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Abstract

The need for countering Advanced Persistent Threat

(APT) attacks has led to the solutions that ubiqui-

tously monitor system activities in each host, and per-

form timely attack investigation over the monitoring

data for analyzing attack provenance. However, ex-

isting query systems based on relational databases and

graph databases lack language constructs to express key

properties of major attack behaviors, and often execute

queries inefficiently since their semantics-agnostic de-

sign cannot exploit the properties of system monitoring

data to speed up query execution.

To address this problem, we propose a novel query

system built on top of existing monitoring tools and

databases, which is designed with novel types of opti-

mizations to support timely attack investigation. Our sys-

tem provides (1) domain-specific data model and stor-

age for scaling the storage, (2) a domain-specific query

language, Attack Investigation Query Language (AIQL)

that integrates critical primitives for attack investigation,

and (3) an optimized query engine based on the charac-

teristics of the data and the semantics of the queries to

efficiently schedule the query execution. We deployed

our system in NEC Labs America comprising 150 hosts

and evaluated it using 857 GB of real system monitor-

ing data (containing 2.5 billion events). Our evaluations

on a real-world APT attack and a broad set of attack

behaviors show that our system surpasses existing sys-

tems in both efficiency (124x over PostgreSQL, 157x

over Neo4j, and 16x over Greenplum) and conciseness

(SQL, Neo4j Cypher, and Splunk SPL contain at least

2.4x more constraints than AIQL).

1 Introduction

Advanced Persistent Threat (APT) attacks are sophis-

ticated (involving many individual attack steps across

many hosts and exploiting various vulnerabilities) and

stealthy (each individual step is not suspicious enough),

plaguing many well-protected businesses [9, 11, 15, 18,

27, 30]. A recent massive Equifax data breach [11] has

exposed the sensitive personal information of 143 mil-

lion US customers. In order for enterprises to counter

advanced attacks, recent approaches based on ubiquitous

system monitoring have emerged as an important solu-

tion for monitoring system activities and performing at-

tack investigation [37,42,47–49,54,57,58]. System mon-

itoring observes system calls at the kernel level to collect

system-level events about system activities. Collection

of system monitoring data enables security analysts to

investigate these attacks by querying risky system behav-

iors over the historical data [71].

Although attack investigation is performed after the at-

tacks compromise enterprises’ security, it is a consider-

ably time-sensitive task due to two major reasons. First,

advanced attacks include a sequence of steps and are per-

formed in multiple stages. A timely attack investigation

can help understand all attack behaviors and prevent the

further damage of the attacks. Second, understanding the

attack sequence is crucial to correctly patch the systems.

A timely attack investigation can pinpoint the vulnerable

components of the systems and protect the enterprises

from future attacks of the same types.

Challenges: However, there are two major challenges

for building a query system to support security analysts

in efficient and timely attack investigation.

Attack Behavior Specification: The system needs to

provide a query language with specialized constructs for

expressing various types of attack behaviors using sys-

tem monitoring data: (1) Multi-Step Attacks: risky

behaviors in advanced attacks typically involve activi-

ties that are related to each other based on either spe-

cific attributes (e.g., the same process reads a sensitive

file and accesses the network) or temporal relationships

(e.g., file read happens before network access), which

requires language constructs to easily specify relation-

ships among activities. In Fig. 1, the attacker runs osql
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cmd.exe osql.exe

sqlservr.exe backup1.dmp

Multi-Step Attack

sbblv.exeXXX.129

/bin/cp Info stealer

wget

Dependency Tracking of Attack

apache

Info stealer

Abnormal System Behavior

Host 1

Host 2

sbblv.exe

xxx.129

… …

xxx.122 xxx.128

e1:Start

e2: Write

e3:Read

e4: Write

e1: Write

e2: Read

e3: Connect

e4: Write

e3: Write en: Write

e1: Write e2: Write

Figure 1: Major types of attack behaviors (events e1, . . . ,en are shown in ascending temporal order)

.exe to cause the database sqlservr.exe to dump its data

into a file backup1.dmp. Later (i.e., e3 happens after e2;

temporal relationship), a malicious script sbblv.exe reads

from the dump backup1.dmp (i.e., the same dump file in e2

and e3; attribute relationship) and sends the data back

to the attacker. (2) Dependency Tracking of Attacks:

dependency analysis is often applied to track causality

of data for discovering the “attack entry” (i.e., prove-

nance) [48,49,61], which requires language constructs to

chain constraints among activities. In Fig. 1, a malicious

script info_strealer in Host 1 infects Host 2 via network

communications between apache and wget. (3) Abnormal

System Behaviors: frequency-based behavioral models

are often required to express abnormal system behaviors,

such as network access spikes [20, 29]. Investigating

such spikes requires the system to support sliding win-

dows and statistical aggregation of system activities, and

compare the aggregate results with either fixed thresholds

(in absolute sense) or the historical results (in relative

sense). In Fig. 1, a malicious script sbblv.exe sends a

large amount of data to a particular destination XXX.129.1

Big-Data Security Analysis: System monitoring pro-

duces a huge amount of daily logs [55,69] (∼ 50 GB per

day for 100 hosts), and the investigation of these attacks

typically requires enterprises to keep at least a 0.5 ∼ 1

year worth of data [32]. Such a big amount of security

data poses challenges for the system to meet the require-

ments of timely attack investigation.

Limitations of Existing Systems: Unfortunately, ex-

isting query systems do not address both of these in-

herent challenges in attack investigation. First, existing

query languages in relational databases based on SQL

and SPARQL [19,22,25] lack constructs for easily chain-

ing constraints among relations. Graph databases such

as Neo4j [16] and NoSQL tools such as MongoDB [38],

Splunk [23], and ElasticSearch [10] are ineffective in ex-

pressing event relationships where two events have no

common entities (e.g., e1 and e2 in Fig. 1). More impor-

tantly, none of these languages provide language con-

structs to express behavioral models with historical re-

1While existing complex event processing systems [3, 12, 21] sup-

port similar features, they operate over stream rather than historical

data stored in databases.

sults. Second, system monitoring data is generated with a

timestamp on a specific host in the enterprise, exhibiting

strong spatial and temporal properties. However, none

of these systems provide optimizations that exploit the

domain specific characteristics of the data, missing op-

portunities to optimize the system for supporting timely

attack investigation and often causing queries to run for

hours (e.g., performance evaluation results in Sec. 6.2.2).

