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Aims, scope, methods, history and unified terminology of
computer-aided topology optimization in structural mechanics�

G.I.N. Rozvany

Abstract Topology optimization of structures and com-
posite continua has two main subfields: Layout Optimi-
zation (LO) deals with grid-like structures having very
low volume fractions and Generalized Shape Optimiza-
tion (GSO) is concerned with higher volume fractions,
optimizing simultaneously the topology and shape of in-
ternal boundaries of porous or composite continua. The
solutions for both problem classes can be exact/analytical
or discretized/FE-based.
This review article discusses FE-based generalized shape
optimization, which can be classified with respect to
the types of topologies involved, namely Isotropic-Solid/
Empty (ISE), Anisotropic-Solid/Empty (ASE), and
Isotropic-Solid/Empty/Porous (ISEP) topologies.
Considering in detail the most important class of (i.e.

ISE) topologies, the computational efficiency of various
solution strategies, such as SIMP (Solid IsotropicMicro-
structure with Penalization), OMP (Optimal Micro-
structure with Penalization) and NOM (NonOptimal
Microstructures) are compared.
The SIMP method was proposed under the terms

“direct approach” or “artificial density approach” by
Bendsøe over a decade ago; it was derived independently,
used extensively and promoted by the author’s research
group since 1990. The term “SIMP” was introducted by
the author in 1992. After being out of favour with most
other research schools until recently, SIMP is becoming
generally accepted in topology optimization as a tech-
nique of considerable advantages. It seems, therefore,
useful to review in greater detail the origins, theoretical
background, history, range of validity and major advan-
tages of this method.
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1
Introduction

Topology optimization is a relatively new and rapidly ex-
panding field of structural mechanics, which can result in
much greater savings thanmere cross-section or shape op-
timization. Owing to its complexity, it is an intellectually
challenging field; its progress, however, has often been
hampered by conceptual inconsistencies and terminolog-
ical confusion. For this reason, a critical and systematic
re-examination of the relevant issues seems warranted.
This review deals mainly with mechanical, struc-

tural and computational aspects, whilst investigations of
purely mathematical interest are outside its scope.
For very low volume fractions, important principles

of topology optimization were established already around
the turn of the century, in the context of trusses, by
the versatile Australian inventor Michell (1904). These
were extended to grillages (beam systems) some seventy
years later by Rozvany (e.g. 1972a,b). Drawing on these
applications, the basic principles of optimal layout the-
ory were formulated by Prager and Rozvany (e.g. 1977a)
and generalized considerably by the latter in the eight-
ies and nineties (e.g. Rozvany 1992; Rozvany and Birker
1994).
Topology optimization for higher volume fractions

is now termed Generalized Shape Optimization (GSO)
(Rozvany and Zhou 1991) or Variable Topology Shape
Optimization (Haber et al. 1996). It involves the simul-
taneous optimization of the topology and shape of inter-
nal boundaries in porous and composite continua.
In the context of discretized mechanics, this devel-

opment was prompted by the observation of Cheng and
Olhoff (e.g. 1981) that optimized solid plates contain sys-
tems of ribs which are similar to optimized grillages. For
compliance design of perforated plates (disks) in plane
stress, optimal microstructures were studied by various
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mathematicians (e.g. Lurie et al. 1982; Kohn and Strang
1986; Vigdergauz 1986).
The first exact analytical solutions for optimal perfo-

rated plates and the correct expressions for the rigidity
tensor of homogenized optimal microstructures were ob-
tained by Rozvany, Olhoff, Bendsøe et al. (1985/87), and
Ong, Rozvany and Szeto (1988).
The birth of practical, FE-based topology optimiza-

tion for higher volume fractions was brought about by
extensive pioneering research of (e.g. 1989, for a review
see Bendsøe 1995), and his “homogenization” school (e.g.
Bendsøe and Kikuchi 1988, Bendsøe, Diaz and Kiku-
chi 1993). This was followed by a parallel exploration
of the SIMP approach, suggested orignally by Bendsøe
(1989) and used extensively by Zhou and the author (e.g.
Rozvany and Zhou 1991, presented in 1990), who also
suggested the term “SIMP” (Rozvany, Zhou and Birker
1992).
One aim of this review article is to show that for the

most important classes of topology problems (ISE and IS
topologies) the so-called SIMP method has decisive ad-
vantages. The history and theoretical foundations of this
method are also explained.

2
Classes of problems in FE-based generalized shape
optimization (GSO) and their fields of application

In order to forestall possible conceptual and terminolog-
ical misunderstandings in this field, it is necessary to de-
fine clearly classes of problems in FE-based GSO.

2.1
Types of elements used in GSO

In the terminology of this paper, an element is called

• Solid (S), if it is filled entirely with one material;
• Empty (E), if it contains no material;
• Porous (P), if it contains one material and void (i.e.
cavities or empty space);

• Composite (C), if it contains more than one material
but no void; and

• Composite-Porous (CP), if it contains more than one
material and void.

2.2
Topologies containing only isotropic-solid or empty
finite elements (ISE topologies)

For simplicity, our discussion of ISE topologies is re-
stricted to a given finite set of elements of fixed shape
which may be empty or filled entirely with one of several
isotropic materials of given properties.

Fig. 1 Simple example involving an 1ISE topology: (a) prob-
lem statement, (b) infeasible solution, (c) optimal solution,
(d–f) feasible but nonoptimal solutions

Using the terminology in Sect. 2.1, ISE topologies con-
tain Isotropic-Solid or Empty elements.
The number of base materials (or “phases”) involved

may also be indicated: a topology consisting of four pos-
sible materials and void will be denoted 4ISE topology.
If all elements must be filled with material (i.e. there are
no empty elements) then the letter E is omitted from the
identifier for that topology. For example, a topology hav-
ing solid elements out of four materials (phases) but no
empty elements will be called a 4IS topology (choice of 4
materials for Isotropic-Solid elements).
The simplest subclass of problems in generalized

shape optimization is a 1ISE (or “black-and-white” or
0-1) topology involving the optimal distribution of a sin-
gle material within the design domain. An example of this
type of problems is a perforated plate in which the plate
thickness for any element is restricted to either zero or
a given nonzero value.
An elementary example of this class of problems is

given in Fig. 1a, in which we have 2×2 = 4 square finite
elements in plane stress; two elements (1,2) are supported
along their left edge and one element (4) is loaded uni-
formly along its bottom edge. The load is to be transmit-
ted to the supports, so that
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• the vertical displacement at the bottom right corner of
element 4 (point A) is minimized,

• any element is either solid or empty, and
• the volume fraction does not exceed 0.75.

At the limiting volume fraction of 0.75, we have
four possible solutions: one is infeasible1 (Fig. 1b), one
is optimal (Fig. 1c), and two are feasible but nonopti-
mal (Figs. 1d and e). At the volume fraction of 0.5, we
have only one feasible solution (Fig. 1f) which is nonop-
timal. At the volume fraction of 0.25 we have no feasible
solution.
It is important to note the following.

• In practical topology optimization problems, the num-
ber of finite elements involved is very large, but the
governing basic principles are exactly the same as in
the above elementary example.

