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ABSTRACT

We present a novel hardware device that combines a reg-

ular microphone with a bone-conductive microphone. The

device looks like a regular headset and it can be plugged

into any machine with a USB port. The bone-conductive

microphone has an interesting property: it is insensitive to

ambient noise and captures the low frequency portion of

the speech signals. Thanks to the signals from the bone-

conductive microphone, we are able to detect very robustly

whether the speaker is talking, eliminating more than 90% of

background speech. Furthermore, by combining both chan-

nels, we are able to significantly remove background speech

even when the background speaker speaks at the same time

as the speaker wearing the headset.

1. INTRODUCTION

One of the most difficult problems for an automatic speech

recognition system is in dealing with noises. When there are

multiple people speaking, it is difficult to determine whether

the captured audio signal is from the speaker or from other

people. In addition, the recognition error is much larger

when the speech is overlapped with other people’s speech.

Because the speech is non-stationary, it is extremely hard

to remove the background speech from just one channel of

audio signals.

In this paper, we propose a hardware device that com-

bines regular microphone (air-conductive microphone) with

a bone-conductive microphone with the purpose of handling

noisy environment. The device is designed in such a way

that people wear it just like a regular headset, and it can

be plugged into any machine with a USB port. Compared

to the regular microphone, the bone-conductive microphone

is insensitive to ambient noise but it only captures the low

frequency portion of the speech signals. Because it is insen-

sitive to noise, we use it to determine whether the speaker is

talking or not. And we are able to eliminate more than 90% of
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the background speech. Since the bone-conductive signals

only contain low frequency information, it is not good to di-

rectly feed the bone-conductive signals to an existing speech

recognition system. We instead use the bone-conductive

signals for speech enhancement. By combining the two

channels from the air- and bone- conductive microphone,

we are able to significantly remove background speech even

when the background speaker speaks at the same time as the

speaker wearing the headset.

2. RELATED WORK

There has been a lot of work on using cameras to help with

speech detection and recognition. Researchers have used

both visual and audio information to determine whether the

user is speaking or not [1, 2]. DeCuetors et al [3] used

both video and audio signals for speaker intent detection.

Chen et al [4] and Basu et al [5] used visual information to

improve speech recognition in noisy environments.

Graciarena et al [6] combined the standard and throat

microphones in the noisy environment. They used a prob-

ablistic optimum filter mapping algorithm to estimate the

clean speech features from the speech features of both mi-

crophones. There are three main differences between their

work and ours. One difference is that our hardware is differ-

ent. Our hardware has the look and feel of regular headset

while their hardware requires wearing two separate devices:

one on the neck and a regular microphone on the face. The

second difference is that we have developed an algorithm to

detect speech and modulate the regular microphone signals

based on the speech detection results. As a result, our head-

set can be used with any existing speech recognition prod-

ucts and it removes the noise between speeches. The third

difference is in the speech enhancement algorithm. Their al-

gorithm requires a database of simultaneous clean and noisy

recordings. It achieves its best performance only when the

noise condition of the test data matches the noise condition

of the training data. It didn’t report any results on simul-

taneous speech environment. In comparison, our algorithm

only requires clean training data. We rely more on the bone

sensor, which is insensitive to noise, to reconstruct the clean
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speech signals. Our algorithm is targeted at the simultaneous

speech environment.

3. AIR- AND BONE-CONDUCTIVE INTEGRATED

MICROPHONES

Fig. 1. The Air- and Bone-Conductive Integrated Micro-

phone.

When we speak, there is vibration on the bones of the

head. The bone-conductive sensors, when pressed again the

bones, can capture the bone vibrations. The bone sensors are

in general insensitive to noise. Figure 1 shows a prototype

of our Air- and Bone-Conductive microphone. It is the same

as a regular headset except that we added a bone-conductive

sensor. Since the regular microphone input on the audio

cards do not take stereo data, we use a USB HUB to combine

the two channels into a stereo data. We can then plug this

device into any machine which has a USB port.

Figure 2 shows an audio stream recorded by the inte-

grated microphone. There are two people sitting about 3

feet apart. One person wears the microphone. The other

person acts as a noise generator. The top row of Figure 2 is

the signal from the regular microphone. The bottom is the

signal from the bone sensor. We can see that it is much easier

to differentiate the speech and noise from the bone sensor

than from the regular microphone. Therefore, we can use

the bone sensor for speech detection.

Figure 3 shows the spectral view of each channel ranging

from 0 to 8KHz. Whereas the regular microphone contains

wideband speech suitable for recognition, the bone sensor

only contains narrowband speech. Therefore if we simply

feed the bone sensor signals to an existing speech recognition

system, the results would not be good.