Contributions: We design and build a novel system

for efficient attack investigation from system monitor-

ing data. We build our system (∼ 50,000 lines of Java

code) on top of existing system-level monitoring tools

(i.e., auditd [28] and ETW [13]) for data collection and

relational databases (i.e., PostgreSQL [19] and Green-

plum [14]) for data storage and query. This enables our

system to leverage the services provided by these ma-

ture infrastructures, such as data management, indexing

mechanisms, recovery, and security. In particular, our

system is designed with three novel types of optimiza-

tions. First, our system provides a domain-specific query

language, Attack Investigation Query Language (AIQL),

which is optimized to express the three aforementioned

types of attack behaviors. Second, our system provides

domain-specific data model and storage for scaling the

storage. Third, our system optimizes the query engine

based on the characteristics of the monitoring data and

the semantics of the queries to efficiently schedule the

query execution. To the best of our knowledge, we are

the first to accelerate attack investigation via optimizing

storage and query of system monitoring data.

1 agentid = 1 // host id; spatial constraints

2 (at "01/01/2017") // temporal constraints

3 proc p1 start proc p2["%telnet%"] as evt1

4 proc p3 start ip ipp[dstport = 4444] as evt2

5 proc p4["%apache%"] read file f1["/var/www%"] as evt3

6 with p2 = p3, // attribute relationship

7 evt1 before evt2, evt3 after evt2 // temporal

relationships

8 return p1, p2, p4, f1

Query 1: AIQL Query for CVE-2010-2075 [5]

Domain-Specific Query Language (Sec. 4): Our AIQL

language is designed for specifying the attack behaviors

shown in Fig. 1 (i.e., Query 7 in Sec. 6.2.1, Query 3 in

Sec. 4.2, and Query 5 in Sec. 6.2.1, respectively). Specif-

ically, AIQL provides language constructs to specify re-
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Figure 2: The AIQL system architecture

lationships among system activities (Sec. 4.1), chain

constraints among activities (Sec. 4.2), and compute

aggregate results in sliding time windows (Sec. 4.3).

AIQL adopts the {subject-operation-object} syntax to

represent system behavior patterns as events (e.g., proc

p1 write file f1) and supports attribute relationships

and temporal relationships of multiple events, as well

as syntax shortcuts based on context-aware inference

(Sec. 4.1). As shown in Query 1, AIQL can relate mul-

tiple system activities using spatial/temporal constraints

and attribute/temporal relationships.

Data Model and Storage (Sec. 3.2): Our system mod-

els system monitoring data as a sequence of events,

where each event describes how a process interacts with

a system resource, such as writing to a file. More impor-

tantly, our system clearly identifies the spatial and tem-

poral properties of the events, and leverages these proper-

ties to partition the data storage in both spatial and tem-

poral dimensions. Such partitioning presents opportuni-

ties for parallel processing of query execution (Sec. 5.2).

Query Scheduling (Sec. 5): Our system identifies both

spatial and temporal constraints in AIQL queries, and op-

timizes the query execution in two aspects: (1) for AIQL

queries that involve multiple event patterns, our system

prioritizes the search of event patterns with high pruning

power, maximizing the reduction of irrelevant events as

early as possible; (2) our system breaks down the query

into independent sub-queries along temporal and spatial

dimensions and executes them in parallel.

Evaluation: We deployed the AIQL system in NEC

Labs America comprising 150 hosts. We performed a

broad set of attack behaviors in the deployed environ-

ment, and evaluated the query performance and concise-

ness of AIQL against existing systems using 857 GB of

real system monitoring data (16 days; 2.5 billion events):

(1) our end-to-end efficiency evaluations on an APT at-

tack case study (27 queries) show that AIQL surpasses

both PostgreSQL (124x) and Neo4j (157x); (2) our per-

formance evaluations show that the query scheduling em-

ployed by AIQL is efficient in both single-node databases

(40x over PostgreSQL scheduling) and parallel databases

(16x over Greenplum scheduling); (3) our conciseness

evaluations on four major types of attack behaviors (19

queries) show that SQL, Neo4j Cypher, and Splunk SPL

contain at least 2.4x more constraints, 3.1x more words,

and 4.7x more characters than AIQL. All queries and a

demo video are available on our project website [1].

2 System Overview and Threat Model

Fig. 2 shows the AIQL system architecture: (1) we de-

ploy monitoring agents across servers, desktops and lap-

tops in the enterprise to monitor system activities by

collecting information about system calls from kernels.

The collected system monitoring data is then sent to

the central server and stored in our optimized data stor-

age (Sec. 3); (2) the language parser, implemented us-

ing ANTLR 4 [2], analyzes input queries and generates

query contexts. A query context is an object abstraction

of the input query that contains all the required informa-

tion for the query execution. Multievent syntax, depen-

dency syntax, and anomaly syntax are supported (Sec. 4);

(3) the query execution engine executes the generated

query contexts to search for the desired attack behav-

iors. Based on the data storage and the query seman-

tics, domain-specific optimizations, such as relationship-

based scheduling and temporal & spatial parallelization,

are adopted to speedup the query execution (Sec. 5).

Threat Model: Our thread model follows the threat

model of previous work [34, 48, 49, 54, 55]. We assume

that kernel is trusted, and the system monitoring data col-

lected from kernel is not tampered with [13, 28]. Any

kernel-level attack that deliberately compromises secu-

rity auditing systems is beyond the scope of this work.

3 Data Model and Storage

3.1 Data Model and Collection

System monitoring data records the interactions among

system resources as system events [48]. Each of the

recorded event occurs on a particular host at a particular

time, thus exhibiting strong spatial and temporal proper-

ties. Existing works have indicated that on most modern

operating systems (Windows, Linux and OS X), system

resources (system entities) in most cases are files, pro-

cesses, and network connections [42, 45, 48, 49]. Thus,

in our data model, we consider system entities as files,

processes, and network connections. We define a sys-

tem event as the interaction among two system entities

represented using the triple 〈subject, operation, object〉,
which consists of the initiator of the interaction, the type
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Table 1: Representative attributes of system entities
Entity Attributes

File Name, Owner/Group, VolID, DataID, etc.