• The considered problem does not change essentially
if we prescribe the maximum displacement at Point
A and minimize the total volume or weight (with vari-
able but uniform thickness for all nonvanishing plate
elements), subject to a limit of 0.75 on the volume
fraction.

• We can easily add other design constraints, restricting
e.g. the stresses, natural frequencies, buckling loads,
etc., but all these refer to the finite element model.
This means that, for example, instead of the (theor-
etically) infinite stress at a reentrant corner, we con-
sider only discretized stresses at the nodes of the finite
elements or average stresses for each element. How-
ever, stress concentrations in the actual design can be
avoided by a second stage shape optimization.

Optimization of a 1ISE (or “black-and-white”) top-
ology is a discrete variable (0-1) problem, involving 2N

possible solutions where N is the given number of the fi-
nite elements. As can be seen from the example in Fig. 1,
many of the possible solutions may be infeasible. The
number of possible solutions for a nISE (n material) top-
ology is (n+1)N .
Finally, it is to be noted that ISE topologies can be

regarded as a special case of IS topologies, in which the
density and mechanical properties of one material tend to
zero and hence that material degenerates into void. For
example, a 1ISE (black and white) topology is a special
case of 2IS topologies.

2.2.1
Applications of ISE topologies

Discrete ISE topologies are used for practical design prob-
lems in which we want to finish up with chunks of given
isotropic materials which are at least as big as the size

1 “infeasible” here implies that the loaded edge is not con-
nected by nonvanishing elemets to the the support

of the elements used. Important applications are abun-
dant in all branches of manufacturing and construction
industries.

2.3
ASE topologies (anisotropic material, solid or empty
elements)

Anisotropic elements may also be employed in discretized
generalized shape optimization if we wish to finish up in
our design with relatively large chunks of materials, but
our choice of the latter includes anisotropic materials.
This class of topologies will be termed ASE topolo-

gies (involvingAanisotropic-Solid orEmpty elements) in
which the orientation and magnitude of mechanical prop-
erties (e.g. elements of the rigidity tensor Eijk�) are con-
stant for each element. A general formulation of this class
of problem was recently developed by Rodrigues et al.
(1999), see also Guedes and Taylor (1997) and Taylor
(1998). In ASE topologies, the relation between the usu-
ally continuously variable mechanical properties (Eijk�)
and the element cost (or weight or resource ρ) is given
and, therefore, we can use optimization with continuous
variables. However, an element is allowed to degenerate
into an empty element (with zero cost and zero rigidities)
during the optimization process.
Figure 2 shows an elementary conceptually optimal

ASE topology for the problem in Fig. 1a, assuming that
only the material propertiesE1111 andE2222 are relevant.

Fig. 2 Simple example of an ASE topology

2.4
ISEP, ISEC and ISECP topologies (isotropic base
material, solid, empty or porous elements)

Using an FE formulation, we may try to approximate
the “exact”, continuum-type optimal topology for a given
problem (in which the number of internal boundaries
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Table 1 Fundamental properties of various types of topologies in generalized or variable-topology shape optimization

ISE IS ASE ISEP, ISEC, ISECP

void allowed yes no yes yes

base material(s) isotropic isotropic anisotropic isotropic

original elements homogeneous homogeneous homogeneous (optimally)
nonhomogeneous

homogenized – – – anisotropic
elements homogeneous

types of optimization discrete value discrete value continuous† continuous†

problem (0-1 for 1ISE)

number of (n+1)N nN infinite infinite
possible solutions∗

†can be formulated as discrete value problem
∗ some may be infeasible, N = number of elements, n = number of base materials (phases)

is allowed to tend to infinity). In this case, for each fi-
nite element we use the homogenized anisotropic prop-
erties of originally nonhomogeneous elements. The lat-
ter contain an optimal microstructure consisting of void
and one or several isotropic materials. The above top-
ology is called (before homogenization) an ISEP topology
(Isotropic base material; Solid, Empty or Porous elem-
ents). After homogenization, an ISEP topology reduces to
an ASE topology for computational purposes.
An elementary example of a conceptually optimal

ISEP topology is given in Fig. 3, having elements with
layered rank-2 microstructures.

Fig. 3 Simple example of an ISEP topology

ISEC topologies are similar to ISEP topologies, but
their porous elements are replaced by composite ones.
Their elements are therefore solid, empty or composite.
In ISECP topologies, composite-porous elements are also
admitted.

2.5
Applications of ISEP topologies

ISEP (ISEC and ISECP) topologies have two very im-
portant applications.

• They may indicate the exact optimal topology for
a given problem, which can be compared with ex-
act analytical solutions for verification purposes (e.g.
Jog, Haber and Bendsøe 1994). Exact solutions can
be used as the absolute limit of material economy for
a given design problem, providing a basis for assess-
ing the relative degree of material economy of practical
designs.

• We may wish to manufacture fibre-reinforced or other
densely structured composites on the basis of “exact”
optimal solutions.

The basic features of the above topologies are summa-
rized in Table 1.
ISE and ISEP topologies were termed, respectively,

SE and SEP topologies in earlier studies (e.g. Rozvany,
Zhou and Birker 1992; Rozvany, Kirsch and Bendsøe
1995).
Naturally, we could restrict the material properties

and microstructure parameters in ASE and ISEP topolo-
gies, respectively, to given discrete values and then we
would again finish up with discrete value optimization.

3
Solution strategies of generalized shape optimization
with ISE and IS topologies

Since most practical problems are associated with ISE
and IS topologies at present, we will only discuss in detail
methods for these problems. As before, our investigation
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Table 2 Methods used for large ISE or IS topologies in generalized shape optimization

SIMP OMP NOM DDP

Microstructure of solid, optimal nonoptimal solid,
elements isotropic nonhomogeneous nonhomogeneous isotropic

additional yes yes no not
penalization necessary

homogenization no yes yes no
necessary

no. of free 2D∗: 3 or 4
parameters 1 > 1 1
per element 3D: 5 or 6

available for: all combinations compliance all combinations compliance
of design constraints of design constraints

penalization adequate yes yes no –

∗orthogonal or nonorthogonal rank-2 laminates

is restricted to topologies with a given finite number of
elements.

3.1
The SIMP method

In this method, we are using Solid IsotropicMicrostruct-
ures with Penalization for intermediate densities.

