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�e e�ect of air shear on the hydromagnetic instability is studied through (i) linear stability, (ii) weakly nonlinear theory, (iii)
sideband stability of the 
ltered wave, and (iv) numerical integration of the nonlinear equation. Additionally, a discussion on the
equilibria of a truncated bimodal dynamical system is performed. While the linear and weakly nonlinear analyses demonstrate the
stabilizing (destabilizing) tendency of the uphill (downhill) shear, the numerics con
rm the stability predictions. �ey show that
(a) the downhill shear destabilizes the �ow, (b) the time taken for the amplitudes corresponding to the uphill shear to be dominated
by the one corresponding to the zero shear increases with magnetic 
elds strength, and (c) among the uphill shear-induced �ows, it
takes a long time for the wave amplitude corresponding to small shear values to become smaller than the one corresponding to large
shear values when the magnetic 
eld intensity increases. Simulations show that the streamwise and transverse velocities increase
when the downhill shear acts in favor of inertial force to destabilize the �owmechanism. However, the uphill shear acts oppositely.
It supports the hydrostatic pressure and magnetic 
eld in enhancing 
lms stability. Consequently, reduced constant �ow rates and
uniform velocities are observed.

1. Introduction

A nonlinear fourth-order degenerate parabolic di�erential
equation of the form:ℎ� +A (ℎ) ℎ� + ��� {B (ℎ) ℎ� +C (ℎ) ℎ���} = 0, (1)

whereA,B, andC are arbitrary continuous functions of the
interfacial thickness ℎ(�, �), represents a scalar conservation
law associated to the �ow of a thin viscous layer on an incline
under di�erent conditions. �e stability and dynamics of
equations of the type of (1) is a subject of major interest [1–
18] because of their robustness in regimes where viscosity
dominates inertia [19]. Such studies have focused attention
primarily on the isothermal and nonisothermal instability
analysis, mainly for nonconducting �uids.

Since the investigation of Chandrasekar [20] on the
stability of a �ow between coaxial rotating cylinders in the
presence of a magnetic 
eld held in the axial direction, the
laminar �ow of an electrically conducting �uid under the

presence of a magnetic 
eld has been studied extensively. For
instance, Stuart [21] has reported on the stability of a pressure
�ow between parallel plates under the application of a parallel
magnetic 
eld. Among other earlier investigations, Lock [22]
examined the stability when the magnetic 
eld is applied
perpendicular to the �ow direction and to the boundary
planes. Hsieh [23] found that the magnetic 
eld stabilizes
the �ow through Hartmann number when the electrically
conducting �uid is exposed to a transverse magnetic 
eld,
provided that the surface-tension e�ects are negligible in
a horizontal 
lm. Ladikov [24] studied a problem in the
presence of longitudinal and transverse magnetic 
elds.
�e author observed that the longitudinal magnetic 
eld
plays a stabilizing role and that the e�ect of instability at
small wave numbers could be removed if the longitudinal
magnetic 
eld satis
es certain conditions. Lu and Sarma [25]
investigated the transverse e�ects of the magnetic 
eld in
magnetohydrodynamic gravity-capillary waves. �e �ow of
an electrically conducting �uid over a horizontal plane in
the presence of tangential electric and magnetic 
elds was
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reported byGordeev andMurzenko [26].�ey found that the
�ow su�ers from instability not due to the Reynolds number
but due to the strength of the external electric 
eld.

In applications such as magnetic-
eld-controlled mate-
rial-processing systems, aeronautics, plasma engineering,
MEMS technology, andmagnetorheological lubrication tech-
nologies, the hydromagnetic e�ects are important. Also,
liquid metal 
lm �ows are used to protect the solid structures
from thermonuclear plasma in magnetic con
nement fusion
reactors, and this application requires a better understanding
of the instability mechanism arising in a thin magnetohydro-
dynamic �ow over planar substrates [27]. Furthermore, the
presence of an external magnetic 
eld regulates the thickness
of a coating 
lm. It prevents any form of direct electrical or
mechanical contact with the �uid thereby reducing the risk
of contamination [28]. Renardy and Sun [29] pointed out
that the magnetic �uid is e�ective in controlling the �ow
of ordinary �uids and in reducing hydraulic resistance. �e
reason is that the magnetic �uids can be easily controlled
with external magnetic 
elds and that coating streamlined
bodies with a layer of less-viscousmagnetic �uid signi
cantly
reduces the shear stress in �ow boundaries. Magnetohydro-
dynamic �ow can be a viable option for transporting weakly
conducting �uids in microscale systems such as �ows inside
a micro-channel network of a lab-on-a-chip device [30, 31].
In all of the above applications, considering the associated
stability problem is important because it gives guidance in
choosing the �ow parameters for practical purposes. In this
regard, in the past two decades, the emerging studies on
the hydromagnetic e�ects have focused their attention on
stability problems and on analyzing the �ow characteristics
[28, 29, 32–43].

�e shearing e�ect of the surrounding air on the �uid
in realistic situations induces stress tangentially on the inter-
facial surface. �e hydrodynamic instability in thin 
lms in
the presence of an external air stream attracted attention in
the mid 1960s, which led Craik [44] to conduct laboratory
research and study theory. He found that the instability
occurs regardless of the magnitude of the air stream when
the 
lm is su�ciently thin. Tuck and Vanden-Broeck [45]
reported on the e�ect of air stream in industrial applica-
tions of thin 
lms of in
nite extent in coating technology.
Sheintuch and Dukler [46] did phase plane and bifurcation
analyses of thin wavy 
lms subjected to shear from counter-
current gas �ows and found satisfactory agreement of their
results connected to the wave velocity along the �ooding
curvewith the experimental results of Zabaras [47]. Although
the experimental results related to the substrate thickness did
not match exactly with the theoretical predictions, still the
results gave qualitative information about the model. �in
liquid layer supported by steady air-�ow surface-traction
was reported by King and Tuck [48]. �eir study models
the surface-traction-supported �uid drops observed on the
windscreen of a moving car on a rainy day. Incorporating the
super
cial shear o�ered by the air, Pascal [49] studied a prob-
lemwhichmodels themechanismofwind-aided spreading of
oil on the sea and found quantitative information regarding
the maximum upwind spread of the gravity current. Wilson
and Du�y [50] studied the steady unidirectional �ow of a

thin rivulet on a vertical substrate subjected to a prescribed
uniform longitudinal shear stress on the free surface. �ey
categorized the possible �ow patterns and found that the
direction of the prescribed shear stress a�ects the velocity
in the entire rivulet. �e generation of roll waves on the
free boundary of a non-Newtonian liquid was numerically
assessed using a 
nite volumemethod by Pascal andD’Alessio
[51], revealing the signi
cant e�ect of air shear on the
evolution of the �ow. �eir study showed that the instability
criteria was conditional and depends on the directionally
induced shear. Kalpathy et al. [52] investigated an idealized
model suitable for lithographic printing by examining the
shear-induced suppression of two strati
ed thin liquid 
lms
con
ned between parallel plates taking into account the van
der Waals force. A 
lm thickness equation for the liquid-
liquid interface was derived in their study using lubrication
approximation.�ey found that the e�ect of shear a�ects the
imaginary part of the growth rate, indicating the existence
of traveling waves. Furthermore, they also observed a critical
shear rate value beyond which the rupture mechanism could
be suppressed. �is study motivated Davis et al. [53] to
consider the e�ect of unidirectional air shear on a single
�uid layer. For a two-dimensional ultrathin liquid, Davis
et al. [53] showed that the rupture mechanism induced by
the London van der Waals force could be suppressed when
the magnitude of the wind shear exceeds a critical value, as
observed byKalpathy et al. [52]. Recently, Uma [18]measured
numerically the profound e�ect of unidirectional wind stress
on the stability of a condensate/evaporating power-law liquid
�owing down an incline.