Process PID, Name, User, Cmd, Binary Signature, etc.

Network Connection IP, Port, Protocol

of the interaction, and the target of the interaction. Sub-

jects are processes originating from software applica-

tions such as Firefox, and objects can be files, processes

and network connections. We categorize system events

into three types according to their object entities, namely

file events, process events, and network events.

Both entities and events have critical security-related

attributes (Tables 1 and 2). The attributes of entities in-

clude the properties to support various security analyses

(e.g., file name, process name, and IP addresses), and the

unique identifiers to distinguish entities (e.g., file data ID

and process ID). The attributes of events include event

origins (i.e., agent ID and start time/end time), operations

(e.g., file read/write), and other security-related proper-

ties (e.g., failure code). Agent ID refers to the unique ID

of the host where the entity/event is observed.

Data Collection: We implement data collection agents

for Windows and Linux based on ETW event tracing [13]

and the Linux Audit Framework [28]. Tables 1 and 2

show representative attributes of our collected data.

3.2 Data Storage

After the modeling, we store the data in relational

databases powered by PostgreSQL [19]. Relational

databases come with mature indexing mechanisms and

are scalable to massive data. However, even with in-

dexes for speeding up queries, relational databases still

face challenges in handling high ingest rates of massive

system monitoring data. We next describe how we ad-

dress these challenges to optimize the database storage.

Time and Space Partitioning: System monitoring data

exhibits strong temporal and spatial properties: the data

collected from different agents is independent from each

other, and the timestamps of the collected data increase

monotonically. Queries of the data are often specified

with a specific time range or a host, or across many hosts

within some time interval. Therefore, when storing the

data, we partition the data in both the time and the space

dimensions: separating groups of agents into table par-

titions and generating one database per day for the data

collected on that day. We build various types of indexes

on the attributes that will be queried frequently, such as

executable name of process, name of file, source/destina-

tion IP of network connection.

Hypertable: For large organizations with hundreds or

thousands of machines, we scale the data storage using

MPP (massively parallel processing) databases Green-

plum [14]. These databases intelligently distribute the

Table 2: Representative attributes of system events
Operation Read/Write, Execute, Start/End, Rename/Delete

Time/Sequence Start Time/End Time, Event Sequence

Misc. Subject ID, Object ID, Failure Code

storage and search of events and entities based on the

spatial and temporal properties of our data model.

Time Synchronization: We correct potential time drift-

ing of events on agents by applying synchronization pro-

tocols like Network Time Protocol (NTP) [17] at the

client side, and checking with the clock at the server side.

4 Query Language Design

AIQL is designed to specify three types of attack behav-

iors: multi-step attacks, dependency tracking of attacks,

and abnormal system behaviors. In contrast to previous

query languages [7, 22, 23, 25] that focus on the speci-

fication of relation joins or graph paths, AIQL uniquely

integrates the critical primitives for attack investigation,

providing explicit constructs for spatial/temporal con-

straints, relationship specifications, constraint chaining

among system events, and the access to aggregate and

historical results in sliding time windows. Grammar 1

shows the representative rules of AIQL.

4.1 Multievent AIQL Query

For multievent queries, AIQL provides explicit lan-

guage constructs for system events (in a natural format

of {subject-operation-object}), spatial/temporal con-

straints, and event relationships.

A Running Example: Query 2 specifies an example

system behavior that probes user command history files.

Multiple context-aware syntax shortcuts (illustrated in

comments) are used, such as attribute inference and

omitting unreferenced entity IDs (details are given later).

1 agentid = 1 // unique id of the enterprise host

2 (at "01/01/2017") // time window

3 proc p2 start proc p1 as evt1

4 proc p3 read file[".viminfo" || ".bash_history"] as

evt2 // .viminfo -> name=.viminfo; omit file ID

5 with p1 = p3, evt1 before evt2

6 return p2, p1 //p2 -> p2.exe_name, p1 -> p1.exe_name

7 sort by p2, p1

Query 2: Command history probing

Global Constraints: The global constraint rule

(〈global cstr〉) specifies the constraints for all event pat-

terns (e.g., agentid and time window in Query 2).

Event Pattern: The event pattern rule (〈evt patt〉) spec-

ifies an event pattern that consists of the subject/ob-

ject entity (〈entity〉), operation (〈op exp〉), and optional

event ID (〈evt〉). The entity rule (〈entity〉) consists of en-

tity type, optional entity ID, and optional attribute con-

straints (〈attr cstr〉). Logical operators (“&&” for AND,
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“||” for OR, “!” for NOT) can be used in 〈op exp〉 and

〈attr cstr〉 to form complex expressions. The optional

time window rule (〈twind〉) further narrows down the

search for the event pattern. Common time formats (US

formats and ISO 8601) and granularities are supported.

〈aiql〉 ::= 〈multievent〉 | 〈dependency〉
〈multievent〉 ::= (〈global cstr〉)* (〈m query〉)+
〈dependency〉 ::= (〈global cstr〉)* 〈d query〉
〈global cstr〉 ::= 〈cstr〉 | ‘(’ 〈twind〉 ‘)’ | 〈slide wind〉
〈twind〉 ::= ‘from’ 〈datetime〉 ‘to’ 〈datetime〉 | ...
〈slide wind〉 ::= 〈wind length〉 〈wind step〉
Multi-event query:

〈m query〉 ::= 〈evt patt〉+ 〈evt rel〉? 〈return〉 〈filter〉?
〈evt patt〉 ::= 〈entity〉 〈op exp〉 〈entity〉 〈evt〉? (‘(’

〈twind〉 ‘)’)?
〈entity〉 ::= 〈entity type〉 〈e id〉 ? (‘[’ 〈attr cstr〉‘]’)?
〈attr cstr〉 ::= 〈cstr〉

| ‘!’〈attr cstr〉
| 〈attr cstr〉 (‘&&’ | ‘||’) 〈attr cstr〉
| ‘(’ 〈attr cstr〉 ‘)’

〈cstr〉 ::= 〈attr〉 〈bop〉 〈val〉
| ‘!’? 〈val〉
| 〈attr〉 ‘not’? ‘in’ ‘(’ 〈val〉 (‘,’ 〈val〉)* ‘)’