If enough transcribed training data were available, one

could build a speech recognition engine specifically targeted

for bone signals. The problem is that there is no such data

available.

We are taking a more practical approach: using the bone

sensor to enhance the wideband noisy speech for use with an

existing speech recognition system. Since the bone sensor

signals contain very little noise, we can combine the bone

sensor signals with the close talk microphone signals to ob-

tain a better estimate of the clean speech.
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Fig. 2. An audio stream recorded by the bone microphone.

Top: the regular microphone. Bottom: the bone sensor

Fig. 3. The spectral view (0–8KHz). Top: the regular mi-

crophone. Bottom: the bone sensor.
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4. SPEECH DETECTION
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Fig. 4. Histogram of the bone sensor log energy

Figure 4 shows a histogram of the log energy of the bone

sensor signals in Figure 2. We can see that the speech sig-

nals and the non-speech signals are separated very well. So

we choose to use a moving-window histogram approach for

speech detection. For each frame, we first compute the his-

togram of the audio data prior to this frame with a fixed

window size (notice that we compute the histogram of the

energy instead of the log energy). In our implementation,

we use the window size of 1 minute. To reduce computation

time, the histogram is updated incrementally for each frame.

The second step is to find the valley after the first peak and

use the valley as the separator.

Denote d to be the energy separator. Given any frame,

let e denote its energy. Set r = e/d. The speech confidence

for this frame is set to be

p =







0 : r < 1
r−1
α−1 : 1 ≤ r ≤ α

1 : r > α
(1)

where α is a user specified parameter which defines the grace

transition period between the two states. We choose α = 2
in our implementation.

Finally we smooth out p by taking the average of the

current frame with the previous 4 frames.

4.1. Removal of non-overlapping noises

We use the speech confidence p to modulate the audio signals

from the regular microphone to remove the noises between

speeches. The modulation factor f is set to be f = h(p)
where h(x) is a Hermite polynomial with the property that

h(0) = 0, h(1) = 1 and its derivatives at 0 and 1 are both

H D S I N

x 227 8 57 213 292

x̃ 227 5 60 21 292

Table 1. The performance of the noise removal with the

integrated microphone.

zeros. For each sample x of the regular microphone signal

in this frame, its modulated value is x̃ = f ∗ x.

In this way, our integrated microphone can be directly

used with any existing speech recognition system. To mea-

sure the performance of the noise removal algorithm, we

used our new microphone with Microsoft’s speech recogni-

tion system. The setup is as follows. We had two people

each reading an article from a newspaper. One person wore

the integrated microphone while the other person acted as

a noise generator. The two people spoke alternatively. We

recorded 5 minutes of data. Figure 2 shows a portion of the

recorded data.

Table 1 shows the recognition results. The top row x is

the result obtained by feeding the regular microphone signals

directly to the speech recognition system. The bottom row

x̃ is the result by feeding the modulated signal to the speech

recognition system. N is total number of words and H is

the number of correctly recognized words. D, S, and I are

deletion, substitution, and insertion errors, respectively. We

can see that the insertion error is reduced by 90% while it

does not increase the deletion or substitution errors.

5. SPEECH ENHANCEMENT

In this section, we describe how to use the bone sensor for

speech enhancement in an environment with highly non-

stationary noises such as when there are people talking in

the background.

Figure 5 shows the graphical model of the integrated mi-

crophone. Here we make the approximation that bone sensor

is not affected by the noise at all. b and y are observations.

y is corrupted by the noise. There is a channel distortion

from from x to b. Basically b only contains frequency up to

4KHz. The speech enhancement problem becomes recover-

ing x given b and y.

Our idea is to first predict x from b, and then combine

both b and y to obtain the final estimate of x. To predict

x from b, we use a technique which has some similarity to

SPLICE [7], which is a frame-based noise removal algorithm

for cepstral enhancement in the presence of additive noise.

Instead of learning the mapping from the corrupted speech

y to clean speech x as in the original SPLICE algorithm, we

learn the mapping from bone sensor signals b to clean speech

x.
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Fig. 5. The graphical model

5.1. SPLICE training

We use a piecewise linear representation to model the map-

ping from b to x in the cepstral domain.

p(x, b) =
∑

s

p(x|b, s)p(b|s)p(s) (2)

p(x|b, s) = N(x; b + rs,Γs) (3)

p(b|s) = N(b; µb,Γb) (4)

The bone sensor model p(b) contains 128 diagonal Gaus-

sian mixture components, and is trained using standard EM

techniques, the parameters rs of the conditional pdf p(x|b, s)
can be trained using the maximum likelihood criterion.

rs =

∑

n p(s|bn)(xn − bn)
∑

n p(s|bn)
(5)

Γs =

∑

n p(s|bn)(xn − bn − rs)(xn − bn − rs)
T

∑

n p(s|bn)
(6)

p(s|bn) =
p(bn|s)p(s)