In the present investigation, the e�ects of downhill and
uphill air shear on a thin falling 
lm in the presence of a trans-
verse magnetic 
eld are studied. Such an investigation will
illustrate the realistic in�uence of the natural environment
acting upon the �ows. Or, it may illustrate the need to control
the �ow mechanism through arti
cial techniques, which
blow air when the hydromagnetic e�ects are considered.
�e outline of this paper is organized as follows. Section 1
presents the introduction. In Section 2, mathematical equa-
tions governing the physical problem are presented. Section 3
discusses the long-wave Benney-type equation. In Section 4,
linear stability analysis, weakly nonlinear stability analysis,
and the instability arising due to sideband disturbances are
analyzed. �e equilibria of a truncated bimodal dynamical
system is mathematically presented in Section 5. While the
results in Section 6 discuss nonlinear simulations of the 
lm
thickness evolution, Section 7 highlights the main conclu-
sions of the study and includes future perspectives.

2. Problem Description

A thin Newtonian liquid layer of an in
nite extent falling
freely over a plane under the in�uence of gravitational
acceleration, �, is considered. �e �ow is oriented towards
the �-axis, and the plane makes an angle 	 with the horizon.
Properties of the �uid like density (
), viscosity (�), and
surface-tension (�) are constants. �e magnetic �ux density

is de
ned by the vectorB = 
0 ⃗�, where
0 is themagnitude of
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Figure 1: Sketch of the �ow con
guration. When �� > 0, the air
shears the surface along the downhill direction (in the direction of
the arrow). However, if �� < 0, the air shears the surface along the
uphill direction (in this case, the arrow would point to the opposite
direction). �e air shear e�ect is zero when �� = 0.
the magnetic 
eld imposed along the �-direction (Figure 1).
It is assumed that there is no exchange of heat between the
liquid and the surrounding air, but an air �ow (either in
the uphill or in the downhill direction) induces a constant
stress ofmagnitude �� on the interface andmoves tangentially
along the surface. �e �-axis is perpendicular to the planar
substrate such that, at any instant of time �, ℎ(�, �) measures
the 
lm thickness.

�e magnetohydrodynamic phenomena can be modeled
by the following equations, which express the momentum
and mass balance:
(�U�� + U ⋅ ∇U) = 
G − ∇� + �∇2U + F, (2)∇ ⋅ U = 0. (3)

�e last term in (2) arises due to the contribution of Lorenz
body force, based on Maxwell’s generalized electromagnetic

eld equations [28, 54, 55].

In a realistic situation corresponding to a three-
dimensional �ow, the total current �ow can be de
ned using
Ohm’s law as follows:

J = Σ (E + U × B) , (4)

where J, E, U, and Σ represent the current density, electric

eld, velocity vector, and electrical conductivity, respectively.
�e Lorenz force acting on the liquid is de
ned asF = J×B. In
the rest of the analysis, a short circuited systemcorresponding
to a two-dimensional problem is considered by assuming that
E = 0.�is assumption simpli
es the last term corresponding
to the electromagnetic contribution in (2). In this case, the
pondermotive force acting on the �ow (the last term in (2))
has only one nonvanishing term in the �-direction; therefore,

F = (��, ��) = (−Σ
20�, 0) , (5)

where G = (� cos	, −� sin	) and � is the pressure.

Boundary conditions on the planar surface and the
interface are added to complete the problem de
nition of (2)-
(3). On the solid substrate, the no-slip and the no-penetration
conditions are imposed, which read as

U = (�, V) = 0. (6)

�e jump in the normal component of the surface-traction
across the interface is balanced by the capillary pressure
(product of themean surface-tension coe�cient and the local
curvature of the interface), which is expressed as�� − � + (� (∇U + ∇U�) ⋅ n) ⋅ n= 2�Π (ℎ) on � = ℎ (�, �) , (7)

where Π(ℎ) = −(1/2)∇ ⋅ n is the mean 
lm curvature and�� is the pressure a�orded by the surrounding air. �e unit
outward normal vector at any point on the free surface is n =∇(� − ℎ)/|∇(� − ℎ)|, and t represents the unit vector along
the tangential direction at that point such that n ⋅ t = 0. �e
tangential component of the surface-traction is in�uenced by
the air stress �� and reads as(� (∇U + ∇U�) ⋅ t) ⋅ n = �� on � = ℎ (�, �) . (8)

�e location of the interface can be tracked through the
following kinematic condition:�ℎ�� = V − ��ℎ�� on � = ℎ (�, �) . (9)

In order to remove the units associated with the model
(2)–(9) involving the physical variables, reference scales must
be prescribed. In principle, one can nondimensionalize the
system based on the nature of the problem by choosing
one of the following scales [9, 16]: (a) kinematic viscosity
based scales, (b) gravitational acceleration as the �ow agent
based scales, (c) mean surface-tension based scales, and (d)
Marangoni e�ect as the �ow agent based scales. However,
for very thin falling 
lms, the main characteristic time is the
viscous one [7–9, 16]. An advantage of choosing the viscous
scale is that either both the large and the small inclination
angles could be considered by maintaining the sine of the
angle and the Galileo number as separate entities [7, 16] or
the Reynolds number as a product of Galileo number and
sine of the inclination angle could be de
ned as a single entity
[9]. Also, such a scale plays a neutral role while comparing
the action of gravity and Marangoni e�ect in nonisothermal
problems [16]. Choosing the viscous scale, the horizontal
distance is scaled by �, vertical distance by ℎ0, streamwise
velocity by ]/ℎ0 , transverse velocity by ]/�, pressure by
]2/ℎ20, time by �ℎ0/], and, 
nally, the shear stress o�ered by

the wind by 
]2/ℎ20 . In addition, the slenderness parameter(� = ℎ0/�) is considered small, and a gradient expansion of
the dependent variables is done [7–9]. �e horizontal length
scale, �, is chosen such that � = �, where � is a typical
wavelength larger than the 
lm thickness.
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�e dimensionless system is presented in Appendix A
(the same symbols have been used to avoid new nota-
tions). �e set of nondimensional parameters arising during
nondimensionalization procedure are Re = Ga sin	 (the

Reynolds number) [9], Ga = �ℎ30/]2 (the Galileo number),

Ha = Σ
20 ℎ20/� (the Hartmann number, which measures the
relative importance of the drag force resulting frommagnetic

induction to the viscous force arising in the �ow), S =�ℎ0/
]2 (the surface-tension parameter), and � = ��ℎ20/
]2
(the shear stress parameter). �e surface-tension parameter

is usually large; therefore, it is rescaled as �2S =  and set
as O(1) in accordance to the waves observed in laboratory
experiments. All of the other quantities are considered O(1).
�e long-wave equation is derived in the next step.

3. Long-Wave Equation

�e dependent variables are asymptotically expanded in
terms of the slenderness parameter � to derive the long-
wave equation. Using the symbolic math toolbox available
in MATLAB, the zeroth and the 
rst-order systems are
solved. �ese solutions are then substituted in the kinematic
condition (A.5) to derive a Benney-typemodel accurate up to
O(�) of the form (1) asℎ� + ! (ℎ) ℎ� + �(
 (ℎ) ℎ� + # (ℎ) ℎ���)� + O (�2) = 0. (10)

�e standard procedure for the derivation [7, 9, 14, 15, 28] is
skipped here. �e expressions for !(ℎ), 
(ℎ), and #(ℎ) are,
the following:

! (ℎ) = Re

Ha
tanh2 (√Ha ℎ)+ �√Ha
tanh (√Ha ℎ) sech (√Ha ℎ) , (11)


 (ℎ) = {Re cot	
Ha3/2

tanh (√Ha ℎ) − Re cot	ℎ
Ha

}
+ { Re2ℎ2Ha5/2

tanh (√Ha ℎ) sech4 (√Ha ℎ)
+ Re2ℎ
Ha5/2

tanh (√Ha ℎ) sech2 (√Ha ℎ)
− 3Re22Ha3

tanh2 (√Ha ℎ) sech2 (√Haℎ)}
+ � { 3Re2Ha5/2

tanh (√Ha ℎ) sech (√Ha ℎ)− 3Re
Ha5/2

tanh (√Ha ℎ) sech3 (√Ha ℎ)

+ Re ℎ
Ha2

(sech5 (√Ha ℎ)+ 32 sech3 (√Ha ℎ)−sech (√Ha ℎ)) }
+ �2 {ℎ tanh (√Ha ℎ)

