”) methods for GSO of ISE
topologies

Other methods in the literature for the considered class of
problems include Genetic Algorithms (GA) and “hard-
kill” methods such as “Evolutionary Structural Optim-
ization” (ESO).

GA has the advantages of robustness and the potential
capability of locating the global optimum. It is not very
practical for large numbers of elements because the pop-
ulation for such problems is enormous (see Sect. 3.1) and
the number of renalyses also very high.

A heuristic method termed alternately “hard-kill”,
ESO (Evolutionary Structural Optimization) and ABG
(Adaptive Biological Growth) is discussed in another re-
view article of this issue (Rozvany 2001) under the more
appropriate term SERA (Sequential Element Rejections
and Admissions method).

4
Justifications of the SIMP-type procedure by various
authors

4.1
Material interpolation schemes

One possible approach to justify the s = p? relation in (1)
is to find ranges of microstructures which generate the
correct value of s and p for various p values. This was
demonstrated recently in a very elegant study by Bendsge
and Sigmund (1999), who

e determined the limits of p values within which a mi-
cromechanical model of relation (1) can be realized,
using variational bounds on the homogenized material
properties of mixtures of materials, e.g. the Hashin-
Shtrikman (1963) bounds; and

e constructed actual microstructures realizing relation
(1) for various values of p and Poisson’s ratios v, using
the “inverse homogenization” method by e.g. Sigmund
(1994a).

4.2
Allowance for fabrication costs

In an independent derivation of the SIMP approach, jus-
tified the relation (1) by including fabrication costs (in
addition to material costs) in the total cost.

As long as we include the final thicknesses or densities
(t =0, t=tp) in our initially feasible set of solutions for
a structure, we can choose any physical model for inter-
mediate values. By selecting a plate varying continuously
between the above values (Rossow and Taylor 1973), we
obtain the specific material cost p,, shown in Fig. ba. If we
then assume that elements with 0 < ¢t < ty are “machined
down” from an original thickness of ¢y (Fig. 6), the fabri-
cation cost of such machining will be, say, pr = B(to — ),
see Fig. 5b. However, for elements of zero thickness, the
fabrication cost reduces suddenly to zero (we neglect the
cost of “sawing out” empty elements). If we then super-
impose the specific material and specific fabrication costs,
we arrive at a specific total cost p; function in terms of
the stiffness s which can be approximated by the relation
in (1), see Fig. 5c.

Fig. 6 Fabrication cost based on “machining” plates of vary-
ing thickness

Another possibility is to use, for example, square holes
in a plate and including the length of the perimeter of the
square holes multiplied by a given constant as fabrication
costs (“sawing out” the square holes). In this case, the
specific material cost p,,, will be

pm:a(l—a2)—>azvl—pm/a, (2)

where « is the material cost per unit plate area and a is
the specific side length of the square holes. The fabrica-



tion cost becomes
pr = B(4a). (3)

The ratio of the total cost (p;) to material cost then
becomes

P a(l—a?)+((4a)
Pm a(l—a?)

(4)

Figure 7 is a modified version of a diagram which ap-
peared in the author’s 1989 book (Rozvany 1989). The
original diagram contained the lower three curves which
compared the specific cost (weight) of microstructures
with square holes and rank-2 laminates (with percentage
difference) for given equal principal stiffnesses (rigidities).
The new top curves show the total cost p; for a fabrication
cost factor of 3/a = 0.2 and the SIMP-curve for s = p%,
which are clearly similar.

One could also use circular holes in a perforated plate
and cubic or spherical cavities in a 3D continuum and
would arrive at relations close to (1) by allowing for the
manufacturing cost of internal boundaries.

4.3
Penalization as computational tool in discrete value
optimization

Penalization in between given discrete design values is
a standard method in nonlinear optimization (e.g. Shin
et al. (1990; Bauer 1994) which does not necessarily rely
on a physical model to justify it.

5
Advantages and disadvantages of various methods
for ISE (and IS) topologies

As noted previously, ISE/IS topologies are the most use-
ful in practice because they provide a sharp, black-and-
white material layout and do not contain porous regions
with infinitesimal fibres, which are difficult to realise
in industrial applications. Moreover, SIMP has a very
large, and constantly increasing, element number capa-
bility and hence relatively dense systems of “members”
can be obtained by this method in the optimal topology
if such a solution is preferred. If the number of internal
boundaries is to be kept low, then “perimeter control”
(e.g. Haber et al. 1996) or mesh independent filtering
(Sigmund 1994b) can be combined with SIMP.

5.1
The SIMP method

Obvious advantages of SIMP for optimizing ISE/IS
topologies are as follows.
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(a) Computational efficiency in terms of storage cap-
acity and CPU time, since only one free vari-
able is used per element (OMP requires up to 6,
see Sect. 3.2).

(b) Robustness in the sense that SIMP can be readily
used for any combination of design constraints. OMP
is presently restricted to compliance or equivalent
designs, because the optimal microstructure is not
known for more complicated design conditions.