〈op exp〉 ::= 〈op〉
| ‘!’〈op exp〉
| 〈op exp〉 (‘&&’ | ‘||’) 〈op exp〉
| ‘(’ 〈op exp〉 ‘)’

〈evt〉 ::= ‘as’ 〈evt id〉 (‘[’ 〈attr cstr〉‘]’)?
〈evt rel〉 ::= ‘with’ 〈rel〉 (‘,’ 〈rel〉)*
〈rel〉 ::= 〈attr rel〉 | 〈temp rel〉
〈attr rel〉 ::= 〈e id〉‘.’〈attr〉 〈bop〉 〈e id〉‘.’〈attr〉

| 〈e id〉 〈bop〉 〈e id〉
〈temp rel〉 ::= 〈evt id〉 (‘before’ | ‘after’

| ‘within’) (‘[’ 〈val〉‘-’〈val〉
〈timeunit〉‘]’)? 〈evt id〉

〈return〉 ::= ‘return’ ‘count’? ‘distinct’? 〈res〉
(‘,’ 〈res〉)*

〈res〉 ::= 〈e id〉(‘.’〈attr〉)?
| 〈agg func〉‘(’ 〈res〉 ‘)’

| ‘as’ 〈rename id〉
〈group by〉 ::= ‘group by’ 〈res〉 (‘,’ 〈res〉)*
〈filter〉 ::= ‘having’ 〈expr〉

| ‘sort by’ 〈attr〉 (‘,’ 〈attr〉)* (‘asc’ |
‘desc’)?

| ‘top’ 〈int〉

Dependency query:

〈d query〉 ::= ((‘forward’ | ‘backward’) ‘:’)?

(〈entity〉 〈op edge〉)+ 〈entity〉 〈return〉
〈filter〉?

〈op edge〉 ::= (‘->’ | ‘<-’) ‘[’ 〈op exp〉 ‘]’

Grammar 1: Representative BNF grammar of AIQL

Event Attribute and Temporal Relationships: The

event relationship rule (〈evt rel〉) specifies how multi-

ple event patterns are related. The attribute relationship

rule (〈attr rel〉) uses attribute values of event patterns to

specify their relationships. In Query 2, p1=p3 (inferred

as p1.id=p3.id) indicates that two event patterns evt1 and

evt2 are linked by the same entity. The temporal rela-

tionship rule (〈temporal rel〉) specifies temporal order

(“before”, “after”, “within”) of event patterns. For ex-

ample, evt1 before[1-2 minutes] evt2 specifies that evt1

occurred 1 to 2 minutes before evt2.

Event Return and Filters: The event return rule

(〈return〉) retrieves the attributes of the matched events.

Constructs such as “count”, “distinct”, “top”, “having”,

and “sort by” are provided for result manipulation and

filtering.

Context-Aware Syntax Shortcuts: AIQL includes lan-

guage syntax shortcuts to make queries more concise.

• Attribute inference: (1) default attribute names will

be inferred if users specify only attribute values in an

event pattern, or specify only entity IDs in the return

clause. We select the most commonly used attributes

in security analysis as the default attributes: name for

files, exe_name for processes, and dst_ip for networks;

(2) id will be used as the default attribute if users spec-

ify only entity IDs in attribute relationships.

• Optional ID: the ID of entity/event can be omitted if it

is not referenced in the event relationship clause or the

event return clause.

• Entity ID reuse: reusing entity IDs in multiple event

patterns implicitly means that these event patterns

share the same entity.

For example, in Query 2, ".viminfo", return p2, and p1

= p3 will be inferred as name = ".viminfo", return p2.

exe_name, and p1.id = p3.id, respectively. Query 2 also

omits the file ID in evt2 since it is not referenced. We

can also replace p3 with p1 in evt2 and omit p1 = p3.

4.2 Dependency AIQL Query

AIQL provides the dependency syntax that chains con-

straints and specifies temporal relationships among event

patterns, facilitating the specification of dependency

tracking of attacks. The syntax specifies a sequence of

event patterns in the form of a path, where nodes in the

path represent system entities and edges represent oper-

ations. The forward and backward keywords can be used

to specify the temporal order of the events on the path:

forward (backward) means the events found by the left-

most event pattern occurred earliest (latest).

1 (at "01/01/2017")

2 forward: proc p1["%/bin/cp%", agentid = 2] ->[write]

file f1["/var/www/%info_stealer%"]

3 <-[read] proc p2["%apache%"]

4 ->[connect] proc p3[agentid=3] // tracking across

host

5 ->[write] file f2["%info_stealer%"]

6 return f1, p1, p2, p3, f2

Query 3: Forward tracking for malware ramification

Query 3 shows a forward dependency query in

AIQL that investigates the ramification of malware

(info_stealer), which originates from host ha (agentid

= 2) and affects host hb (agentid = 3) through an Apache

web server. Lines 2-3 specify that p1 writes to f1, and

then f1 is read by p2. Such syntax eliminates the need

to repetitively specify the shared entity (i.e., f1) in each
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event pattern. An example result may show that p3 is

the wget process that downloads the malicious script from

host hb. The operation ->[connect] at Line 4 indicates the

search will track dependencies of events across hosts.

4.3 Anomaly AIQL Query

AIQL provides the constructs of sliding time window

with common aggregation functions (e.g., count, avg, sum

) to facilitate the specification of frequency-based system

behavioral models. Besides, AIQL provides the construct

of history states, allowing queries to compare frequen-

cies using historical information.

1 (at "01/01/2017")

2 window = 1 min

3 step = 10 sec

4 proc p read ip ipp

5 return p, count(distinct ipp) as freq

6 group by p

7 having freq > 2 * (freq + freq[1] + freq[2]) / 3

Query 4: Simple moving average for network frequency

Query 4 shows an anomaly query that specifies a 1-

minute sliding time window and computes the moving

average [44] to detect network spikes (Line 7). AIQL

supports the common types of moving averages through

built-in functions (SMA, CMA, WMA, EWMA [44]).

For example, the computation of EWMA for network

frequency with normalized deviation can be expressed

as: (freq - EWMA(freq, 0.9)) / EWMA(freq, 0.9) > 0.2.