Note. Some authors interpret “S” and “M” in SIMP
as “Simple” and “Material”. In SIMP’s original defin-
ition (Rozvany, Zhou and Birker 1992; Rozvany, Bendsøe
and Kirsch 1995), “S” stood for “Solid” (as opposite to
“Porous”, as e.g. in “solid gold”, meaning “entirely filled
with that material” and not as opposite to “Fluid”). The
meaning of “Simple Material” or “Simple Microstruc-
ture” would be too vague. “Microstructure” in this article
means the material configuration in a nonhomogeneous
element or “cell”. “Solid Microstructure” in SIMP was
meant to refer to the limiting (degenerate) case of (nonho-
mogeneous) microstructures in which the entire element
is occupied by one material (without cavities). Bendsøe
and Sigmund (1999) use “M” for “Materials”, which is
a very useful alternative, but the term “materials” in
this article is already used for the base material(s), i.e.
phase(s) in porous or composite elements.
The justification of the SIMP method can be easily

understood if we consider the example of a perforated
plate in plane stress, in which the plate thickness is ei-
ther zero or a given value (t0). In order to explore all
possible solutions for a large number of elements (e.g.
40 000), we would have to carry out a prohibitively large
number (240000 ∼= 1012041) of analyses, and therefore we
must resort to iterative methods with initially continuous
variables.
We can, for example, assume that the plate thickness t

may vary continuously between zero and t0 (after Rossow

and Taylor 1973). The mechanical properties of the plate
(e.g. stiffnesses2 for in-plane forces, permissible values of
in-plane forces etc.) are linearly proportional to its thick-
ness.We can easily minimize the weight of the above plate
by using either an optimality criteria (OC) or a mathe-
matical programming (MP) method. In fact, for a compli-
ance constraint, this problem is convex and therefore the
(only) optimum is easily and quickly calculated.

2 In other studies these are expressed in terms of the “rigid-
ity tensor Eijk�”. In structural mechanics, the term “stiff-
ness” is used instead of “rigidity”

Fig. 4 Stiffness (s)/specific cost or density (ρ) relation for
various types of microstructures (after Rozvany, Zhou and
Birker 1992)
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The catch is that the resulting solution will contain
all sorts of thicknesses and in ISE topologies we want
only thicknesses of zero or t0. Our unwanted result can be
largely improved if we penalize intermediate thicknesses
(with 0< t < t0).
This procedure is shown graphically in Fig. 4, in which

the relation between the normalized plate stiffness s (in
plane stress) and the specific cost or density ρ (here: plate
thickness) is indicated. For a plate of varying thickness
without penalty, this relation is a straight line. We can pe-
nalize the intermediate thicknesses by using the relation
(after Bendsøe 1989)

s= ρp , (1)

where p > 1. In our unpenalized procedure (after Rossow
and Taylor 1973), we had p= 1 (continuous line in Fig. 4).
The inverse of the penalized relation in (1) is shown
graphically for p= 5 (dash-dot line in Fig. 4).
The above penalization will effectively suppress inter-

mediate thickness values but the problem becomes non-
convex even for compliance design and therefore globality
of the optimum cannot be guaranteed. The results are
usually improved if we start at the beginning of the iter-
ation with p= 1 and then increase p gradually to a higher
value (say p= 5).

3.2
The OMP method

In this method Optimal Microstructures with Penal-
ization for intermediate densities are used (e.g. Allaire
1997). This means that first the solution is optimized
using for each finite element an optimal microstructure,
derived rigorously for the particular type of design con-
straints and objective function(al). Such microstructures
have been studied completely at present only for “compli-
ance” design, in which the total amount of external work
is either minimized or constrained.
For a 2D problem, the optimal (rank-2, layered) mi-

crostructure of an element has three free parameters (two
layer densities and one orientation) and for 3D problems
it has five free parameters (three layer densities and two
orientations). For so-called nonselfadjoint problems (e.g.
Lurie 1995), the rank-2 layered microstructures are in
general nonorthogonal and hence the number of free pa-
rameters must be increased to four (2D) and six (3D).
However, optimal microstructures do not provide suf-

ficient penalization for ISE (black-and-white) topologies
(see Fig. 4, broken line). For this reason, some additional
penalization is usually introduced.

3.3
The NOM method

In this method NonOptimal Microstructures or Near
OptimalMicrostuctures (e.g. Bendsøe and Kikuchi 1988)

Fig. 5 Justification of the SIMP procedure on the basis of
fabrication costs (Rozvany and Zhou 1991)

are used without penalty. The fact that the microstruc-
ture is nonoptimal assures a certain degree of “fixed” pe-
nalization, but this is often not adequate for an ISE or
IS topology. For example, if we use square holes in our
microstructure, we obtain the curve indicated in Fig. 4
(dotted line), which is far from the strongly penalized re-
lation (with p= 5).
In the NOM method, the number of free parameters

per element may be somewhat lower than in the OMP
method (for 2D problems with square hole, for example,
two instead of three).

3.4
The DDP method

The SIMP, OMP and NOM methods may be used in
combination with either Optimality Criteria (OC) or
Mathematical Programming (MP) methods. The DDP
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(Dual Discrete Programming) method is discussed sep-
arately from SIMP, because it does not require penaliza-
tion, although it uses solid isotropic microstructures.
In this method, convex and separable approximation

schemes are used to generate a sequence of explicit ap-
proximate subproblems. Each of them is solved in the
dual space with a subgradient based algorithm. The very
high efficiency of this method has been demonstrated by
Beckers and Fleury (e.g. 1997; see also Beckers 1999), but
so far this technique has only been used for compliance
problems.
The four main methods used for ISE or IS topologies

are summarized in Table 2.

3.5
Other (“emerging”) methods for GSO of ISE
topologies

Other methods in the literature for the considered class of
problems include Genetic Algorithms (GA) and “hard-
kill” methods such as “Evolutionary Structural Optim-
ization” (ESO).
GA has the advantages of robustness and the potential

capability of locating the global optimum. It is not very
practical for large numbers of elements because the pop-
ulation for such problems is enormous (see Sect. 3.1) and
the number of renalyses also very high.
A heuristic method termed alternately “hard-kill”,

ESO (Evolutionary Structural Optimization) and ABG
(Adaptive BiologicalGrowth) is discussed in another re-
view article of this issue (Rozvany 2001) under the more
appropriate term SERA (Sequential Element Rejections
andAdmissions method).

4
Justifications of the SIMP-type procedure by various
authors

4.1
Material interpolation schemes

One possible approach to justify the s= ρp relation in (1)
is to find ranges of microstructures which generate the
correct value of s and ρ for various p values. This was
demonstrated recently in a very elegant study by Bendsøe
and Sigmund (1999), who

• determined the limits of p values within which a mi-
cromechanical model of relation (1) can be realized,
using variational bounds on the homogenized material
properties of mixtures of materials, e.g. the Hashin-
Shtrikman (1963) bounds; and

• constructed actual microstructures realizing relation
(1) for various values of p and Poisson’s ratios ν, using
the “inverse homogenization”method by e.g. Sigmund
(1994a).

4.2
Allowance for fabrication costs

In an independent derivation of the SIMP approach, jus-
tified the relation (1) by including fabrication costs (in
addition to material costs) in the total cost.
As long as we include the final thicknesses or densities

(t= 0, t = t0) in our initially feasible set of solutions for
a structure, we can choose any physical model for inter-
mediate values. By selecting a plate varying continuously
between the above values (Rossow and Taylor 1973), we
obtain the specific material cost ρm shown in Fig. 5a. If we
then assume that elements with 0< t < t0 are “machined
down” from an original thickness of t0 (Fig. 6), the fabri-
cation cost of such machining will be, say, ρf = β(t0− t),
see Fig. 5b. However, for elements of zero thickness, the
fabrication cost reduces suddenly to zero (we neglect the
cost of “sawing out” empty elements). If we then super-
impose the specific material and specific fabrication costs,
we arrive at a specific total cost ρt function in terms of
the stiffness s which can be approximated by the relation
in (1), see Fig. 5c.