∑

s p(bn|s)p(s)
(7)

5.2. Clean Speech Estimation

Assuming the noise is additive, in the cepstral domain we

have y = x + C ln(1 + eC−1(n−x)), where C is the DCT

matrix and n is the noisy cepstral [8]. Since the noise estima-

tion in the cepstral domain involves highly nonlinear process,

we handle it in the power spectral feature domain. Assum-

ing that the noise level in the b is negligible and the additive

noise is uncorrelated with the speech signal, the problem can

then be formulated as follows:

Sy(ω) = Sx(ω) + Sn(ω) (8)

Sx(ω) = f(Sy(ω), Sb(ω)) (9)

Sx(ω) = H(ω)Sy(ω) (10)

where Sy , Sx, Sb and Sn are the power spectrum for noisy

speech , clean speech, bone signal, and noise, respectively,

and f(z) is a nonlinear mapping function. Our goal is to find

the optimal H (the Wiener filter). In the following, we omit

ω for convenience.

Given two observations Sy and Sb under Gaussian ap-

proximation, we use MMSE estimator to find Ŝx:

Ŝx = (Σ−1
n + Σ−1

x|b)
−1[Σ−1

n (Sy − µn) + Σ−1
x|bŜx|b]

(11)

where Ŝx|b = eC−1x̂

x̂ = b +
∑

s

p(s|b)rs

Σx|b = V ar(Sx|b)

µn = E[Sn], Σn = V ar[Sn]

µn and Σn are estimated during non-speech section, which

is detected by our speech detection algorithm.

Given Sy and Ŝx, the estimated Wiener filter Ĥ can be

calculated as:

Ĥ =
Ŝx

Sy

(12)

6. EXPERIMENT RESULTS

The speech enhancement is an on-going work. Here we show

some preliminary results. We collected about 150 words of

clean speech of a male wearing the integrated microphone.

We used these data for the SPLICE training. We then used

a set of 24 words which are not in the training set as the

test data. The test data is corrupted with another person’s

speech. We then apply our speech enhancement algorithm

to estimate the clean speech.

To measure the quality of the reconstruction result, we

conducted mean opinion score (MOS) [9] comparative eval-

uations. Table 2 shows the score criteria. To ensure a fair

comparison, the non-overlapping noises (the noises between

each two words) in the corrupted data are removed prior to

MOS evaluation. The 24 words are divided into 4 groups

each consisting of 6 words. The corrupted audio files and

enhanced audio files are mixed randomly, and then played to

the evaluators (the people who gave the scores) with desktop

speakers. There are 4 evaluators and they do not know which

files are corrupted and which ones are enhanced results. Ta-

ble 3 shows the MOS results for the 0dB and 10dB cases.

We observe that the enhanced data consistently gets better

scores for all the evaluators. In the 0dB case, the improve-

ment is more significant. Figure 6 shows the spectral view of

the enhancement results. The top row is the corrupted data.

The middle row is the result after enhancement. The bottom

row is the clean speech (the ground truth). Clearly some of
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the background speech are removed by our enhancement al-

gorithm. For example, background speeches around 1KHz

between 0.8s and 1.0s and around 5KHz and 7KHz between

0.2s and 0.4s are significantly reduced by our enhancement

algorithm.

Score Impairment

5 (Excellent) Imperceptible

4 (Good) (Just) Perceptible but not Annoying

3 (Fair) (Perceptible and) Slightly Annoying

2 (Poor) Annoying (but not Objectionable)

1 (Bad) Very Annoying (Objectionable)

Table 2. MOS score criteria

before enhancement after enhancement

0dB 1.8 2.4

10dB 3.5 3.8

Table 3. MOS result. Each score in the table is averaged

over 4 people and 4 different groups of test data.

7. CONCLUSION

We have presented an Air- and Bone-Conductive Integrated

Microphone. This new hardware device has the look and

feel of a regular headset. We have developed algorithms to

use this new device for robust speech detection and speech

enhancement in highly non-stationary noisy environment.

We have shown that this new device can reduce most of

the insertion errors between speeches without adding dele-

tion or substitution errors. We also showed that this device

can be used effectively for speech enhancement with highly

non-stationary noises such as when people talking in the

background.

8. FUTURE WORK

This is an on-going project. The reported results, although

very encouraging, are preliminary. In the future, we would

like to further improve our speech enhancement algorithm.

We are planning on collecting more training data to improve

the mapping from b to x. We would like to better estimate

the noise by using a more sophisticated noise estimation

algorithm.
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Fig. 6. The spectral view of the enhancement results. Top: the corrupted data. Middle: the enhancement result. Bottom: the

clean speech.
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