5 Query Execution Engine

The AIQL query execution engine executes the query

context generated by the parser and optimizes the query

execution by leveraging domain-specific properties of

system monitoring data. Optimizing a query with many

constraints is a difficult task due to the complexities of

joins and constraints [8]. AIQL addresses these chal-

lenges by providing explicit language constructs for spa-

tial/temporal constraints and temporal relationships, so

that the query engine can directly optimize the query ex-

ecution by: (1) using event patterns as a basic unit for

generating data queries and leveraging attribute/temporal

relationships to optimize the search strategy; (2) leverag-

ing the spatial and temporal properties of system moni-

toring data to partition the data and executing the search

in parallel based on the spatial/temporal constraints.

5.1 Query Execution Pipeline

Fig. 3 shows the execution pipeline of a multievent

query. Based on the query semantics, for every event

pattern, the engine synthesizes a SQL data query, which

searches the optimized relational databases (Sec. 3.2) for

Multievent Query

…
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Event Pattern 2

Event Relationships

Return and Filters

Event Pattern n

Data Query 1

Data Query 2

Data Query n
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Data Query 

Scheduler
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Results

Domain Data 

Characteristics

Data Query 

Executor

Database

Figure 3: Execution of a multievent AIQL query

the matched events. The data query scheduler prioritizes

the execution of data queries to optimize execution per-

formance (Sec. 5.2). Execution results of each data query

are further processed by the executor to perform joins

and filtering to obtain the desired results. Note that by

weaving all these join and filtering constraints together,

the engine could generate a large SQL with many con-

straints mixed together. Such strategy suffers from in-

deterministic optimizations due to the large number of

constraints and often causes the execution to last for min-

utes or even hours (Sec 6.2.2). For an input dependency

query, the engine compiles it to an equivalent multievent

query for execution. For an anomaly query, the engine

maintains the aggregate results as historical states and

performs the filtering based on the historical states.

5.2 Data Query Scheduler

The data query scheduler in Fig. 3 schedules the execu-

tion of data queries. A straightforward scheduling strat-

egy (fetch-and-filter) is to: (1) execute data queries sepa-

rately and store the results of each query in memory; (2)

leverage event relationships to filter out results that do

not satisfy the constraints. However, this strategy incurs

non-trivial computation costs and memory space if some

data queries return a large number of results.

Relationship-Based Scheduling: To optimize the exe-

cution scheduling of data queries, we leverage two in-

sights based on event relationships: (1) event patterns

have different levels of pruning power, and the query

engine can prioritize event patterns with more pruning

power to narrow the search; (2) if two event patterns are

associated with an event relationship, the query engine

can execute the data query for the pattern that has more

constraints first (likely having more pruning power), and

use the execution results to constrain the execution of the

other data query.

Algorithm 1 gives the relationship-based scheduling:

1. A pruning score is computed for every event pattern

based on the number of constraints specified.

2. Event relationships are sorted based on the relation-

ship type (process events and network events are

sorted in front of file events) and the sum of the in-

volved event patterns’ pruning scores.

3. The main loop processes event relationships returned

from the sorted list, executes data queries, and gener-
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ates result tuples. The engine executes the data query

whose associated event pattern has a higher pruning

score first, and leverages existing results to narrow

the search scope. To facilitate tuple management, we

maintain a map M that stores the mapping from the

event pattern ID to the set of event ID tuples that its

execution results belong to. As the loop continues,

new tuple sets are created and put into M, and old tu-

ple sets are updated, filtered, or merged.

4. After analyzing all event relationships, if there remain

unexecuted data queries, these queries are executed

and the corresponding results are put into M.

5. The last step is to merge tuple sets in M, so that all

event patterns are mapped to the same tuple set that

satisfy all constraints.

Algorithm 1: Relationship-based scheduling

Input: n data queries: Q = {qi | i≤ n, i ∈ N
+}

n event patterns: E = {ei | i≤ n, i ∈ N
+}

m event relationships: R = {rel(ei,e j)}
Output: Event ID tuples that satisfy all constraints

1. ∀ei ∈ E,score(ei)
compute
←−−−− ei;

2. Rsorted
sort
←−− R;

3. Initialize empty set Exec, empty map M;

for rel(ei,e j) in Rsorted do

if ei not in Exec and e j not in Exec then
// Suppose score(ei)≥ score(e j)

Si
execute
←−−−− qi; Exec.add(ei); // Si:event ID set

S j
execute
←−−−−

Si

q j; Exec.add(e j);

T ← Si×S j |rel(ei ,e j); // create tuple set from

Si and S j, then filter by rel(ei,e j)

M.put(ei,T ); M.put(e j,T );

else if Either of {ei,e j} in Exec then
// Suppose ei in Exec

S j
execute
←−−−−

Si

q j; Exec.add(e j);

T ←M.get(ei); T ′← T ×S j |rel(ei ,e j); // update

tuple set using S j and rel(ei,e j)

replaceVals(M,T,T ′); M.put(e j,T
′);

else

Ti←M.get(ei); Tj ←M.get(e j);
if Ti = Tj then

T ′← Ti |rel(ei ,e j); // filter tuple set

replaceVals(M,Ti,T
′);

else

T ′← Ti×Tj |rel(ei ,e j); // merge tuple sets

replaceVals(M,Ti,T
′); replaceVals(M,Tj,T

′);

4. for ei ∈ E and ei not in Exec do

Si
execute
←−−−− qi; Exec.add(ei); M.put(ei,Si);

5. while unique(M.values())> 1 do

Pick Ti, Tj from M.values(), such that Ti 6= Tj;

T ′← Ti×Tj; // merge tuple sets

replaceVals(M,Ti,T
′); replaceVals(M,Tj,T

′);

6. Return unique(M.values());

Function replaceVals (M, T, T’)

Replace all values T stored in M with T ′;

Our empirical results (Sec. 6.3.2 and 6.3.3) demon-

strate that the number of constraints work well in approx-

imating the pruning power of event patterns in a broad

set of queries, even though they may not accurately rep-

resent the size of the results returned by event patterns.

Time Window Partition: The AIQL query engine lever-

ages temporal properties of the data to further speed up

the execution of synthesized data queries: the engine par-

titions the time window of a data query into sub-queries

with smaller time windows, and executes them in par-

allel. Currently, our system splits the time window into

days for a query over a multi-day time window.