Fig. 6 Fabrication cost based on “machining” plates of vary-
ing thickness

Another possibility is to use, for example, square holes
in a plate and including the length of the perimeter of the
square holes multiplied by a given constant as fabrication
costs (“sawing out” the square holes). In this case, the
specific material cost ρm will be

ρm = α(1−a
2)→ a=

√
1−ρm/α , (2)

where α is the material cost per unit plate area and a is
the specific side length of the square holes. The fabrica-
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tion cost becomes

ρf = β(4a) . (3)

The ratio of the total cost (ρt) to material cost then
becomes

ρt

ρm
=
α(1−a2)+β(4a)

α(1−a2)
. (4)

Figure 7 is a modified version of a diagram which ap-
peared in the author’s 1989 book (Rozvany 1989). The
original diagram contained the lower three curves which
compared the specific cost (weight) of microstructures
with square holes and rank-2 laminates (with percentage
difference) for given equal principal stiffnesses (rigidities).
The new top curves show the total cost ρt for a fabrication
cost factor of β/α = 0.2 and the SIMP-curve for s= ρ5,
which are clearly similar.
One could also use circular holes in a perforated plate

and cubic or spherical cavities in a 3D continuum and
would arrive at relations close to (1) by allowing for the
manufacturing cost of internal boundaries.

4.3
Penalization as computational tool in discrete value
optimization

Penalization in between given discrete design values is
a standard method in nonlinear optimization (e.g. Shin
et al. (1990; Bauer 1994) which does not necessarily rely
on a physical model to justify it.

5
Advantages and disadvantages of various methods
for ISE (and IS) topologies

As noted previously, ISE/IS topologies are the most use-
ful in practice because they provide a sharp, black-and-
white material layout and do not contain porous regions
with infinitesimal fibres, which are difficult to realise
in industrial applications. Moreover, SIMP has a very
large, and constantly increasing, element number capa-
bility and hence relatively dense systems of “members”
can be obtained by this method in the optimal topology
if such a solution is preferred. If the number of internal
boundaries is to be kept low, then “perimeter control”
(e.g. Haber et al. 1996) or mesh independent filtering
(Sigmund 1994b) can be combined with SIMP.

5.1
The SIMP method

Obvious advantages of SIMP for optimizing ISE/IS
topologies are as follows.

Fig. 7 Specific cost of perforated plates taking cost of “saw-
ing out” into consideration (see ρt)

(a) Computational efficiency in terms of storage cap-
acity and CPU time, since only one free vari-
able is used per element (OMP requires up to 6,
see Sect. 3.2).

(b) Robustness in the sense that SIMP can be readily
used for any combination of design constraints . OMP
is presently restricted to compliance or equivalent
designs, because the optimal microstructure is not
known for more complicated design conditions.

(c) Penalization can be adjusted freely, and hence the
computationally optimal penalization can be used,
which is not the case with NOM, for example.

(d) Conceptual simplicity, since the algorithm does not
require derivations involving higher mathematics .

(e) Since the p-value in (1) is increased progressively,
we can start SIMP with a solution for p = 1 for
which some problems (e.g. compliance) are convex
and the solution a global optimum. The subsequent
gradual incrementation of the p-value is not likely
to move the solution too far from the global opti-
mum, but this is only an “experimental” finding at
this stage.

(f) SIMP does not require homogenization of the mi-
crostructure.

A disadvantage of SIMP is that the solution depends
on the degree of penalization (p-value) and it does not
necessarily converge to the optimal solution (Stolpe and
Svanberg 2001). However, other methods for ISE topolo-
gies have the same disadvantage to at least the same
extent.
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5.2
The OMP method

The OMP method has the following obvious disadvan-
tages.

(a) It is computationally complicated and relatively in-
efficient , requiring much more free variables per
element than SIMP.

(b) The optimal microstructures are developed fully at
present for compliance design only, which makes
OMP a highly nonrobust method.

(c) Derivation of the exact optimal microstructure for
any new design conditions requires advanced mathe-
matical treatment .

(d) The OMP problem is intrinsically nonconvex , even
for compliance design.

(e) OMP requires homogenization of the microstructure
which is an extra operation in comparison to SIMP.

(f) As for SIMP, the solution is dependent on the degree
of penalization.

OMP has a potential advantage, if we wish to calcu-
late both optimal ISE and ISEP topologies for a given
design problem, because both can be obtained in an ex-
tended single operation (by starting with an unpenalized
optimal microstructure). This, however, happens rarely
in practice.

5.3
The NOM method

The NOM method may potentially have a smaller num-
ber of variables than the OMPmethod (e.g. square holes),
which is an advantage. However, it has the following dis-
advantages in comparison with SIMP.

(a) NOM involves more variables per element than
SIMP (but possibly less than OMP).

(b) Penalization is fixed and often inadequate, result-
ing in “grey” regions and/or a nonoptimal ISE/IS
topology.

(c) As OMP, NOM is also inherently nonconvex .
(d) NOM also requires homogenization.

The relative advantages and disadvantages of various
methods for ISE and IS topologies are summarized in
Tables 3 and 4.

6
Theoretical objections to SIMP and their irrelevance
to ISE/IS topologies

Broader adoption of the computationally superior SIMP
method was delayed by almost a decade owing to certain
theoretical objections to this technique.

6.1
Lack of physical interpretation of SIMP

In first introducing the SIMP method, Bendsøe (1989)
commented on the efficiency of this method but noted
that “it is impossible to give a physical meaning for in-
termediate values” (of density). For this reason, Bendsøe
(1989) refers to an “artificial material” with the appro-
priate density-stiffness relation. At the time, Bendsøe’s
comments were absolutely justified.
As noted already by Rozvany and Zhou (1991) at

a meeting in 1990, a certain physical interpretation of the
SIMP relation in (1) can be achieved by the inclusion of
manufacturing costs (e.g. the length of the perimeter of
the holes) in the cost function.
As mentioned in Sect. 4.1, the above objection was

completely removed by Bendsøe and Sigmund (1999),
who constructed composites realizing the relation in (1)
within limits on the p-value. Moreover, these authors cor-
rectly point out:

“if a numerical method leads to black-and-white
designs, one can, in essence, ignore the physical rel-
evance of ‘grey’ and in many situations a better
computational scheme can be obtained if one al-
lows the violation of bounds on properties of com-
posites”.