Ha3/2
( − sech2 (√Ha ℎ)
−12 sech4 (√Ha ℎ))

+ 32Ha2
tanh2 (√Ha) sech2 (√Ha ℎ)} ,

(12)# (ℎ) =  ℎ
Ha

−  
Ha3/2

tanh (√Ha ℎ) . (13)

It should be remarked that, when � = 0, the above terms
agree with the long-wave equation derived by Tsai et al.
[28] when the phase-change e�ects on the interface are
neglected. �e dimensionless parameters di�er from the
nondimensional set presented in Tsai et al. [28] because
viscous scales are employed here. Although one can consider
di�erent scales, in principle, the structure of the evolution
equation remains unchanged regardless of the dimensionless
parameters appearing in the problem. Furthermore, the error
in the second term associated with 
(ℎ) in Tsai et al. [28] is
corrected here, which as per the convention followed in their

paper should read as (4;Re ℎ/?5)sech2?ℎ tanh?ℎ. Also,
the case corresponding toHa = 0 can be recovered from (11)–
(13) when Ha → 0. In this case, the functions in (11)–(13)
read as ! (ℎ) = Re ℎ2 + �ℎ,
 (ℎ) = 215 Re ℎ5 (Re ℎ + �) − 13 Re cot	ℎ3,# (ℎ) =  ℎ33 , (14)

which match with the evolution equation derived by Miladi-
nova et al. [9] in the absence of Marangoni and air shearing
e�ect. �e e�ect of magnetic 
eld and air shear a�ects
the leading order solution through !(ℎ) term in (11). �is
term contributes towards wave propagation and steepening
mechanism.�e e�ect of hydrostatic pressure is measured by
the terms within the 
rst �ower bracket in 
(ℎ) in (12). �e
rest of the terms in 
(ℎ) a�ect the mean �ow due to inertial,
air shear andmagnetic 
eld contributions.�e function#(ℎ)
corresponds to themean surface-tension e�ect. Although the
e�ect of � cannot be properly judged based on its appearance
in (11)–(13), it is obvious that in the absence of the magnetic

eld both !(ℎ) and 
(ℎ) increase (decrease) when � > 0 (<0). �e stability of the long-wave model (10) subject to (11)–
(13) is investigated next.
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4. Stability Analysis

�e Nusselt solution corresponding to the problem is

ℎ0 = 1, (15a)�0 = sinh (√Ha�)√Ha
( Re√Ha

tanh√Ha + � sech√Ha)+ Re

Ha
(1 − cosh (√Ha�)) ,

(15b)

V0 = 0, (15c)�0 = Re cot	 (1 − �) . (15d)

For a parallel shear �ow, (10) subject to (11)–(13) admits
normal mode solutions of the form ℎ = 1 + B(�, �), whereB(�, �) is the unsteady part of the 
lm thickness representing
the disturbance component such that B ≪ 1 [56, 57].
Inserting ℎ = 1 + B(�, �) in (10) and invoking a Taylor
series expansion about ℎ = 1, the unsteady nonlinear
equation representing a slight perturbation to the free surface
is obtained asB� + !1B� + �
1B�� + �#1B����= −[!�1B + !��12 B2 + !���16 B3]B�

− � [
�1B + 
��12 B2]B��
− �(#�1B + #��12 B2)B����− � [
�1 + 
��1B] (B�)2− � (#�1 + #��1B)B�B��� + O (�B4, B5, �2B) ,

(16)

where (a prime denotes the order of the derivative with
respect to ℎ)!1 = ! (ℎ = 1) , !�1 = !� (ℎ = 1) ,!��1 = !�� (ℎ = 1) ,
1 = 
 (ℎ = 1) , 
�1 = 
� (ℎ = 1) ,
��1 = 
�� (ℎ = 1) ,#1 = # (ℎ = 1) , #�1 = #� (ℎ = 1) ,#��1 = #�� (ℎ = 1) .

(17)

It should be remarked that, while expanding the Taylor series,
there are two small parameters, namely, � ≪ 1 and B ≪ 1
whose orders of magnitude should be considered such that� ≪ B ≪ 1. When O(�B3) terms are retained and since

�B3 ≪ B4, (!���1 /6)B3B� appears as a unique contribution of
orderB4 in (16). �is term, although present in the unsteady
equation (16), does not contributewhen amultiple-scale anal-
ysis is done (refer to Section 4.2.1 and Appendix B), where

equations only up to O(;3) are considered while deriving a
complex Ginzburg-Landau-type equation [12, 14, 17, 56, 57].
In addition, such a term did not appear in earlier studies
[12, 14, 17, 56, 57] because !(ℎ) was a mathematical function
of second degree in ℎ, whose higher-order derivatives are
zero.

Equation (16) forms the starting point for the linear sta-
bility analysis and describes the behavior of 
nite-amplitude
disturbances of the 
lm. Such an equation predicts the
evolution of timewise behavior of an initially sinusoidal
disturbance given to the 
lm. It is important to note that
the constant 
lm thickness approximation with long-wave
perturbations is a reasonable approximation only for certain
segments of �ow and implies that (16) is only locally valid.

4.1. Linear Stability. To assess the linear stability, the linear
terms in (16) are considered. �e unsteady part of the 
lm
thickness is decomposed as (a tilde denotes the complex
conjugate)B(�, �) = KL�(	�−
��)+
�� + K̃L−�(	�−
��)−
��, (18)

where K (≪ 1) is a complex disturbance amplitude indepen-
dent of � and �. �e complex eigenvalue is given by � =#� + N#� such that O ∈ [0, 1] represents the streamwise
wavenumber. �e linear wave velocity and the linear growth
rate (ampli
cation rate) of the disturbance are #�/O, #� ∈(−∞,∞), respectively. Explicitly, they are found as#�
 = #�O = !1,#� = �O2 (
1 − O2#1) . (19)

�e disturbances grow (decay) when #� > 0 (#� < 0).
However, when #� = 0, the curve O = 0 and the positive
branch of O2 = 
1/#1 represent the neutral stability curves.
Identifying the positive branch of 
1 − O2#1 = 0 as O� =√(
1/#1) (O� is the critical wavenumber), the wavenumberO� corresponding to the maximal growth rate is obtained

from (�/�O)#� = 0. �is gives 
1 − 2O2�#1 = 0 such thatO� = O�/√2. �e linear ampli
cation of the most unstable
mode is calculated from #�|	=	� .

A parametric study considering the elements of the set
S = {Re,Ha,  , 	, �} is done in order to trace the neutral
stability and linear ampli
cation curves by assuming the
slenderness parameter to be 0.1. Only those curves which are
relevant in drawing an opinion are presented.

�e in�uence of the magnetic 
eld on the critical
Reynolds number (Re�) varying as a function of the shear
parameter is presented in Figure 2. For each Ha, there is a
Re� below which the �ow is stable. �e critical Reynolds
number decreases when the angle of inclination increases,
and, therefore, the �ow destabilizes. �e stabilizing e�ect of
themagnetic 
eld is also seenwhenHa increases.�ere exists
a certain � > 0 such that the �ow remains unstable beyond it.
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Figure 2: Critical Reynolds number as a function of � when  = 0: (a) 	 = 45∘; (b) 	 = 80∘.
Figures 3 and 4 display the neutral stability curves, which

divide the O − Re and O − � planes into regions of stable
and unstable domains. On the other hand, Figure 5 shows
the linear ampli
cation curves. �e shear stress o�ered by
the air destabilizes the �ow when it �ows along the downhill
direction (� > 0) and increases the instability threshold
compared to the case corresponding to � = 0 (Figures 3
and 4). However, the �ow mechanism is better stabilized
when the applied shear stress o�ered by the air is in the
uphill direction (� < 0) than when � = 0 (Figures 3
and 4). As seen from Figure 3, the portion of the axis
corresponding to the unstable Reynolds numbers increases
and extends towards the le� when the angle of inclination
increases, thereby reducing the stabilizing e�ect o�ered by the
hydrostatic pressure at small inclination angles. From curves
2 and 3 corresponding to Figure 3, it is observed that the force
of surface-tension stabilizes the �ow mechanism. Figure 4
supports the information available from Figure 3. When the
magnitude of the Hartmann number increases, the instability
region decreases because the value of the critical wavenumber
decreases. Comparing Figure 4(a) with Figure 4(c), it is
also observed that the inertial force destabilizes the �ow
mechanism. �e growth rate curves (Figure 5) agree with
the results o�ered by the neutral stability curves (Figures 3
and 4).