6 Deployment and Evaluation

We deployed the AIQL system in NEC Labs America

comprising 150 hosts (10 servers, 140 employee sta-

tions). We performed a series of attacks based on known

exploits in the deployed environment and constructed 46

AIQL queries to investigate these attacks, demonstrat-

ing the expressiveness of AIQL. To evaluate the effec-

tiveness of AIQL in supporting timely attack investiga-

tion, we evaluate the query efficiency and conciseness

against existing systems: PostgreSQL [19], Neo4j [16],

Splunk [23]. We also evaluate the efficiency offered by

our data query scheduler (Sec. 5.2) in both storage set-

tings: PostgreSQL and Greenplum. In total, our eval-

uations use 857GB of real system monitoring data (16

days; 2.5 billion events).

6.1 Evaluation Setup

The evaluations are conducted on a database server with

an Intel(R) Xeon(R) CPU E5-2660 (2.20GHz), 64GB

RAM, and a RAID that supports four concurrent read-

s/writes. Neo4j databases are configured by importing

system entities as nodes and system events as relation-

ships. Greenplum databases are configured to have 5

segment nodes that can effectively leverage the concur-

rent reads/writes of RAID. For each AIQL query (except

anomaly queries), we construct semantically equivalent

SQL, Cypher, and Splunk SPL queries. We measure

the execution time and the conciseness of each query.

Note that we omit the performance evaluation of Splunk

since the community version is limited to 500MB per

day and the enterprise version is prohibitively expensive

($1,900 per GB). Nevertheless, Splunk’s limited support

for joins [24] makes it inappropriate for investigating

multi-step attack behaviors. Due to the limited expres-

siveness of SQL and Cypher, we cannot compare the

anomaly queries (e.g., Query 5). All queries are avail-

able on our project website [1].

6.2 Case Study: APT Attack Investigation

We conduct a case study by asking white hat hackers to

perform an APT attack in the deployed environment, as
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Figure 4: Environmental setup for the APT attack

shown in Fig. 4. Below are the attack steps:

c1 Initial Compromise: The attacker sends a crafted

email to the victim. The email contains an Excel file

with a malicious macro embedded.

c2 Malware Infection: The victim opens the Excel file

through the Outlook mail client and runs the macro,

which downloads and executes a malware (CVE-

2008-0081 [4]) to open the backdoor to the attacker.

c3 Privilege Escalation: The attacker enters the victim’s

machine through the backdoor, scans the network

ports to discover the IP address of the database, and

runs the database cracking tool (gsecdump.exe) to

obtain the credentials of the user database.

c4 Penetration into Database Server: Using the creden-

tials, the attacker penetrates into the database server

and delivers a VBScript to drop another malware,

which creates another backdoor to the attacker.

c5 Data Exfiltration: With the access to the database

server, the attacker dumps the database content using

osql.exe and sends the data dump back.

Anomaly Detectors: We deployed two anomaly detec-

tors based on existing solutions [36,52,66]. The first de-

tector is deployed on the database server, which monitors

network data transfer and emits alerts when the transfer

amount is abnormally large. The second detector is de-

ployed on the Windows client, which monitors process

creation and emits alerts when a process starts an unex-

pected child process. These detectors may produce false

positives, and we need tools like AIQL to investigate the

alerts before taking any further action.

6.2.1 Attack Investigation Procedure

Our investigation assumes no prior knowledge of the de-

tailed attack steps but merely the detector alerts. We start

with these alerts and iteratively compose AIQL queries to

investigate the entire attack sequence.

Step c5: We first examine the alerts reported by the

database server detector, and identify a suspicious ex-

ternal IP “XXX.129” (obfuscated for privacy). Existing

network traffic detectors usually cannot capture the pre-

cise process information [50,64]. Thus, we first compose

an anomaly AIQL query that computes moving average

(SMA3) to find processes which transfer a large amount

of data to this suspicious IP.

1 (at "mm/dd/2017") // date (obfuscated)

2 agentid = xxx // SQL database server (obfuscated)

3 window = 1 min, step = 10 sec

4 proc p write ip i[dstip="XXX.129"] as evt

5 return p, avg(evt.amount) as amt

6 group by p

7 having (amt > 2 * (amt + amt[1] + amt[2]) / 3)

Query 5: AIQL anomaly query for large file transfer

Query 5 finishes execution within 4 seconds and iden-

tifies a suspicious process “sbblv.exe”. We then compose

a multievent AIQL query to find the data sources for this

process (Query 6).

1 (at "mm/dd/2017")

2 agentid = xx // SQL database server (obfuscated)

3 proc p1["%sbblv.exe"] read || write file f1 as evt1

4 proc p1 read || write ip i1[dstip="XXX.129"] as evt2

5 with evt1 before evt2

6 return distinct p1, f1, i1, evt1.optype, evt1.access

Query 6: Starter AIQL query for c5

We identify a suspicious file “BACKUP1.DMP” for

f1 out of the other normal DLL files. We investigate its

creation process and find “sqlservr.exe”, which is a stan-

dard SQL server process with verified signature. Thus,

we speculate that the attacker penetrates into the SQL

server, dumps the data (“BACKUP1.DMP”), and sends

the data back to his host (“XXX.129”). We verify this by

checking that “osql.exe” process is started by “cmd.exe”

(OSQL utility is often involved in many SQL database

attacks). Query 7 gives the complete query for investi-

gating the step c5.

1 (at "mm/dd/2017")

2 agentid = xxx // SQL database server (obfuscated)

3 proc p1["%cmd.exe"] start proc p2["%osql.exe"] as

evt1

4 proc p3["%sqlservr.exe"] write file f1["%backup1.dmp"

] as evt2

5 proc p4["%sbblv.exe"] read file f1 as evt3

6 proc p4 read || write ip i1[dstip="XXX.129"] as evt4

7 with evt1 before evt2, evt2 before evt3, evt3 before

evt4

8 return distinct p1, p2, p3, f1, p4, i1

Query 7: Complete AIQL query for c5

Steps c4-c1: The investigation for c4-c1 is similar to c5,

including iterative query execution and editing. In to-

tal, we constructed 26 multievent queries and 1 anomaly

query to successfully investigate the APT attack, touch-

ing 119GB of data/422 million events.