6.2
Mesh-dependence of SIMP results

As another possible disadvantage of the SIMP method
(then termed “direct approach”), Bendsøe (1989) cor-
rectly noted that the “scheme is very dependent on the
mesh”.
Mesh-dependence can be mostly avoided by constrain-

ing the length of the internal boundaries or “perimeter”,
as demonstrated in an outstanding paper by Haber et al.
(1996). For each constrained perimeter value, the ISE
topology remains stable below a critical mesh size. Alter-
natively, a mesh-indpendent filtering method can be used
(Sigmund 1994b; Sigmund and Petersson 1998).
Whilst perimeter control is absolutely necessary if we

want to restrict a practical design to a simple topology,
mesh-dependence actually becomes beneficial if we want to
demonstrate that ISE topologies tend to a known exact an-
alytical solution.
To demonstrate this, we refer to an optimal gril-

lage solution by Prager and Rozvany (1977b), which was
also confirmed using a FE formulation by Sigmund et al.
(1992). In this beam layout problem (Fig. 8), a rhombic
grillage has simple line supports along two edges (double
lines) and the other two edges (single lines) are unsup-
ported, with a point load P at the unsupported corner.
It was shown rigorously by Prager and Rozvany (1977b)
that for the above problem the optimal layout consists of
an infinite number of beams, having the type of beam lay-
out shown in Fig. 8, in which continuous and broken lines
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Table 3 Relative advantages of the SIMP, OMP and NOM methods in optimizing ISE and IS topologies

SIMP OMP NOM

(a) computational efficiency additional information about potentially smaller no. of
(one variable per element) the optimal ISEP topology variables per element than

(b) robustness, suitable for (almost) OMP
any design condition

(c) penalization can be adjusted freely
(d) conceptual simplicity, no

higher mathematics required
(e) convexity can be preserved

for the early iterations with p= 1
(f) no homogenization necessary

Table 4 Relative disadvantages of the SIMP, OMP and NOM methods in optimizing ISE and IS topologies

SIMP OMP NOM

solution dependent (a) greater computational effort (a) more variables per
on the degree than SIMP element than SIMP
of penalization (b) highly nonrobust (restricted (b) penalization fixed and often insufficient

presently to compliance design) for reaching the correct ISE/IS topology
(c) requires advanced mathematics (c) intrinsically nonconvex

for deriving optimal microstructures (d) requires homogenization
(d) intrinsically nonconvex
(e) requires homogenization
(f) solution dependent on the

degree of penalization

indicate beams under positive and negative moments, re-
spectively. For a finite number (n) of long beams, the
structural weight has been shown to be (Prager and Roz-
vany 1977b)

Wn =
kPa2

2

(
7

4
+
3

4n

)
, (5)

where k is a constant. The optimal layout and optimal
weight for a given n-value is strongly mesh-dependent ,
with the absolute optimal weight (for n→∞) of

Wopt =
7

8
kPa2 . (6)

In verifying this optimal layout by FE-based methods
(e.g. Sigmund et al. 1992), we find that the strongly
mesh-dependent structural weight clearly converges to
the value in (6) as we use finer and finer meshes. Simi-
larly, it is necessary to allow mesh-dependence if we wish
to confirm by ISE topologies (SIMP method) any analyt-
ical solutions consisting of an infinite number of internal
boundaries (see, for example, Lewinski, Zhou and Roz-
vany 1994, p. 417). This procedure would not be possible,
if we put an effective constraint on the perimeter (i.e.
total length of internal boundaries).

Fig. 8 A strongly mesh-dependent optimal topology

6.3
“Nonexistence” of the solution or “ill-posedness”
of the problem

The SIMP method was often criticized in the past as be-
ing an “intuitive” algorithm, owing to

• “nonexistence of the solution”, or
• “ill-posedness” of the problem.
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Here we only mention a balanced statement by Haber
et al. (1996), who quite correctly point out that SIMP
(then called “engineering approach”) “does not directly
address the ill-posedness of the underlying continuum
problem”.

(a) Unquestionable well-posedness of ISE/IS topology
problems . In order to forestall any misunderstanding, we
must state from the outset that discrete optimization of
ISE/IS topologies is clearly well-posed. For example, for
one material/void (1ISE) problems we have 2N (0-1)-type
solutions where N is the given number of finite elements.
If we generate all 2N solutions, one (or several) of these
must have the lowest objective function value and hence
it (they) represents the global optimum.
Nonexistence may occur only in the sense that within

a given limiting volume fraction some loaded nodes can-
not be connected to the supports with nonempty elem-
ents. For this reason, we may restrict ISE/IS type prob-
lems to those cases for which at least one solution is
feasible.
Within this restriction, the solution for ISE/IS type

problems (by definition: with a finite N value) the solu-
tion clearly exists and the problem is intrinsically well-
posed, even when N is extremely large (but finite). The
foregoing conclusion should, in itself, disperse any doubt
about the validity of the ISE/IS topology formulation for
any practical problem: with the rapid improvement of
computational capabilities, we can employ the SIMP pro-
cedure for ground structures with millions of DF’s, and
the problem is still be well-posed.

(b) Irrelevance of well-posedness of the underlying con-
tinuum-type problem. Turning to the problem of exact,
continuum type problems, it will be explained that

• for a rigorous mathematical solution existence and
well-posedness must be established, but

• this fact has nothing to do with the validity and com-
putational efficiency of methods for discrete ISE/IS
topologies (e.g. the SIMP method).

The objections associated with exact, continuum-type
solutions can be best elucidated by considering again the
optimal solution in Fig. 8 (with n→∞). It should be clar-
ified that this example is a zero volume fraction problem
with rank-1 microstructures but the principles to be dis-
cussed are independent of the volume fraction or the rank
of the microstructure.
The force field corresponding to the optimal solution

in Fig. 6a with n→∞

• has an infinite number of discontinuities, and
• takes on locally an infinite value (in mechanics:
“concentrated forces”), as in the delta- or impulse-
“function”.

If a mathematician were to restrict his solutions to
some “better-behaved” functions (e.g. functions with

only a finite number of discontinuities), then he would
declare that the solution to the problem in Fig. 8 “does
not exist”. To an engineer or “mechanician” (e.g. Prager),
this statement is less important, because his optimal
solutions containing an infinite number of internal bound-
aries and impulse-like material/force concentrations can
be derived and described by using principles of me-
chanics. Moreover, more rigorously derived solutions by
mathematicians have not established a single precedence
where the mechanician’s optimal solution was found
incorrect.
However, rigorous mathematical studies of the under-

lying continuum-problem are

• of considerable theoretical interest, and
• very satisfying, since they usually confirm indepen-
dently solutions derived from principles of mechanics.

In addition to identical end results, mathematical
and mechanical solutions also use similar intermediate
steps. The mathematician’s “G-closure” (e.g. Allaire
1997, p. 110) is equivalent to including in the feasible set
for the problem in Fig. 8 the solution with n→∞. Admit-
tedly, Prager and Rozvany (1977b) did not consider some
theoretical implications of this step, but they regarded
the latter as less important for their frame of reference.
Moreover, mathematicians obtain a “well-behaved”

class of functions by replacing the original nonhomoge-
neous microstructure of an element with the “homog-
enized” properties of an anisotropic but homogeneous
element. Such “effective properties” of structures with
infinitely dense microstructures were used considerably
earlier in mechanics (e.g. Prager and Rozvany 1977a; to
some extent also Michell 1904).
On the other hand, difficulties seem to arise in rigor-

ous homogenization when force fields or rib densities con-
tain impulse-like concentrations, as along the free edges
in Fig. 8 with n→∞, or often in Michell trusses. For this
reason, Strang and Kohn (1983), for example, used an up-
per constraint on rib densities in their rigorous treatment
of Michell trusses.
It is to be remarked that the treatment of plane

trusses by mathematicians (e.g. Strang and Kohn 1983,
p. 121; Allaire 1997) is somewhat imcomplete from a me-
chanical viewpoint because they consider a plane stress
field for which the integral of the sum of the absolute
values of the principal stresses (|σ1|+ |σ2|) must be min-
imized. This problem is equivalent to the least-weight
truss problem only if the members are restricted to the
principal stress directions . Optimal layout theory (e.g.
Michell 1904; Prager and Rozvany 1977a) starts off with
the much more general problem of potential truss mem-
bers in all possible directions and then proves that in
(at least one) optimal solution the members are oriented
in the principal directions. However, in certain regions
all directions are equally optimal and hence members in
the optimal layout may be positioned in more than two
directions.
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7
SIMP vs. OMP – intuitive arguments and
experimental evidence