�e linearly increasing graphs of #� and the decreasing
plots of #�
 with respect to O and Ha, respectively, are
presented in Figure 6. �e e�ect of inertia doubles the linear
wave speed, #�
. But when the magnitude of Ha, increases,
the linear wave speed decreases. �e downhill e�ect of the
shear stress on the interface makes the linear wave speed
larger than the cases corresponding to � = 0 and � < 0.

�e linear stability results give only a 
rsthand infor-
mation about the stability mechanism. �e in�uence of
air-induced shear on the stability of the �ow under the
application of a transverse magnetic 
eld will be better
understood only when the nonlinear e�ects are additionally
considered. To analyze and illustrate the nonlinear e�ects on
the stability threshold, a weakly nonlinear study is performed
in the next step.

4.2. Multiple-Scale Analysis

4.2.1. Weakly Nonlinear�eory. In order to domultiple-scale
analysis, the following slow scales are introduced following
Sadiq and Usha [14] (the justi
cation for stretching the scales
is provided in Lin [56] and in Krishna and Lin [57]):�1 = ;�, �2 = ;2�, �1 = ;�, (20)

such that ��� T→ ��� + ; ���1 + ;2 ���2 ,��� T→ ��� + ; ���1 . (21)

Here, ; is a small parameter independent of � and measures
the distance from criticality such that #� ∼ O(;2) (or, 
1 −O2#1 ∼ O(;2)). �e motivation behind such a study lies
in deriving the complex Ginzburg-Landau equation (CGLE),
which describes the evolution of amplitudes of unstable
modes for any process exhibiting a Hopf bifurcation. Using
such an analysis, it is possible to examine whether the
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Figure 3: Neutral stability curves. �e symbols ST and US indicate the stable and unstable regions. Here, (1) Ha = 0.001 and  = 1; (2)
Ha = 0.2 and  = 1; (3)Ha = 0.2 and  = 10. (a) 	 = 30∘ and (b) 	 = 60∘.
nonlinear waves in the vicinity of criticality attain a 
nite
height and remain stable or continue to grow in time and
eventually become unstable. Refer to Appendix B for the
detailed derivations of the threshold amplitude, ;Γ0, and the
nonlinear wave speed,W�.

�e threshold amplitude subdivides the �ow domain
according to the signs of #� and X2 [14]. If #� < 0 andX2 < 0, the �ow exhibits subcritical instability. However,
when #� > 0 and X2 > 0, the Landau state is supercritically
stable. If, on the other hand, #� < 0 and X2 > 0, the �ow is
subcritically stable. A blow-up supercritical explosive state is
observed when #� > 0 and X2 < 0.

Di�erent regions of the instability threshold obtained
throughmultiple-scale analysis are illustrated in Figure 7.�e
subcritical unstable region is a�ected due to the variation of �.
For � < 0, such a region is larger than the ones corresponding
to � ≥ 0. In addition, the subcritical unstable and the
stable regions increase whenHa increases.�e explosive state
region (also called the nonsaturation zone) decreases when� < 0 than when � ≥ 0. �e strip enclosing asterisks is the

supercritical stable region where the �ow, although linearly
unstable, exhibits a 
nite-amplitude behavior and saturates
as time progresses [8, 9, 14]. �e bottom line of the strip is
the curve O� = O�/2 which separates the supercritical stable
region from the explosive region [56, 58, 59].Within the stripO� < O < O�, di�erent possible shapes of the waves exist
[7, 9, 14].

Tables 1 and 2 show the explosive and equilibration
state values for di�erent �ow parameters. �e wavenumber
value corresponding to the explosive state increases when the
inertial e�ects increase. �is increases the unstable region0 < O < O� (Table 1). Such a wavenumber decreases either
when the hydromagnetic e�ect is increased or when the air
shear is in the uphill direction. It is evident from Table 1 that
the explosive state occurs at small values of Re and 	, which is
also true for large values ofHawhen � < 0. Also, it is observed
that either when the Hartmann number or the value of the
uphill shear is increased, the critical wavenumber becomes
zero (Table 2). �erefore, O� = 0 (Table 1).
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�e threshold amplitude (;Γ0) pro
les display an asym-
metric structure (Figure 8), increasing up to a certain
wavenumber (>O�) and then decreasing beyond it in the
supercritical stable region. �e � > 0 induced amplitudes
show larger peak amplitude than the cases corresponding to� = 0 and � < 0. �e peak amplitude value decreases when
Ha increases.�enonlinearwave speed (W�) curves represent
a 90∘ counterclockwise rotation of the mirror image of the
alphabet ^ when Ha is small. �e nonlinear speed decreases
to a particular value in the vertical direction and therea�er
traces a constant value beyond it as thewavenumber increases
in the supercritical stable region. However, when the e�ect
of the magnetic 
eld is increased, the nonlinear wave speed
decreases in magnitude and sketches an almost linear con-
stant pro
le. �e magnitude of W� in the supercritical stable
region corresponding to � = 0 remains inbetween the values
corresponding to � < 0 and � > 0.

4.2.2. Sideband Instability. Let us consider the quasi-mono-
chromatic wave of (B.4) exhibiting no spatial modulation of
the form K = Γ� (�2) = Γ0L−���2 , (22)

where Γ0 and _ are de
ned by (B.10) and (B.11) such that`� + _ is the wave frequency and O(> 0) is the modulation
wavenumber.

If one considers a band of frequencies centered around`�,
the interaction of one side-mode with the second harmonic
would be resonant with the other side-mode causing the
frequency to amplify. �is leads to an instability known as
sideband instability [60, 61].

To investigate such an instability, Γ�(�2) is subjugated
to sideband disturbances of bandwidth O; [12, 56, 57].
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�e explicit expression for the eigenvalues is found as (refer
to Appendix C)a = 12 (tr (M) ± √tr2 (M) − 4 det (M))

= −c� + O2X1� ± 12√4 (c2� + O2V2) − 8NX4c�VOX2= e1 ± e2,
(23)

where

tr (M) = 2c� + 2O2X1� − 4X2ffffΓ�ffff2 = −2c� + 2O2X1�,
det (M) = X21O4 − (V2 + 2c�X1) O2 − 2Nc�VX4X2 O. (24)

It should be remarked that the above expression for a is
true only if V ∼ O(;). However, when V = 0, it is easily

seen from (23) that a1 = e1 + e2 = O2X1� < 0 and a2 =e1 − e2 = −2c� + O2X1� < 0 (when c� > 0), implying that
the system is stable to the sideband disturbances as �2 → ∞.
For nonzero V, the eigenvalues depend on the dimensionless
�ow parameters. If e2 > 0 and is less than the absolute value
of e1, the sideband modes stabilize the system as �2 → ∞.
However, if e2 > 0 and is greater than the absolute value ofe1, only one of the modes is sideband stable. On the other

hand, if (c2� + O2V2) − (8NX4c�VO \ X2) < 0, again, one of the
modes is sideband stable.

5. Equilibria of a Bimodal Dynamical System

Considering the initial thickness of the amplitude to be
one, Gjevik [58] analyzed the amplitude equations by rep-
resenting the amplitude using a truncated Fourier series
and by imposing restrictions on its coe�cients. �e velocity
along the mean �ow direction and the corresponding surface
de�ection moving with this velocity were deduced by posing
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the problem into a dynamical system. Gottlieb and Oron
[62] and Dandapat and Samanta [12] also expanded the
evolution equation using a truncated Fourier series to derive
a modal dynamical system. �e results in Gottlieb and Oron
[62] showed that a two-mode model was found to coincide
with the numerical solution along the Hopf bifurcation
curve. Based on this con
dence, the stability of the bimodal
dynamical system was assessed in Dandapat and Samanta
[12].