6.2.2 Evaluation Results

As we can see, attack investigation is an iterative process

that revises queries: (1) latter iterations add more event

patterns based on the selected results from the former

queries, and (2) 4-5 iterations are needed before finding

a complete query with 5-7 event patterns. Thus, slow

response and verbose specification could greatly impede

the effectiveness and efficiency of the investigation.

End-to-End Execution Efficiency: Fig. 5 shows the

execution time of AIQL queries, SQL queries in Post-

greSQL, and Cypher queries in Neo4j. For evaluation
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Table 3: Aggregate statistics for case study
Attack Step # of Queries # of Evt Patterns AIQL (s) PostgreSQL (s) Neo4j (s)

c1 1 3 3.8 3.1 10.8

c2 8 27 31.0 8038.7 10981.7

c3 2 4 15.9 15.3 3615.6

c4 8 35 61.0 10906.7 8150.6

c5 7 18 58.8 2166.5 4285.4

All 26 87 170.5 21130.3 27044.1
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Figure 5: Log10-transformed query execution time

fairness, PostgreSQL and Neo4j databases store the same

copies of data and employ the same schema and index

designs as AIQL, but they do not employ our domain-

specific data storage optimizations such as spatial and

temporal partitioning, nor our scheduling optimizations.2

Table 3 shows aggregate statistics for investigating each

attack step, including the number of queries, the number

of event patterns, and the total investigation time (sec-

ond). We observe that: (1) Neo4j generally runs slower

than PostgreSQL, due to the lack of support for effi-

cient joins; (2) PostgreSQL and Neo4j become very slow

when the query becomes complex and the number of

event patterns (hence the required table joins) becomes

large. Many large queries in PostgreSQL and Neo4j can-

not finish within 1 hour (e.g., c2-7, c2-8, c4-7, c4-8);

(3) all AIQL queries finish within 15 seconds, and the

performance of the queries grows linearly with the num-

ber of event patterns (rather than the exponential growth

in PostgreSQL and Neo4j), demonstrating the effective-

ness of our domain-specific storage optimizations and

query scheduling. (4) the total investigation time is ∼5.9

hours for PostgreSQL and ∼7.5 hours for Neo4j, which

is a significant bottleneck for a timely attack investiga-

tion. In contrast, the total investigation time for AIQL

is within 3 minutes (124x speedup over PostgreSQL and

157x speedup over Neo4j).

Conciseness: The largest AIQL query is c4-8 with 7

event patterns, 25 query constraints, 109 words, and 463

characters (excluding spaces). The corresponding SQL

query contains 77 constraints (3.1x larger), 432 words

(4.0x larger), and 2792 characters (6.0x larger). The cor-

responding Cypher query contains 63 constraints (2.5x

larger), 361 words (3.3x larger), and 2570 characters

(5.6x larger). As the attack behaviors become more

complex, SQL and Cypher queries become verbose with

many joins and constraints, posing challenges for con-

structing the queries for timely attack investigation.

2Fine-grained evaluations of the AIQL scheduling are in Sec. 6.3.

Table 4: Selected malware samples from Virussign
ID Name Category

v1 7dd95111e9e100b6243ca96b9b322120 Trojan.Sysbot

v2 425327783e88bb6492753849bc43b7a0 Trojan.Hooker

v3 ee111901739531d6963ab1ee3ecaf280 Virus.Autorun

v4 4e720458c357310da684018f4a254dd0 Virus.Sysbot

v5 7dd95111e9e100b6243ca96b9b322120 Trojan.Hooker

6.3 Performance Evaluation

We evaluate the performance of AIQL in both storage set-

tings (PostgreSQL and Greenplum) by constructing 19

AIQL queries for a broad set of attack behaviors, touch-

ing 738GB/2.1 billion events. Particularly, we are in-

terested in the efficiency speedup provided by the AIQL

scheduling (Sec. 5.2) in comparison with PostgreSQL

scheduling and Greenplum scheduling.

6.3.1 Attack Behaviors

Multi-Step Attack Behaviors: We asked white hat

hackers to launch another APT attack using different ex-

ploits (details available on [1]). We then constructed 5

AIQL queries for investigating the attack steps (a1-a5).

Dependency Tracking Behaviors: We performed

causal dependency tracking of origins of Chrome update

executables (d1) and Java update executables (d2). We

performed forward dependency tracking of the ramifica-

tion malware info_stealer (d3).

Real-World Malware Behaviors: We obtained a dataset

of free malware samples from VirusSign [33]. We then

randomly selected 5 malware samples (Table 4) from the

3 largest categories: Autorun, Sysbot, and Hooker. We

executed the 5 selected samples in the deployed environ-

ment and constructed AIQL queries by analyzing the ac-

companied behavior reports [33] (v1-v5).

Abnormal System Behaviors: We evaluated 6 abnor-

mal system behaviors based on security experts’ knowl-

edge: (1) s1: command history probing; (2) s2: suspi-

cious web service; (3) s3: frequent network access; (4)

s4: erasing traces from system files; (5) s5: network ac-

cess spike; (6) s6: abnormal file access. Note that for

s5 and s6, we did not construct SQL, Cypher, or Splunk

queries, due to their lack of support for sliding window

and history state comparison.

6.3.2 Efficiency in PostgreSQL

We select two baselines: (1) PostgreSQL databases that

employ our data storage optimizations (Sec. 3.2). Note

that this setting is different from the end-to-end effi-

ciency evaluation in Sec. 6.2.2, because here we want to

rule out the speedup offered by the data storage compo-

nent; (2) AIQL with fetch-and-filter scheduling (denoted

as AIQL FF; Sec. 5.2). We measure the execution time

of the 19 queries in Sec. 6.3.1.
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Figure 6: Query execution time of the scheduling employed by PostgreSQL, AIQL FF, and AIQL (single-node)

Table 5: Conciseness improvement statistics
Metrics AIQL/SQL AIQL/ Cypher AIQL/Splunk SPL

# of constraints 3.0x 2.4x 4.2x

# of words 3.9x 3.1x 3.8x

# of characters 5.3x 4.7x 4.7x

Evaluation Results: Fig. 6 shows the execution time of

queries in PostgreSQL, AIQL FF, and AIQL. We ob-

serve that: (1) the scheduling employed by PostgreSQL

is inefficient in executing complex queries. In particu-

lar, PostgreSQL cannot finish executing a2, a4, and d2

within 1 hour; (2) the scheduling employed by AIQL FF

and AIQL is more efficient than PostgreSQL, with 19x

and 40x speedup, respectively; (3) the relationship-based

scheduling employed by AIQL is more efficient than the

fetch-and-filter scheduling employed by AIQL FF.