In order to present a balanced view on computer-aided
topology optimization, we must also mention arguments
in favour of OMP.
There have been numerous claims in the literature

and at conferences (e.g. Sesimbra 1992, see Bendsøe and
Mota Soares 1993) that the considerable extra effort re-
quired by OMP is justified, because OMP gives more
correct results. These arguments were lucidly summa-
rized by a leading homogenization expert, (Allaire 1997,
p. 129), who compared what we now call SIMP and OMP
methods:

“Of course, such an approach” (in our terminology:
SIMP) “has the real advantage of being straight-
forward to implement. However, as we shall see, its
results are not as good as the ones of the homoge-
nization method”.

After this, (Allaire 1997, p. 129) develops a type of
SIMP algorithm for the particular case of compliance de-
sign, using convexification of the stress-based formula-
tion. Then he concludes

“The algorithm converges quickly and smoothly
. . . In general, the fictitious penalized design” (i.e.
SIMP) “fails to have the same degree of complexity
and detailed pattern as the homogenized penalized
design” (i.e. OMP).

This means that in the above quotation the main ar-
gument in favour of the more complicated OMP method
is that in some test examples it gave a better resolution
than the SIMP method.
Clearly, the performance of the SIMP and OMP

methods strongly depends on the correct level of penal-
ization and it is not clear how convexification affected
Allaire’s SIMP-type solutions.
Some other numerical experiments could be quoted in

favour of SIMP. For example, in extensive studies since
1990, Zhou and the author have found that SIMP results
are actually better structured, and for low volume frac-
tures much closer to the corresponding Michell trusses,
than those obtained by OMP in the literature (e.g. some
examples of the latter in the conference proceedings for
the NATO ARW in Sesimbra 1992). Considering for ex-
ample the so-called MBB-beam problem, the solution
in Fig. 9 was obtained very early (Rozvany and Zhou
1991, presented in 1990) and yet it was much closer to the
corresponding analytical solution (Lewinski, Zhou and
Rozvany 1994) than many solutions by OMP much later.
One should also mention rational arguments in the lit-

erature, why OMP should be better than SIMP. Quoting
again Allaire (1997):

Fig. 9 Early SIMP solution for the ”MBB beam” by Roz-
vany and Zhou (1991, presented in 1990)

“This sensibly worse behaviour of the fictitious
material approach takes its roots in the fact that
there are no implicit microstructure hidden at
the submesh level like for the homogenization
method.”

This argument would certainly be valid for the op-
timization of an ISEP topology without penalization. It
could be debated, however, for ISE topologies which are
inherently “black-and-white” ones. Since OMP is also
aiming at an ISE topology at the end, it indeed “throws
away” (Allaire 1997) all the information it collected about
optimal anisotropy throughmuch extra computational ef-
fort . Many examples show that the optimal ISE and opti-
mal ISEP topologies are significantly different and hence
it is not necessarily justified to get to the former via the
latter.
Further evidence of the reliability of SIMP-type re-

sults come from the optimal topologies obtained re-
cently by Beckers and Fleury (1997) and Beckers (1999)
because

(a) their method of discrete dual programming is aimed
directly at an optimal ISE topology without consid-
ering the optimal ISEP topology (i.e. optimal mi-
crostructures) first and in this respect it is very simi-
lar to SIMP; and

(b) their results demonstrate an excellent resolution ca-
pability and have been fully confirmed by

• 2D examples derived by Zhou and Rozvany using
SIMP (for a review, see Rozvany, Kirsch and
Bendsøe 1995)

• 3D examples of Olhoff et al. (1998) who actually
used OMP, and

• exact analytical solutions (e.g. Rozvany 1998).

8
The changeable history of SIMP and related
methods

8.1
Introductory comments

As mentioned in the Introduction, optimal layout the-
ory deals with structures of very low (theoretically zero)
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volume fractions, whilst generalized shape optimization
considers problems with higher volume fractions. It has
been shown by various methods (Rozvany, Olhoff, Bend-
søe et al. 1985/87; Allaire and Kohn 1993a, Bendsøe and
Haber 1993) that for particular classes of problems the
optimal topology of generalized shape optimization con-
verges to those of optimal layout theory as the volume
fraction tends to zero.

8.2
Early roots of generalized shape optimization –
optimal layout theory

As noted in Sect. 1, practical FE-based topology opti-
mization for higher volume fractions was pioneered by
Bendsøe in Denmark (also fostered and promoted by
Kikuchi) at the end of the eighties. Topology optimization
for low volume fractions started almost nine decades ear-
lier, and about twenty thousand km to the South-East,
by a versatile Australian inventor in Melbourne. Michell’s
(1904) theory of least-weight trusses included in essence
many features of what we now call optimal layout theory.
Also in Melbourne, many extensions of this theory (opti-
mal grillages and shell grids, general principles of layout
theory) were explored by the research team of the author
in the seventies. The earliest papers on these new ap-
plications were by Rozvany (1972a,b), but later Prager
developed a keen interest in these extensions and wrote
several joint papers with the author about them (e.g.
Prager and Rozvany 1977a,b; Rozvany and Prager 1976,
1979).
Layout theory was generalized considerably in the

eighties and nineties, most recently to multiload, multi-
constraint structures (e.g. Rozvany 1992; Rozvany and
Birker 1994).
The exact solutions of layout theory usually con-

tain an intersecting system of an infinite number of
members with an infinitesimal spacing, which Prager
(1974) termed e.g. “truss-like continua” or “grillage-like
continua”. These solutions can easily be approximated
numerically by optimizing ISEP topologies for low vol-
ume fractions. Moreover, optimal ISE/IS topologies with
a finer mesh also clearly converge to these solutions (see
excellent examples by Lewinski, Zhou and Rozvany 1994,
p. 417). An early version of “perimeter control” was in-
troduced in grillage layout optimization (Rozvany and
Prager 1976), enforcing a finite number of beams.
The optimal microstructures of optimal layout theory

being rank-1, the optimization procedure consists of de-
termining at any point of the design domain the optimal
directions and specific strength or stiffness of truss elem-
ents (in IR2 or IR3) or shell elements (in IR3). Although
optimal layout theory deals with grid- or honeycomb-
type structures, these are special subclasses of problems
of generalized shape optimization and hence they can be
used as reliable benchmark examples for verifying the re-
sult of the latter discipline.