In this section, the stability of a truncated bimodal
dynamical system is analyzed using the approach followed by
the above authors, but using the assumptions considered in
Gjevik [58].�e coupled dynamical system and its entries are
listed in Appendix D.

It should be remarked that in the O − Re plane the
equations _111 = 0 and �[Ob111]/�O = 0 give the neutral
stability curve and the curve corresponding to the maximum
rate of ampli
cation for linear disturbances. �e expression

V� = hh�i1 (�) = c111 + [c121 cosk (�) − _121 sink (�)]× m2 (�) + c131m21 (�) + c132m22 (�) (25)

measures the velocity along the direction of themean�owof a
steady 
nite-amplitude wave. �e surface de�ection, ℎ(�, �),
moving with velocity V� along the mean �ow direction in a
coordinate system �� = � + i1 is calculated from (D.1) and
reads asℎ (�, �) = 1 + 2 [
1 cos�� + 
2 cos (2�� − k)] . (26)

�e steady solutions of the system (D.2a) and (D.2b)
correspond to the 
xed points of (D.4a)–(D.4c). In addition
to the trivial solution m1(�) = 0, m2(�) = 0, and k(�) =0 (n1(�) = 0; n2(�) = 0), system (D.4a)–(D.4c) o�ers
nontrivial 
xed points [62–64]. �ese 
xed points can be
classi
ed as pure-mode 
xed points (where one of the 
xed
points is zero and the others are nonzero), mixed-mode 
xed
points (nonzero 
xed points with a zero or nonzero phase
di�erence), and traveling waves with nonzero constant phase
di�erence.

5.1. Pure-Mode. �e 
xed points in this case are obtained by
setting p�(m1, m2, k) = 0, N = 1, 2, 3, in (D.4a)–(D.4c). �is

gives m1(�) = 0 and m22(�) = −_211/_232. �e solution exists

if sgn(_211_232) = −1. For convenience, m22(�) = m̃2 is set. From
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Table 1: Parameter values for which the nonlinear wave explodes.	 = 55∘ 	 = 75∘
Re = 3 Re = 6 Re = 3 Re = 6� = 1 Ha = 0 O� = 0.3671 O� = 0.7933 O� = 0.4467 O� = 0.8707

Ha = 0.2 O� = 0.2309 O� = 0.6056 O� = 0.3438 O� = 0.7045
Ha = 0.4 O� = 0.0268 O� = 0.4399 O� = 0.2561 O� = 0.5686� = 0 Ha = 0 O� = 0.2733 O� = 0.7132 O� = 0.3734 O� = 0.7992
Ha = 0.2 O� = 0.1536 O� = 0.5517 O� = 0.2974 O� = 0.6588
Ha = 0.4 O� = 0 O� = 0.4073 O� = 0.2319 O� = 0.5436� = −1 Ha = 0 O� = 0.1211 O� = 0.6237 O� = 0.2823 O� = 0.7205
Ha = 0.2 O� = 0 O� = 0.4861 O� = 0.2301 O� = 0.6049
Ha = 0.4 O� = 0 O� = 0.3602 O� = 0.1835 O� = 0.5094

Table 2: Parameter values for which the nonlinear wave attains a 
nite amplitude.	 = 55∘ 	 = 75∘
Re = 3 Re = 6 Re = 3 Re = 6� = 1 Ha = 0 O� = 0.7342 O� = 1.5866 O� = 0.8933 O� = 1.7415

Ha = 0.2 O� = 0.4618 O� = 1.2112 O� = 0.6875 O� = 1.4092
Ha = 0.4 O� = 0.0536 O� = 0.8799 O� = 0.5121 O� = 1.1371� = 0 Ha = 0 O� = 0.5467 O� = 1.4263 O� = 0.7468 O� = 1.5984
Ha = 0.2 O� = 0.3071 O� = 1.1034 O� = 0.5947 O� = 1.3177
Ha = 0.4 O� = 0 O� = 0.8145 O� = 0.4638 O� = 1.0872� = −1 Ha = 0 O� = 0.2421 O� = 1.2475 O� = 0.5646 O� = 1.4411
Ha = 0.2 O� = 0 O� = 0.9722 O� = 0.4602 O� = 1.2099
Ha = 0.4 O� = 0 O� = 0.7205 O� = 0.1834 O� = 1.0187

(D.4c), c121 cosk(�) − _121 sink(�) = (O/2)!��1m is obtained.
From this condition, the 
xed point for k(�) is derived ask (�) = k̃ (�) = tan−1 [(4_121c121 ± O!��1 m̃× {4_2121 + 4c2121 − O2!��21 m̃2}1/2)× (4_2121 − O2!��21 m̃2)−1] ,

(27)

provided that the quantity within the square root is real
and positive. �e stability of the nonlinear dynamical system
(D.4a)–(D.4c) can be locally evaluated using the eigenvalues
of the matrix obtained a�er linearizing the system around
the 
xed points. �e linear approximation of the dynamical
system (D.4a)–(D.4c) can be represented in matrix notation
as

((
(

hm1 (�)h�hm2 (�)h�hk (�)h�
))
)

= (�1 0 00 �2 00 �3 �4)(m1 (�)m2 (�)k (�)) + (�1�2�3) ,
(28)

such that�1 = _111 + (_121 cos k̃ + c121 sin k̃) m̃ + _132m̃2;�2 = _211 + 3_232m̃2,�3 = −2_121 sin k̃ + 2c121 cos k̃ − 2O!��1 m̃;�4 = − (2_121 cos k̃ + 2c121 sin k̃) m̃,�1 = 0; �2 = −2_232m̃3;�3 = O!��1 m̃2 + (2_121 cos k̃ + 2c121 sin k̃) k̃m̃.
(29)

�e stability of the linear system (28) depends on the
eigenvalues of the coe�cient matrix with entries ��. �e
eigenvalues are found as�1 = _211 + 3m̃2_232 = −2_211,�2 = −2m̃ (_121 cos k̃ + c121 sin k̃) ,�3 = _111 + m̃ (_121 cos k̃ + c121 sin k̃) + _132m̃2. (30)
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�eHopf bifurcation at the critical threshold is de
ned by
1 = O2#1, and this yields �1 = 24�O4#1 > 0. �is eigenvalue

being independent of � increases when the e�ects of surface-
tension and Hartmann number increase. �erefore, at the
critical threshold, the 
xed points corresponding to the
pure-mode are unstable. Beyond the neutral stability limit
where the �ow is linearly stable (#� < 0) and where
the stable wavenumber region decreases when the direction
of the shear o�ered by the wind changes from uphill to
downhill direction, the eigenvalue may remain positive and
still destabilize the system as shown in Figure 9. �e stable
wavenumbers corresponding to the linear stability threshold
(refer to Figure 5 withHa = 0.3 and Re = 2) are considered to
plot the eigenvalue�1. Although themagnitude of�1 remains
larger for � < 0 than for � ≥ 0, being positive, it plays a
destabilizing role.

5.2. Mixed-Mode. When m1(�), m2(�) ̸= 0, the 
xed points in
this case correspond to mixed-mode. Considering k(�) ̸= 0
and m∗1 , m∗2 , and k∗ to be the 
xed points of (D.4a)–(D.4c), the

nonlinear system can be linearized around the 
xed points.
�en, the stability (instability) of the 
xed points demands
all of the eigenvalues of the linearized Jacobian matrix to be
negative (at least one of them to be positive).�e nine entries��� (N, � = 1, 2, 3) of the 3 × 3 Jacobian matrix arising due to
linearization are the following:�11 = _111 + (_121 cosk∗ + c121 sink∗) m∗2+ 3_131m∗21 + _132m∗22 ,�12 = (_121 cosk∗ + c121 sink∗) m∗1 + 2_132m∗1 m∗2 ,�13 = (−_121 sink∗ + c121 cosk∗) m∗1 m∗2 ,�21 = 2 (_221 cosk∗ − c221 sink∗) m∗1 + 2_231m∗1 m∗2 ,�22 = _211 + _231m∗21 + 3_232m∗22 ,�23 = − (_221 sink∗ + c221 cosk∗) m∗21 ,
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�31 = 2O!��1m∗1 − 2m∗1m∗2 (_221 sink∗ + c221 cosk∗) ,�32 = − 2O!��1m∗2 + 2 (c121 cosk∗ − _121 sink∗)+ m∗21m∗22 (_221 sink∗ + c221 cosk∗) ,�33 = − 2 (c121 sink∗ + _121 cosk∗) m∗2− (_221 cosk∗ − c221 sink∗) m∗21m∗2 .