6.3.3 Efficiency in Parallel Databases

We compare the performance of AIQL scheduling in

the Greenplum storage with the Greenplum scheduling

(i.e., running SQLs). As in Sec. 6.3.2, the Greenplum

databases also employ our data storage optimizations.

Evaluation Results: Fig. 7 shows the execution time of

queries in Greenplum and AIQL. We observe that: (1) in

most cases, our scheduling in parallel settings achieves a

comparable performance as Greenplum scheduling; (2)

in certain cases (e.g., a4, d3), our scheduling is signif-

icantly more efficient than Greenplum scheduling; (3)

the average speedup over Greenplum is 16x. The results

show that without our semantics-aware model, Green-

plum distributes the storage of events based on their in-

coming orders (which is arbitrary). On the contrary, our

data model allows Greenplum to evenly distribute events

in a host, and achieves more efficient parallel search.

6.4 Conciseness Evaluation

We evaluate the conciseness of queries that express the

19 attack behaviors in Sec. 6.3.1 in three metrics: the

number of query constraints, the number of words, and

the number of characters (excluding spaces).

Evaluation Results: Fig. 8 shows the conciseness met-

rics of AIQL, SQL, Neo4j Cypher, and Splunk SPL

queries. Table 5 shows the average improvement of

AIQL queries over other queries. We observe that AIQL

is the most concise query language in terms of all three

metrics and all attack behaviors: SQL, Neo4j Cypher,

and Splunk SPL contain at least 2.4x more constraints,

3.1x more words, and 4.7x more characters than AIQL.

In contrast to SQL, Cypher, and SPL which employ lots

of joins on tables or nodes, AIQL provides high-level

constructs for spatial/temporal constraints, relationship

specifications, constraints chaining, and context-aware

syntax shortcuts, making the queries much more concise.

7 Discussion

Query Scheduler: Our data query scheduler estimates

the pruning score of an event pattern based on its num-

ber of constraints. This can be improved by (1) consider-

ing the number of records in different hosts and different

time periods and (2) constructing a statistical model of

constraint pruning power. Additionally, the query sched-

uler may partition the time window uniformly based on

the data volume. Such strategies require further analy-

sis of the domain data statistics to infer the proper data

volume for splitting, which we leave for future work.

System Entities and Data Reduction: In the future

work, we plan to add registry entries in Windows and

pipes in Linux to expand the monitoring scope. We

also plan to incorporate more finer granularity system

monitoring, such as execution partition [58, 59] and in-

memory data manipulations [40, 43]. To handle the in-

crease of data size, we plan to explore more aggressive

data reduction techniques in addition to existing solu-

tions [55, 69] to make the system more scalable.

8 Related Work

Security-Related Languages: There also exist domain-

specific languages in a variety of security fields that

have a well-established corpus of low level algorithms,

such as threat descriptions [6,26,31], secure overlay net-

works [46, 56], and network intrusions [35, 39, 65, 68].

These languages provide specialized constructs for their

particular problem domain. In contrast to these lan-

guages, the novelty of AIQL focuses on querying attack

behaviors, including (a) providing specialized constructs
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Figure 7: Query execution time of the scheduling employed by Greenplum and AIQL (parallel)
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Figure 8: Conciseness evaluation of queries written in AIQL, SQL, Neo4j Cypher, and Splunk SPL

for system interaction patterns/relationships and abnor-

mal behaviors; (b) optimizing query execution over sys-

tem monitoring data. Splunk [23] and Elasticsearch [10]

are distributed search and analytics engine for applica-

tion logs, which provide search languages based on key-

words and shell-like piping. However, these systems

lack efficient supports for joins and their languages can-

not express abnormal behaviors with history states as

AIQL. Furthermore, our AIQL can be used to investigate

the real-time anomalies detected on the stream of sys-

tem monitoring data, complementing the stream-based

anomaly detection systems [41] for better defense.

Database Query Languages: Relational databases

based on SQL [19, 25] and SPARQL [22] provide lan-

guage constructs for joins, facilitating the specification

of relationships among events, but these languages lack

constructs for easily chaining constraints among rela-

tions (i.e., tables). Graph databases [16] provide lan-

guage constructs for chaining constraints among nodes

in graphs, but these databases lack efficient support for

joins. Similarly, NoSQL tools [38] lack efficient sup-

ports for joins. Temporal expressions are also introduced

to databases [62], and various time-oriented applications

are explored [63]. Currently, AIQL focuses on the set of

temporal expressions that are frequently used in express-

ing attack behaviors, which is a subset of the temporal

expressions proposed in [62]. More importantly, none of

these languages provide constructs to express frequency-

based behavioral models with historical results.

System Defense Based on Behavioral Analytics: Ex-

isting malware detection has looked at various ways to

build behavioral models to capture malware, such as se-

quences of system calls [67], system call patterns based

on data flow dependencies [51], and interactions between

benign programs and the operating system [53]. Behav-

ioral analytics have also shown promising results for net-

work intrusion [70,72] and internal threat detection [60].

These works learn models to detect anomaly or predict

attacks, but they do not provide mechanisms for users

to perform attack investigation. Our AIQL system fills

such gap by allowing security analysts to query histori-

cal events for investigating the reported anomalies.

9 Conclusion

We have presented a novel system for collecting attack

provenance using system monitoring and assisting timely

attack investigation. Our system provides (1) domain-

specific data model and storage for scaling the storage

and the search of system monitoring data, (2) a domain-

specific query language, Attack Investigation Query Lan-

guage (AIQL) that integrates critical primitives for attack

investigation, and (3) an optimized query engine based

on the characteristics of the data and the queries to better

schedule the query execution. Compared with existing

systems, our AIQL system greatly reduces the cycle time

for iterative and interactive attack investigation.
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