The field “generalized” or “variable topology shape
optimization” was originally termed “advanced layout
optimization”, realizing that for higher volume fractions
it is necessary to optimize the microstructure (for a re-
view, see Rozvany and Ong 1987).

8.3
Beginnings of generalized shape optimization

The first step in the direction of generalized or variable
topology shape optimization was a paper by Rossow and
Taylor (1973). Although the use of p= 1 in (1) did not re-
sult in an ISE (black-and-white) topology, in private com-
munications Taylor explained to the author already in the
early seventies that his intention was to obtain cavities or
perforations in the plate in some areas. Taylor’s milestone
contribution was therefore probably the first conceptual-
ization of generalized shape optimization in the history of
mechanics.
Progress ingeneralizedshapeoptimizationwasbrought

about by two important developments.
First, a new class of optimal structures emerged in the

early eighties. It was found by Cheng and Olhoff (1981)
in FE-based optimization of solid plates that the optimal
plate design develops a system of ribs and Prager pointed
out in a letter shortly before his death in 1980 that the
layout of these ribs is almost identical to the one of opti-
mal grillages (e.g. Rozvany and Adidam 1972). Similarly,
Kohn and Strang (1983) found solid, empty and porous
regions in plastically designed cross-sections for torsion.
The densely ribbed nature of plastically designed optimal
solid plates was investigated in greater detail by Rozvany,
Olhoff, Cheng and Taylor (1982).
Second, various mathematical studies established op-

timal microstructures for perforated plates, the most
popular of which were rank-2 laminates (e.g. Lurie et al.
1982, Kohn and Strang 1986, Avellaneda 1987).
Drawing on the above results, Rozvany, Olhoff, Bend-

søe et al. (1985/87)

• derived the homogenized rigidity tensor of rank-2 lay-
ered laminates for zero Poisson’s ratio; and

• obtained exact optimal topologies for axisymmetric
plates in flexure.

The methods used in deriving these optimal solutions
were strongly influenced by the optimal layout theory dis-
cussed in Sect. 8.2.
It is important to note that in the above papers the

effective stiffness calculations were based on quite sim-
ple mechanical principles which are as follows. Since we
are dealing here with intersecting ribs of first and second-
order infinitesimal width, the following conclusions can
be reached from St. Venant’s principle of elasticity.

• The second-order ribs only cause a nonuniform stress
distribution in the (second-order) boundary layer of
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first-order ribs. It can be shown then that the effect
of such boundary layer on the deformations of a first-
order rib tends to zero. In other words, it can be as-
sumed in effective stiffness calculations that the first-
order rib is stressed biaxially but uniformly over its
entire volume.

• Similarly, nonuniformity of stresses at the end of
a second-order rib only inlfluence the stress in that rib
over a second-order distance from the end and the rest
of the rib is uniformly stressed in its longitudinal di-
rection only. Since the influence of the end disturbance
can be shown to tend to zero, in effective stiffness cal-
culations it can be assumed that the second-order ribs
are uniformly stressed uniaxially.

Based on the above conclusion, the rest of the rigid-
ity/compliance calculations is an elementary exercise but
its results (Rozvany, Olhoff, Bendsøe et al. 1985/ 87) have
been fully confirmed by more rigorous homogenization
studies (for a review, see e.g. Bendsøe 1995).
The same results were extended to nonzero Poisson’s

ratio and composite two-material plates (e.g. Ong, Roz-
vany and Szeto 1988), and all rigidity tensors derived by
“mechanical” or “engineering” methods agree with those
obtained later by homogenization.

8.4
The birth of SIMP

8.4.1
The original introduction of SIMP by Bendsøe
in 1989

There is not a shadow of doubt that the SIMP method,
under the name “the direct approach” or “artificial dens-
ity” method, was first described by Bendsøe (1989). He
also noted that for p= 1, this method reduces to that for
a variable thickness sheet, as described by Rossow and
Taylor (1973).
For very good reasons mentioned earlier, SIMP was

clearly not Bendsøe’s choice of method at the time and he
objected to

• net dependence and
• ficititiousness of material properties

in SIMP (see Sections 6.1 and 6.2).
In his Conclusions Bendsøe (1989) reiterated:

“Weighting cost and complexity against generality,
it seems that the most satisfactory method is to
employ the porous material approach, using simple
square voids at the microscale”

(in our current terminology, a NOM method). We must
emphasize that the above (temporary) preference of
Bendsøe for NOM does not diminish the momentous im-
portance of his discovery of SIMP. In the same paper

Bendsøe (1989) expresses a preference for NOM (square
holes) over second-order laminates owing to the simpli-
city of the former.

8.4.2
An independent derivation of the SIMP method in
1990

As explained in Sect. 4.2, SIMP was also derived on the
basis of allowance formanufacturing costs and announced
at a meeting in Karlsruhe in 1990 (proceedings pub-
lished later, see Rozvany and Zhou 1991). At the time,
the above authors did not notice the computational iden-
tity of their technique with Bendsøe’s (1989) “direct
method”, because they expressed the SIMP relation in
a somewhat different form. However, there is no excuse
for this oversight because the above authors even referred
to Bendsøe’s 1989 paper in another context.
In the paper by Rozvany and Zhou (1991), advanced

examples were presented and the advantages of SIMP
over the OMP and NOM methods explained. SIMP was
also extended to stress constraints (Rozvany, Zhou and
Birker 1992).

8.5
Coupling of SIMP with DCOC

The COC (Continuum-typeOptimalityCriteria) method
was initially used with SIMP (Rozvany and Zhou 1991;
Zhou and Rozvany 1991). However, the capability of
SIMP increased considerably when Zhou reformulated
COC in terms of matrix methods of FE-computations
and derived powerful independent proofs (Zhou 1992;
Zhou and Rozvany 1992/93). The now fully FE-based
algorithm is termed DCOC, addingDiscretized to COC.
The DCOC method was soon extended to a variety

of design constraints, including multiple load conditions,
combined stress, displacement, system stability, natu-
ral frequency constraints, elastic supports, temperature
strains, variable prestrain, support settlements, variable
loads, passive control, etc. (e.g. Rozvany and Zhou 1992;
Rozvany, Zhou and Sigmund 1994). This means that
the SIMP-DCOC combined method has had the capabil-
ity of optimizing ISE/IS topologies for some very com-
plex design conditions since about 1991, whereas OMP
has been restricted mostly to compliance and related de-
signs. Moreover, Zhou and Haftka (1994) developed an
advanced, derivative based DCOC algorithm and Zhou
(1995; see also Zhou and Rozvany 1996) introduced im-
proved approximations for DCOC with eigenvalue and
other problems.
It should be noted, however, that the above papers

showed the power and efficiency of SIMP-DCOC only
on test examples. The development of complete algo-
rithms/software based on this method requires much fur-
ther research effort.
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A sample derivation of a SIMP-DCOC redesign for-
mula is given in the Appendix.