(31)

It should be remarked that Samanta [65] also discussed
the mixed-mode for the �ow of a thin 
lm on a nonuni-
formly heated vertical wall. However, it should be noted
that the Jacobian was computed not by considering a zero
phase di�erence with m1(�), m2(�) ̸= 0, but by evaluating the
Jacobian 
rst by imposing m1(�), m2(�), k(�) ̸= 0 and then by
substituting k = 0 in the computed Jacobian. If one considersm1(�), m2(�), k(�) = 0, an overdetermined system is obtained.

5.3. Traveling Waves. Fixed points of (D.4a)–(D.4c) with k
being a nonzero constant correspond to traveling waves. �e
modal amplitudes are considered small in the neighborhood
of the neutral stability limit. A�er rescaling m1(�) → ;?1(�)
and m2(�) → ;2?2(�), the following system is obtained:

h?1 (�)h� = _111?1 (�) + ;2× [_121 cosk (�) + c121 sink (�)]?1 (�)?2 (�)+ ;2_131?31 (�) + O (;4) ,
(32a)

h?2 (�)h� = _211?2 (�)+ [_221 cosk (�) − c221 sink (�)]?21 (�)+ ;2_231?21 (�)?2 (�) + O (;4) , (32b)

hk (�)h� = − [_221 sink (�) + c221 cosk (�)] ?21 (�)?2 (�)+ ;2O!��1?21 (�) + 2;2× [c121 cosk (�) − _121 sink (�)]?2 (�) + O (;4) .
(32c)

To the O(;2), there are no nontrivial 
xed points in the
above system. �e phase evolution is governed by equating
the right-hand side of (32c) to zero by considering terms up

to O(;2):
tank (�) = (−�1�2 ± �3(�21 + �22 − �23)1/2)(�21 − �23) , , (33)

where �1 = (1 + 2;2_121?22(�)/_221?21(�)), �2 = (c221/_221) −(2;2c121?22(�)/_221?21(�)), and �3 = ;2O!��1?2(�)/_221 . In the
above equation, if only the leading order e�ect is considered,
the 
xed point is found ask∗ (�) = tan−1 (−c221_221 ) + O (;2) . (34)

Equating (32a) to zero and using (34), it is found that;2_131?21 (�) = −_111 − ;2�1?2 (�) . (35)

Such a solution exists if [_111 + ;2�1?2(�)]_131 < 0, where�1 = (_121 cosk∗ + c121 sink∗). A quadratic equation in?2(�)
is obtained by considering (32b) as;4_231�1?22 (�) + ;2 (_111_231 − _211_131 + �1�2)× ?2 (�) + �2_111 = 0, (36)

where �2 = _221 cosk∗ − c221 sink∗. For this equation,
there are two solutions. �e existence of such solutions to
be a real number demands (_111_231 − _211_131 + �1�2)2 −4;4�1�2_111_231 > 0. Since _111 = 0 in the neutral stability
limit, (36) gives the amplitude of the nonzero traveling wave
as ?2 (�) = _211_131 − �1�2;2_231�1 = 3O2#1X2;2 (
��1 − 4O2#��1 ) �1 . (37)

When X2 = 0, ?2(�) is zero, and this corresponds to 
nding
the critical Reynolds number in the neutral stability limit [12].
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Figure 10: (a), (b), and (c) represent the surface-wave instability curves reproduced from Joo et al. [7] corresponding to Figures 5(b), 7(a),
and 9(a), respectively, in their study.

If?∗1 and?∗2 are the 
xed points obtained from (35) and (36),
the stability or instability of the 
xed points corresponding to

traveling waves depends on the sign of the eigenvalues of the
following matrix:

X = ( 2;2_131?∗21 ;2�1?∗1 −;2 sink∗ (_121 + c121_221c221 )?∗1?∗22 (�2 + ;2_231?∗2 )?∗1 ;2_211?∗21 02;2O!��1?∗1 −2;2 (_121 + c121_221c221 ) sink∗ −(2;2�1?∗2 + �2?∗21?∗2 ) ). (38)

6. Nonlinear Development of
the Interfacial Surface

�e nonlinear interactions are studied numerically beyond
the linear stability threshold in a periodic domain, D =

{(�, �) : � ∈ (−�/O� , �/O� ), � ∈ [0,∞)}, by solving (10)
subject to the initial condition ℎ(�, 0) = 1 − 0.1 cos(O��).
A central di�erence scheme, which is second-order accurate
in space, and a backward Euler method, which is implicit in
forward time, are adopted to solve the problem in MATLAB.
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Figure 11: Free surface pro
les at Re = 5, 	 = 45∘, and  = 5 when � = 0 at time � = 250.
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Figure 13:Maximumandminimumamplitude pro
les correspond-
ing to Re = 5, 	 = 45∘,  = 5, and Ha = 0.3.
�e local truncation error for this numerical scheme is T =
O(Δ�, Δ�2). �e computations are performed with a small
time increment, Δ� = 10−3. �e numerical scheme is always
stable (since a backward Euler method is used) and does
not build up errors. �e number of nodes along the spatial
direction is W = 800 such that the spatial step length isΔ� = 2�/WO�. An error tolerance of 10−10 is set, and
the simulations are stopped once the absolute value of the
error becomes smaller than this value. Also, the numerical
simulations show no particular deviation from the results
obtained neither when the spatial grid points are doubled
nor when the time step is further reduced. Figures 5(b), 7(a),
and 9(a) available in Joo et al. [7] are reproduced in Figure 10
to show the correctness of the numerical scheme. �is gives
con
dence in applying it to the evolution equation considered
here.

�e e�ect of the transverse magnetic 
eld is illustrated
in Figure 11. �e wave structure when the magnetic 
eld
strength is zero displays a steep curvier wave than whenHa >0. �e surface-wave instability decreases when the strength
of the applied magnetic 
eld increases. �is reveals the
stabilizing mechanism of the transversely applied magnetic

eld.

Figure 12 displays maximum amplitude pro
les of the
sheared �ow for two di�erent values of Ha on a semi-inclined
plane. �e maximum amplitude initially increases and then
decreases. Due to saturation of the nonlinear interactions, the
initial perturbation of the free surface is damped a�er a long
time. For a short time, the amplitude pro
le corresponding
to � > 0 remains smaller than the ones corresponding to� ≤ 0. Also, for di�erent Ha, the amplitudes corresponding
to � < 0 remain larger than those corresponding to � = 0 up
to a certain time (see also Figure 13). However, these trends
change over time. When the magnitude of the Hartmann
number increases, the time required for the amplitudes
corresponding to � < 0 to decrease below the amplitude
corresponding to � = 0 increases (Figures 12(a), 12(b), and
13). In addition, it is also observed that the time needed for

the amplitude pro
les corresponding to � = −1 to dominate
the amplitude pro
les corresponding to � = −1.5 increases
when the value of Ha increases (Figures 12(a) and 12(b)).

�e surface waves emerging at the free surface are
captured and presented in Figure 14. For � = 0, a wave which
has a stretched front is observed a�er a long time. When� = −1, a one-humped solitary-like wave is formed when
a large amplitude wave and a small capillary ripple coalesce
together (Figure 14(b)) at the time of saturation (a certain
time a�er which all of the waves have the same structure and
shape). Figure 14 demonstrates that the instability measured
by the wave height decreases when the shear is induced along
the uphill direction.