(¢) Penalization can be adjusted freely, and hence the
computationally optimal penalization can be used,
which is not the case with NOM, for example.

(d) Conceptual simplicity, since the algorithm does not
require derivations involving higher mathematics.

(e) Since the p-value in (1) is increased progressively,
we can start SIMP with a solution for p =1 for
which some problems (e.g. compliance) are convex
and the solution a global optimum. The subsequent
gradual incrementation of the p-value is not likely
to move the solution too far from the global opti-
mum, but this is only an “experimental” finding at
this stage.

(f) SIMP does not require homogenization of the mi-
crostructure.

A disadvantage of SIMP is that the solution depends
on the degree of penalization (p-value) and it does not
necessarily converge to the optimal solution (Stolpe and
Svanberg 2001). However, other methods for ISE topolo-
gies have the same disadvantage to at least the same
extent.
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5.2
The OMP method

The OMP method has the following obvious disadvan-
tages.

(a) Tt is computationally complicated and relatively in-
efficient, requiring much more free variables per
element than SIMP.

(b) The optimal microstructures are developed fully at
present for compliance design only, which makes
OMP a highly nonrobust method.

(¢) Derivation of the exact optimal microstructure for
any new design conditions requires advanced mathe-
matical treatment.

(d) The OMP problem is intrinsically nonconvez, even
for compliance design.

(e) OMP requires homogenization of the microstructure
which is an extra operation in comparison to SIMP.

(f) As for SIMP, the solution is dependent on the degree
of penalization.

OMP has a potential advantage, if we wish to calcu-
late both optimal ISE and ISEP topologies for a given
design problem, because both can be obtained in an ex-
tended single operation (by starting with an unpenalized
optimal microstructure). This, however, happens rarely
in practice.

5.3
The NOM method

The NOM method may potentially have a smaller num-
ber of variables than the OMP method (e.g. square holes),
which is an advantage. However, it has the following dis-
advantages in comparison with SIMP.

(a) NOM involves more wvariables per element than
SIMP (but possibly less than OMP).

(b) Penalization is fized and often inadequate, result-
ing in “grey” regions and/or a nonoptimal ISE /IS
topology.

(c) As OMP, NOM is also inherently nonconvez.

(d) NOM also requires homogenization.

The relative advantages and disadvantages of various
methods for ISE and IS topologies are summarized in
Tables 3 and 4.

6
Theoretical objections to SIMP and their irrelevance

to ISE/IS topologies

Broader adoption of the computationally superior SIMP
method was delayed by almost a decade owing to certain
theoretical objections to this technique.

6.1
Lack of physical interpretation of SIMP

In first introducing the SIMP method, Bendsge (1989)
commented on the efficiency of this method but noted
that “it is impossible to give a physical meaning for in-
termediate values” (of density). For this reason, Bendsge
(1989) refers to an “artificial material” with the appro-
priate density-stiffness relation. At the time, Bendsge’s
comments were absolutely justified.

As noted already by Rozvany and Zhou (1991) at
a meeting in 1990, a certain physical interpretation of the
SIMP relation in (1) can be achieved by the inclusion of
manufacturing costs (e.g. the length of the perimeter of
the holes) in the cost function.

As mentioned in Sect. 4.1, the above objection was
completely removed by Bendsge and Sigmund (1999),
who constructed composites realizing the relation in (1)
within limits on the p-value. Moreover, these authors cor-
rectly point out:

“if a numerical method leads to black-and-white
designs, one can, in essence, ignore the physical rel-
evance of ‘grey’ and in many situations a better
computational scheme can be obtained if one al-
lows the violation of bounds on properties of com-
posites”.

6.2
Mesh-dependence of SIMP results

As another possible disadvantage of the SIMP method
(then termed “direct approach”), Bendsge (1989) cor-
rectly noted that the “scheme is very dependent on the
mesh”.

Mesh-dependence can be mostly avoided by constrain-
ing the length of the internal boundaries or “perimeter”,
as demonstrated in an outstanding paper by Haber et al.
(1996). For each constrained perimeter value, the ISE
topology remains stable below a critical mesh size. Alter-
natively, a mesh-indpendent filtering method can be used
(Sigmund 1994b; Sigmund and Petersson 1998).

Whilst perimeter control is absolutely necessary if we
want to restrict a practical design to a simple topology,
mesh-dependence actually becomes beneficial if we want to
demonstrate that ISE topologies tend to a known exact an-
alytical solution.