8.6
Period of SIMP’s limited popularity

The merits of the SIMP method were discussed in greater
detail in a paper entitled “Generalized shape optimiza-
tion without homogenization” by Rozvany, Zhou and
Birker (1992), in which SIMP results were compared with
designs by NOM in the literature, a SIMP output for
two alternate load conditions was verified by comparision
with the corresponding analytical solution and a SIMP al-
gorithm for combined stress and displacement constraints
was outlined. SIMP was also explained in great detail at
a NATO ASI in Berechtesgaden in 1991 (Rozvany, Zhou,
Birker and Sigmund 1993). In spite of all this effort, SIMP
remained largely out of favour with most research schools
due to objections outlined in Sect. 6.
At a NATO ARW on topology optimization in Sesim-

bra, 1992, much time was devoted to homogenization (i.e.
OMP and NOM) methods for ISE topologies (e.g. Bend-
søe, Diaz and Kikuchi 1993; Allaire and Kohn 1993b).
However, the organizers (Bendsøe and Mota Soares) very
fairly allocated a session to “other methods”, including
layout theory and SIMP.
At this session Mlejnek (1993) also presented an in-

teresting paper in which in effect SIMP was used, coup-
ling it with the method of moving asymptotes (Svanberg
1987).
Following a paper on the advantages of SIMP (Roz-

vany, Zhou, Birker and Sigmund 1993), a longer debate
on SIMP vs. OMP/NOM type methods took place in
Sesimbra. Most authors using homogenization methods
(including eminent mathematicians) were still in favour
of OMP or NOM, whilst some working in other areas
(e.g. Kirsch, Haftka) supported the argument that it is
a disadvantage of OMP that it is restricted to compliance
design. Haftka actually coauthored a paper (Sankara-
naryanam et al. 1993) showing that topology optimiza-
tion for compliance can be highly nonoptimal for other
constraints.

8.7
The “come-back” of SIMP

During the last three years, the advantages of SIMP
have become quite obvious and this technique has gained
a fairly general acceptance. The most important fac-
tors in SIMP’s complete acceptance were probably the
paper by Bendsøe and Sigmund (1999) on material in-
terpolation schemes as well as continual and imaginative
utilization of this method by Sigmund. SIMP is being
employed and called often “SIMP” in a wide range of ap-
plications by most leading researchers in this field (e.g.

stress constraints: Duysinx and Bendsøe (1997), Duys-
inx (1999), optimality of bone microstructures: Sigmund
(1999), pressure loading: Hammer and Olhoff (2000),
material interpolation: Bendsøe and Sigmund (1999),
multiphysics systems: Sigmund (2000a), a new class of
composites: Sigmund (2000b), Gibiansky and Sigmund
(2000), MEMS design: Sigmund (2001a,b), geometric
nonlinearities: Buhl et al. (2000), Pedersen et al. (2000),
fluid-solid interaction: Chen and Kikuchi (2000), soft-
ware development: Thomas and Schramm (2000), general
review: Sigmund (2000c), education: Sigmund (2001a),
Tcherniak and Sigmund (2001) convergence studies:
Stolpe and Svanberg (2001), combined optimization of
material and structure: Rodrigues, Guedes and Bendsøe
(2001).

8.8
Alternative terms for SIMP

Although the term “SIMP” is used by most investi-
gators, four alternative terms, namely “material inter-
polation”, “artificial material”, “power law” or “dens-
ity” method still appear occasionally in publications.
To keep the terminology uniform, it would be prefer-
able to use “SIMP” consistently. We may note that if we
use the materials derived through inverse homogeniza-
tion by Bendsøe and Sigmund (1999), then neither S (for
“solid”) nor P (for “penalization”) in SIMP is valid any
more. However, the original interpretation of SIMP does
not restrict this method to the variational bounds for
composites.

9
On the historic achievements of Martin Bendsøe

The field of computer-aided topology optimization has
been conceived, developed and brought to fruition mostly
by this ingenious researcher. Out of many of his vital
contributions, at least the following three represent a rev-
olutionary break-through:

(a) development of FE methods for generating optimal
ISE (black-and-white) topologies (e.g. Bendsøe and
Kikuchi 1988);

(b) the concept of SIMP type (power-law) methods
(Bendsøe 1989);

(c) close approximation of “exact” (micro-structured)
optimal topologies (e.g. Jog, Haber and Bendsøe
1994). This latter can be used as a limit of material
economy and a basis for assessing the relative econ-
omy of practial designs.

Any one of the above achievements would be suffi-
cient to ensure immortality in the history of structural
mechanics.
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10
Concluding remarks

(a) Types of problem classes and solution strategies
of FE-based generalized shape optimization (GSO)
have been outlined.

(b) It was shown that the SIMPmethodology has several
advantages over other techniques (OMP, NOM).

(c) Theoretical objections to the SIMP approach have
been fully removed (e.g. Bendsøe and Sigmund
1999).
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Appendix. Sample derivation of SIMP-DCOC
redesign formulae: displacement constraints

For illustration purposes, we consider the simple case of

• perforated plates with element thicknesses of either
t= 0 or t= t0,

• a single load condition,
• displacement constraints (d= 1, . . . , D).

The equivalent SIMP problem can be stated as
follows:

min γeAe
∑
e

(t̂e)
1/p , (7)

with t̂e = te/t0 , (8)

subject to

∑
e

Ae

Ee
f̃TdeK

−1
e fe−∆d ≤ 0 (d= 1, . . . , D) , (9)

t̂−1≤ 0 , (10)

where for the element e: γe is the specific weight, Ae the
element area, te the element thickness, Ee Young’s mod-
ulus, f̃de the virtual nodal forces for the displacement
constraint,3 Ke the element stiffness matrix and fe the
element nodal forces. Moreover, ∆d are the limiting dis-

3 virtual forces are caused by “unit dummy loads” at the
constrained displacements

placement values and p is the penalization factor. Since
in (9)

K−1e =
1

t̂e
K̂−1e , (11)

where K̂e is the “normalized” element stiffness matrix for
te = t0, the Kuhn-Tucker condition becomes

γeAe

p
(t̂e)

(1−p)/p−
Ae

Ee

1

t̂2e

(∑
e

νd fTde

)
K̂−1e fe+ω = 0 ,

(12)

where νd and ω are Lagrange multipliers for (9) and (10).
Then by (10) we have the redesign formula

t̂e =

[
p

γeEe

(∑
d

νd f̂Tde

)
K̂−1fe

]p/(p+1)
. (13)

For computational convenience, the above redesign
formula can easily be expressed in terms of virtual
nodal displacements ûe, nodal displacements ue and
the normalized stiffness matrix K̂e of the elements (e =
1, . . . , E).
A compliance constraint is a special case of the above

displacement constraints with f̂de = fe and∆d =C where
C is the limiting compliance value.
In the above derivation, the dependence of F̂de and Fe

on te(e = 1, . . . , E) was ignored. This is because it was
shown by Zhou and Rozvany (1992/93) that the “stat-
ically determinate” approximation is in fact exact if at
least one displacement constraint is active in the above
problem.
The values of the Lagrange multipliers νd (d = 1, . . . ,

D) can be determined iteratively by using a suitable
(reciprocal) approximation (Zhou and Rozvany 1992/93).