Tsai et al. [28] pointed out that, when the intensity of the
magnetic 
eld increases, the �ow retards and stabilizes the
system. �e interfacial surface subjected to air shear a�ects

the velocity and �ow rate, �(�, �) = ∫ℎ0 �(�, �)h�, for di�erent
values of � and Ha (Figure 15). �e numerical interactions
reveal that the velocity and the �ow rate can either increase
or decrease depending on the direction the air shears the
deformable free interface. In conjunction to the nonlinear
wave speed traced in Figure 8, the velocity pro
les traced in
Figure 15 show a similar response. For Ha = 0 and � > 0,
the streamwise velocity and the �ow rate increase. Also, the
transverse velocity is larger for Ha = 0 than when Ha > 0.
Furthermore, the velocity and the �ow rate decrease when
the strength of the applied magnetic 
eld increases. When
the magnitude of the shear induced in the uphill direction
is increased (by considering a small negative � value) for
large values of Ha, constant velocity and �ow rate pro
les are
observed.

It is inferred from the nonlinear simulations that the
e�ect of magnetic 
eld and wind shear greatly a�ects the
thickness of the interfacial free surface. When the strength of
the magnetic 
eld increases, the �ow has a uniform velocity
and constant discharge. For Ha > 0, the transverse velocity
shows a small growth in the positive direction.�e growth of
the unwanted development of the free surface is retarded by
themagnetic 
eld, when it acts opposite to the �ow direction.
Such a growth-reducing mechanism of the amplitude, in
particular, can be further enhanced by applying uphill shear
on the free surface. �is inclusion causes further reduction
in the values of streamwise and transverse velocities, thereby
leading to constant �ux situation and improved stability.

7. Conclusions and Perspectives

Linear and nonlinear analyses on the stability of a thin 
lm
subjected to air shear on a free surface in the presence of
a transversely applied external magnetic 
eld of constant
strength have been studied. Instead of obtaining the solutions
at di�erent orders of approximation using a power series
approach [37–39, 43], the solutions of equations arising at
various orders have been straightforwardly solved [28].

�e linear stability results gave 
rsthand information
about the stability mechanism. �e modal interaction
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Figure 14: Evolution of the surface-wave instability at Re = 5, 	 = 45∘,  = 5, and Ha = 0.3: (a) � = 0 and (b) � = −1. �e waves are plotted
at a gap of 0.1 time units in a periodic domain.

phenomenon was studied by deriving a complex Ginzburg-
Landau-type equation using the method of multiple scales.
�e stability regimes identi
ed by the linear theory were
further categorized using the weakly nonlinear theory by
considering a 
ltered wave to be the solution of the complex
Ginzburg-Landau equation. When the nonlinear ampli
ca-
tion rate (X2) is positive, an in
nitesimal disturbance in the
linearly unstable region attains a 
nite-amplitude equilibrium
state. �e threshold amplitude and the nonlinear wave speed
exist in the supercritical stable region. Stability of a 
l-
tered wave subject to sideband disturbances was considered,
and the conditions under which the eigenvalues decay in
time were mathematically identi
ed. Considering the initial
thickness to be one and imposing restrictions upon the
amplitude coe�cients, a truncated Fourier series was used to
derive a bimodal dynamical system.�e stability of the pure-
mode, mixed-mode, and the traveling wave solution has been
mathematically discussed.

Although there are several investigations based onweakly
nonlinear theory [28, 37–40, 43], the complete nonlinear
evolution equation was not studied numerically beyond the
linear stability threshold in the presence of an external
magnetic 
eld, especially in a short-circuited system. In this
regard, the nonlinear interactions have been numerically
assessed using 
nite-di�erence technique with an implicit
time-stepping procedure. Using such a scheme, the evolution
of disturbances to a small monochromatic perturbation was

analyzed.�e destabilizing mechanism of the downhill shear
was identi
ed with the help of computer simulation. Also, it
takes a long time for the amplitude pro
les corresponding to
the zero-shear-induced e�ect to dominate those correspond-
ing to the uphill shear, when the strength of the magnetic

eld increases. Furthermore, among the uphill shear-induced
�ows, the smaller the uphill shear-induced e�ect is, the longer
it takes for the respective amplitude to be taken over by
the amplitude corresponding to large values of uphill shear,
provided that the magnetic 
elds intensity increases.

�e velocity and the �ow rate pro
les gave a clear
understanding of the physical mechanism involved in the
process. When the magnetic 
eld e�ect and the air shear
are not considered, the gravitational acceleration, the inertial
force, and the hydrostatic pressure determine the mechanism
of long-wave instability, by competing against each other.
�ese forces trigger the �ow, amplify the 
lm thickness,
and prevent the wave formation, respectively [66]. When
the magnetic 
eld e�ect is included, it competes with other
forces to decide the stability threshold. �e applied magnetic

eld retards the �ow considerably by reducing the transverse
velocity. �is phenomenon reduces the wave thickness, but
it favors hydrostatic pressure and surface-tension to promote
stability on a semi-inclined plane. However, when the air
shear is considered, it can either stabilize or destabilize
the system depending on the direction it shears the free
surface. For downhill shear, the transverse velocity increases
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Figure 15: (1) Streamwise velocity, (2) �ow rate, and (3) transverse velocity pro
les at Re = 5, 	 = 45∘, and  = 5 in a periodic domain.

resulting in increased accumulation of the �uid under a
typical cusp, thereby favoring inertial force. Overall, this
mechanism causes the 
lm thickness to increase. For uphill
shear, the results are opposite.

�e present investigation suggests the inclusion of super-

cial shear stress on the interfacial surface to enhance the
stability of the 
lm, or on the other hand, shows the natural

e�ect of air shear on the 
lms stability under natural condi-
tions, in particular to those 
lms subjected to a transversely
applied uniform external magnetic 
eld in a short-circuited
system. Future research activities may include (i) assessing
nonisothermal e�ects, (ii) studying non-Newtonian 
lms,
and (iii) considering the contribution of electric 
eld. �e
last point would demand considering Poisson equation to
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describe electric potential together with appropriate bound-
ary conditions.

Appendices

A. Dimensionless Equations

�e dimensionless equations are given by�� + V� = 0,� (�� + ��� + V��) = −��� + �2��� + ��� + Re−Ha�,�2 (V� + �V� + VV�) = −�� + �3V�� + �V�� − Re cot	, (A.1)

and the respective boundary conditions are� = 0, V = 0 on � = 0, (A.2)� + 2�(1 − �2ℎ2�)(1 + �2ℎ2�) �� + 2�ℎ�1 + �2ℎ2� (�� + �2V�)
= − �2Sℎ��(1 + �2ℎ2�)3/2 on � = ℎ, (A.3)

(1 − �2ℎ2�)(1 + �2ℎ2�) (�� + �2V�) − 4�2ℎ�(1 + �2ℎ2�)�� = �
on � = ℎ, (A.4)

V = ℎ� + �ℎ� on � = ℎ. (A.5)

B. Multiple Scale Analysis

�e 
lm thickness,B, is expanded as

B(�, �, �1, �, �1, �2) = ∞∑
�=1

;�B� (�, �, �1, �, �1, �2) . (B.1)

Exploiting (16) using (20) and (B.1), the following equation is
obtained:(^0 + ;^1 + ;2^2) (;B1 + ;2B2 + ;3B3) = −;2W2 − ;3W3,

(B.2)

where the operators ^0, ^1, and ^2 and the quantitiesW2 andW3 are given as follows

^0 = ��� + !1 ��� + �
1 �2��2 + �#1 �4��4 , (B.3a)

^1 = ���1 + !1 ���1 + 2�
1 �2����1 + 4�#1 �4��3��1 , (B.3b)

^2 = ���2 + �
1 �2��21 + 6�#1 �4��2��21 , (B.3c)W2 = !�1B1B1� + �
�1B1B1�� + �#�1B1B1����+ �
�1B21� + �#�1B1�B1���, (B.3d)

W3 = !�1 (B1B2� + B1B1�1 + B2B1�)+ �
�1 (B1B2�� + 2B1B1��1 + B2B1��)+ �#�1 (B1B2���� + 4B1B1����1 + B2B1����)+ �
�1 (2B1�B2� + 2B1�B1�1)+ �#�1 (B2���B1� + 3B1���1B1�+B1���B2� + B1���B1�1)+ !��12 B21B1� + �
��12 B21B1�� + �#��12 B21B1����+ �
��1B1B21� + �#��1B1B1�B1���.