To demonstrate this, we refer to an optimal gril-
lage solution by Prager and Rozvany (1977b), which was
also confirmed using a FE formulation by Sigmund et al.
(1992). In this beam layout problem (Fig. 8), a rhombic
grillage has simple line supports along two edges (double
lines) and the other two edges (single lines) are unsup-
ported, with a point load P at the unsupported corner.
It was shown rigorously by Prager and Rozvany (1977b)
that for the above problem the optimal layout consists of
an infinite number of beams, having the type of beam lay-
out shown in Fig. 8, in which continuous and broken lines
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Table 3 Relative advantages of the SIMP, OMP and NOM methods in optimizing ISE and IS topologies

SIMP OMP

NOM

(a) computational efficiency
(one variable per element)
(b) robustness, suitable for (almost)
any design condition
(c) penalization can be adjusted freely
(d) conceptual simplicity, no
higher mathematics required
(e) convexity can be preserved
for the early iterations with p =1
(f) no homogenization necessary

additional information about
the optimal ISEP topology

potentially smaller no. of
variables per element than
OMP

Table 4 Relative disadvantages of the SIMP, OMP and NOM methods in optimizing ISE and IS topologies

SIMP OMP

NOM

solution dependent
on the degree
of penalization

(a) greater computational effort
than SIMP

(b) highly nonrobust (restricted
presently to compliance design)

(c) requires advanced mathematics

for deriving optimal microstructures

(d) intrinsically nonconvex

(e) requires homogenization

(f) solution dependent on the
degree of penalization

(a) more variables per
element than SIMP
(b) penalization fixed and often insufficient
for reaching the correct ISE/IS topology
(¢) intrinsically nonconvex
(d) requires homogenization

indicate beams under positive and negative moments, re-
spectively. For a finite number (n) of long beams, the
structural weight has been shown to be (Prager and Roz-
vany 1977b)

kPa® (7T 3

where k is a constant. The optimal layout and optimal
weight for a given n-value is strongly mesh-dependent,
with the absolute optimal weight (for n — 00) of

Wopt = ngaz . (6)

In verifying this optimal layout by FE-based methods
(e.g. Sigmund et al. 1992), we find that the strongly
mesh-dependent structural weight clearly converges to
the value in (6) as we use finer and finer meshes. Simi-
larly, it is necessary to allow mesh-dependence if we wish
to confirm by ISE topologies (SIMP method) any analyt-
ical solutions consisting of an infinite number of internal
boundaries (see, for example, Lewinski, Zhou and Roz-
vany 1994, p.417). This procedure would not be possible,
if we put an effective constraint on the perimeter (i.e.
total length of internal boundaries).
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Fig. 8 A strongly mesh-dependent optimal topology

6.3
“Nonexistence” of the solution or “ill-posedness”
of the problem

The SIMP method was often criticized in the past as be-
ing an “intuitive” algorithm, owing to

e ‘“nonexistence of the solution”, or
e “ill-posedness” of the problem.
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Here we only mention a balanced statement by Haber
et al. (1996), who quite correctly point out that SIMP
(then called “engineering approach”) “does not directly
address the ill-posedness of the underlying continuum
problem”.

(a) Ungquestionable well-posedness of ISE/IS topology
problems. In order to forestall any misunderstanding, we
must state from the outset that discrete optimization of
ISE/IS topologies is clearly well-posed. For example, for
one material /void (1ISE) problems we have 2V (0-1)-type
solutions where N is the given number of finite elements.
If we generate all 2V solutions, one (or several) of these
must have the lowest objective function value and hence
it (they) represents the global optimum.

Nonexistence may occur only in the sense that within
a given limiting volume fraction some loaded nodes can-
not be connected to the supports with nonempty elem-
ents. For this reason, we may restrict ISE/IS type prob-
lems to those cases for which at least one solution is
feasible.

Within this restriction, the solution for ISE/IS type
problems (by definition: with a finite N value) the solu-
tion clearly exists and the problem is intrinsically well-
posed, even when N is extremely large (but finite). The
foregoing conclusion should, in itself, disperse any doubt
about the validity of the ISE/IS topology formulation for
any practical problem: with the rapid improvement of
computational capabilities, we can employ the SIMP pro-
cedure for ground structures with millions of DF’s; and
the problem is still be well-posed.

(b) Irrelevance of well-posedness of the underlying con-
tinuum-type problem. Turning to the problem of exact,
continuum type problems, it will be explained that

e for a rigorous mathematical solution existence and
well-posedness must be established, but

e this fact has nothing to do with the validity and com-
putational efficiency of methods for discrete ISE/IS
topologies (e.g. the SIMP method).

The objections associated with exact, continuum-type
solutions can be best elucidated by considering again the
optimal solution in Fig. 8 (with n — 00). It should be clar-
ified that this example is a zero volume fraction problem
with rank-1 microstructures but the principles to be dis-
cussed are independent of the volume fraction or the rank
of the microstructure.

The force field corresponding to the optimal solution
in Fig. 6a with n — oo

has an infinite number of discontinuities, and

takes on locally an infinite value (in mechanics:
“concentrated forces”), as in the delta- or impulse-
“function”.

If a mathematician were to restrict his solutions to
some “better-behaved” functions (e.g. functions with

only a finite number of discontinuities), then he would
declare that the solution to the problem in Fig. 8 “does
not exist”. To an engineer or “mechanician” (e.g. Prager),
this statement is less important, because his optimal
solutions containing an infinite number of internal bound-
aries and impulse-like material /force concentrations can
be derived and described by using principles of me-
chanics. Moreover, more rigorously derived solutions by
mathematicians have not established a single precedence
where the mechanician’s optimal solution was found