(B.3e)

�e equations are solved order-by-order up to �(;3) [12,
14, 56, 57] to arrive at an equation related to the com-
plex Ginzburg-Landau type for the perturbation amplitudeK(�1, �1, �2):�K��2 − ;−2#�K + � (
1 − 6O2#1) �2K��21 + (X2 + NX4) ffffKffff2K = 0,

(B.4)

whereL� = 2 (
�1 − O2#�1)(−4
1 + 16O2#1) , L� = −!�1� (−4O
1 + 16O3#1) ,X2 = �(7O4L�#�1 − O2L�
�1 − O22 
��1 + O42 #��1) − OL�!�1,
X4 = � (7O4L�#�1 − O2L�
�1) + OL�!�1 + O!��12 .

(B.5)

It should be remarked that in (B.4) an imaginary, apparently
convective term of the formNV �K��1 = 2NO� (
1 − 2O2#1) ;−1 �K��1 (B.6)

could be additionally considered on the le�-hand side of
(B.4) as done in Dandapat and Samanta [12] and Samanta
[65], provided that such a term is of O(;) and V < 0. Such a
term arises in the secular condition at�(;3) as a contribution
arising from one of the terms from ^1B1 at �(;2). �e
solution of (B.4) for a 
ltered wave in which the spatial
modulation does not exist and the di�usion term in (B.4)
becomes zero is obtained by considering K = Γ0(�2)L[−��(�2)�2].
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�is leads to a nonlinear ordinary di�erential equation for Γ0,
namely,hΓ0h�2 − NΓ0 hh�2 [_ (�2) �2] − ;−2#�Γ0 + (X2 + NX4) Γ30 = 0,

(B.7)

where the real and imaginary parts, when separated from
(37), give h [Γ0 (�2)]h�2 = (;−2#� − X2Γ20 ) Γ0, (B.8)h [_ (�2) �2]h�2 = X4Γ20 . (B.9)

If X2 = 0 in (B.8), the Ginzburg-Landau equation is
reduced to a linear ordinary di�erential equation for the
amplitude of a 
ltered wave. �e second term on the right-
hand side in (B.8) induced by the e�ect of nonlinearity
can either accelerate or decelerate the exponential growth
of the linear disturbance depending on the signs of #� andX2. �e perturbed wave speed caused by the in
nitesimal
disturbances appearing in the nonlinear system can be
modi
ed using (B.8).�e threshold amplitude ;Γ0 from (B.8)
is obtained as (when Γ0 is nonzero and independent of �2)

;Γ0 = √#�X2 . (B.10)

Equation (B.9) with the use of (B.10) gives

_ = #�X4;2X2 . (B.11)

�e speedW� of the nonlinearwave is nowobtained from (26)

by substituting K = Γ0L[−���2] and by using �2 = ;2�. �is gives
the nonlinear wave speed as

W� = #�
 + ;2_ = #�
 + #� X4X2 . (B.12)

C. Sideband Stability

�e sideband instability is analyzed by subjecting Γ�(�2) to
sideband disturbances in the form of (Δ ≪ 1) [12, 56, 57]K = Γ� (�2) + (ΔΓ+ (�2) L�	� + ΔΓ− (�2) L−�	�) L−���2 , (C.1)

in (B.4). Neglecting the nonlinear terms and separating the

coe�cients of ΔL�(	�−��2) and ΔL−�(	�−��2), the following set of
equations are derived (V = (2�O/;)(
1 − 2O2#1) < 0, c� =

;−2#�, and X1� = �(
1 − 6O2#1) < 0 since 
1 − O2#1 =
O(;2)):
hΓ+ (�2)h�2 = (NP + OV + c� + O2X1� − 2 (X2 + NX4) ffffΓ�ffff2)× Γ+ (�2) − (X2 + NX4) ffffΓ�ffff2Γ− (�2) , (C.2a)

hΓ− (�2)h�2 = (NP − OV + c� + O2X1� − 2 (X2 + NX4) ffffΓ�ffff2)× Γ− (�2) − (X2 + NX4) ffffΓ�ffff2 Γ+ (�2) , (C.2b)

where the barred quantities are the complex conjugates
corresponding to their counterparts. For convenience, the
above system is represented as

(hΓ+ (�2)h�2hΓ− (�2)h�2 ) = M(Γ+ (�2)Γ− (�2)) , (C.3)

whereM is a 2 × 2 matrix whose entries are�11 = NP + OV + c� + O2X1� − 2 (X2 + NX4) ffffΓ�ffff2,�22 = −NP − OV + c� + O2X1� − 2 (X2 − NX4) ffffΓ�ffff2,�12 = − (X2 + NX4) ffffΓ�ffff2, �21 = �12. (C.4)

Setting Γ+(�2) ∝ L��2 and Γ−(�2) ∝ L��2 , the eigenvalues
are obtained from |M − a�| = 0, and the stability of (22)
subject to sideband disturbances as �2 → ∞ demands thata < 0. �e eigenvalues are found as follows

a = 12 (tr (M) ± √tr2 (M) − 4 det (M)) . (C.5)

D. Bimodal Dynamical System

In order to analyze the stability of the bimodal dynamical
system, the 
lm thickness is expanded as a truncated Fourier
series (n�(�) is complex, and a bar above it designates its
complex conjugate)

ℎ (�, �) = 1 + 2∑
�=1

n� (�) L��	� + n� (�) L−��	� (D.1)

and is substituted in the evolution equation (10). A Taylor
series expansion is then sought to be about “1”, and the
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following coupled dynamical system is obtained from the

coe�cients of L�	� and L2�	� terms:

hh�n1 (�) = m111n1 (�) + m121n1 (�) n2 (�)+ n1 (�) (m131ffffn1ffff2 + m132ffffn2ffff2) , (D.2a)

hh�n2 (�) = m211n2 (�) + m221n21 (�)+ n2 (�) (m231ffffn1ffff2 + m232ffffn2ffff2) . (D.2b)

It should be remarked that the higher-order terms arising
while deducing (D.2a) and (D.2b) are neglected by assuming
that |n1| ≪ 1 and |n2| ≪ |n1|. �e coe�cients of the above
system are given bym111 = � (O2
1 − O4#1) − NO!1,m211 = � (4O2
1 − 16O4#1) − 2NO!1,m121 = � (O2
�1 − 7O4#�1) − NO!�1,m221 = � (2O2
�1 − 2O4#�1) − NO!�1,m131 = �2 (O2
��1 − O4#��1 ) − N2O!��1 ,m231 = � (4O2
��1 − 16O4#��1 ) − 2NO!��1 ,m132 = � (O2
��1 − O4#��1 ) − NO!��1 ,m232 = � (2O2
��1 − 8O4#��1 ) − NO!��1 .

(D.3)

�e complex conjugates occurring in system (D.3) can

be avoided by representing n�(�) = m�(�)L���(�) in polar
form, where m�(�) and i�(�) are real functions such that � =1, 2. Using polar notation, the following three equations are
obtained:

hm1 (�)h� = p1 (m1 (�) , m2 (�) , k (�))= _111m1 (�) + [_121 cosk (�) + c121 sink (�)]× m1 (�) m2 (�) + m1 (�) [_131m21 (�) + _132m22 (�)] ,
(D.4a)hm2 (�)h� = p2 (m1 (�) , m2 (�) , k (�))= _211m2 (�) + [_221 cosk (�) − c221 sink (�)]× m21 (�) + m2 (�) [_231m21 (�) + _232m22 (�)] , (D.4b)

hk (�)h� = p3 (m1 (�) , m2 (�) , k (�))= O!��1 (m21 − m22) + 2 [c121 cosk (�) − _121 sink (�)]× m2 (�) − [_221 sink (�) + c221 cosk (�)] m21 (�)m2 (�) .
(D.4c)

While the coe�cient of L���(�) term yields (D.4a) and
(D.4b), (D.4c) is obtained from the two equations which

result as the coe�cient of NL���(�) term with the imposition
that the phase relationship is de
ned as k(�) = 2i1(�) − i2(�).
�e terms _��	 and c��	 are real numbers and represent the real
and imaginary parts of a typical m��	 term in (D.3) such thatN, O = 1, 2 and � = 1, 2, 3.
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