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[1] The unsteady state drainage of water from a vertical sand column with and without a
finer layer on the top was studied theoretically and experimentally to investigate the airflow
generated by the finer layer. The sand column, saturated at its lower portion and initially
in the condition of hydrostatic equilibrium, is drained at its bottom at constant head. The
results show that significant vacuum can be generated in the vadose zone of the column with
a finer layer on the top. The vacuum increases quickly in the earlier stage of the drainage,
reaches a maximum, and gradually becomes zero. Because of the effect of the vacuum in
the vadose zone, water is held in and the cumulative outflow from the column with
the finer layer is much smaller than without the layer during most of the drainage process.
Ordinary differential equations (ODE), which require only saturated hydraulic properties
of the porous media, are derived to predict the location of the surface of saturation and
vacuum in the vadose zone in air‐water two‐phase flow. The solutions of ODE match very
satisfactorily with the experimental data and give better results than TOUGH2.
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1. Introduction

[2] The drainage of fluids from homogeneous porous
media has been studied for a long time. Studies may be
classified into two groups: the saturated flow approach and
the saturated‐unsaturated flow approach.
[3] The first group focuses on water flow below the water

table only. Youngs [1960] derived an approximate equation
describing the cumulative outflow based on the capillary tube
analogy and a constant drainable porosity. Arbhabhirama
and Ahmed [1973] considered the effect of pore size distri-
bution in the capillary tube model and derived approximate
solutions for nonsteady column drainage. On the basis of a
concept of instantaneous and complete drainage at the water
table, Ligon et al. [1962] derived equations to predict the
drawdown of the surface of saturation in the column and the
rate of outflow. Kroszynski [1975] presented a more detailed
list of such kind of work.
[4] The second group regards the water both above and

below the water table as a continuum and uses the Richards’
equation [Richards, 1931] to describe the flow process.
Fujioka and Kitamura [1964] assumed a constant moisture
diffusivity to linearize the Richards’ equation and derived
an approximate solution for hydraulic head distribution in
the column. Kroszynski [1975] derived an approximate ana-
lytical solution for predicting the pressure head and the
drawdown of the surface of saturation. Many researchers
[e.g., Philip, 1960; Sander et al., 1988; Ross and Parlange,

1994; Parlange et al., 1997; Hogarth and Parlange, 2000;
Menziani et al., 2007] derived analytical solutions to the
Richards’ equation to investigate water flow in an unsaturated
zone. Triadis and Broadbridge [2010] systematically sum-
marized analytical solutions of the Richards’ equation.
[5] Numerical solutions for the drainage of vertical soil col-

umns were given by a number of researchers, such as Watson
[1967], Hornberger and Remson [1970], and Kroszynski
[1975]. A lot of numerical algorithms have been derived to
solve the Richards’ equation for saturated‐unsaturated flow
[e.g., Celia et al., 1990; Kirkland et al., 1992; Clement et al.,
1994; Rathfelder and Abriola, 1994; Babajimopoulos, 2000;
Kavetski et al., 2002; Casulli and Zanolli, 2010]. A detailed
list of these mathematical models was given by Clement et al.
[1994]. A full list of numerical methods to solve the Richards’
equation is given by Kosugi [2008], Casulli and Zanolli
[2010], and Juncu et al. [2010].
[6] The drainage of fluids from porous media is tradition-

ally described by the single‐phase water flow approach, and
the air phase is ignored. However, there are some situations
where the role of the air phase cannot be neglected. Bouwer
and Rice [1978] concluded that delayed release of pore
water from a pumped, unconfined aquifer can be caused by
restricted air movement in the vadose zone due to layers of
high water content. Vachaud et al. [1973] observed that the
pressure in the stratified unsaturated zone is significantly
different from the external atmospheric pressure and con-
cluded that the impact of air must be taken into account in
determining the soil water suction. They suggested that the
flow equations must be written in terms of two‐phase
immiscible fluid flow. Under these circumstances, the single‐
phase water flow theory is inadequate and the two‐phase
immiscible fluid flow approach must be used to interpret the
drainage process. Jiao and Guo [2009] conducted a theoret-
ical study of pumping‐induced airflow in an unconfined
aquifer capped with a low‐permeability layer and concluded
that if airflow caused by the low‐permeability cap was
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ignored, the errors in estimated drawdown and then aquifer
parameters could be significant.
[7] Multiphase flow in porous media has been studied for

more than 60 years. There has been a lot of work on two‐
phase flow in porous media since the 1970s in both soil water
hydrology and oil reservoir engineering. A full list of such
work is impossible herein. Morel‐Seytoux [1973] presented
an excellent development of the various forms of the multi-
phase flow governing equations. Parker [1989] andMuccino
et al. [1998] presented comprehensive reviews on multiphase
flow in porous media. The various two‐phase flow models
were reviewed by Vauclin [1989]. Solutions for simultaneous
flow of air and water in the vadose zone are mainly on
infiltration into the vadose zone with air effects [e.g., Touma
et al., 1984; Morel‐Seytoux and Billica, 1985; Touma and
Vauclin, 1986; Weir and Kissling, 1992; Wang et al., 1997;
Cueto‐Felgueroso and Juanes, 2008].Weeks [2002] andGuo
et al. [2008] investigated the effects of airflow induced by
rain infiltration on water level changes in a well in an
unconfined aquifer. Jiao and Li [2004] and Guo and Jiao
[2008] developed numerical solutions for air‐water two‐
phase flow caused by periodic water level fluctuations. Li and
Jiao [2005] derived an analytical solution for airflow in the
unsaturated zone induced by fluctuating water table.
[8] The numerical simulation of multiphase flow has

attracted more attention than experimental work [Kueper and
Frind, 1991]. A number of numerical simulators have been
developed to simulate multiphase flow [e.g., Faust, 1985;
Kuppusamy et al., 1987; Faust et al., 1989; Kueper and
Frind, 1991; Celia and Binning, 1992; Class et al., 2002;
Amaziane et al., 2010]. Well‐documented software is also
available, such as TOUGH2 [Pruess et al., 1999] and NAPL
[Guarnaccia et al., 1997]. Miller et al. [1998] reviewed the
modeling of multiphase flow and transport in heterogeneous
porous media. Niessner and Hassanizadeh [2008] developed
a new numerical model for two‐phase flow in porous media
including fluid‐fluid interfacial area. Hoteit and Firoozabadi
[2008] considered capillary heterogeneity in numerical
modeling of two‐phase flow in heterogeneous porous media.
On the basis of the immiscible two‐phase flow of water and
oil in saturated heterogeneous soil columns, Aggelopoulos
and Tsakiroglou [2009] developed a multiple flow path
model for immiscible displacement in heterogeneous soil
columns.
[9] The governing equations of two‐phase flow are

strongly nonlinear, so analytical solutions incorporating fully
the effects of gravity and capillarity in transient multiphase
flow through heterogeneous porous media are not tractable
[Kueper and Frind, 1991]. Buckley and Leverett [1942] first
derived a classical solution for one‐dimensional, horizontal
two‐phase flow without capillary forces. McWhorter and
Sunada [1990] derived solutions for the horizontal, tran-
sient flow of two viscous, incompressible fluids, in which the
effect of capillarity was fully incorporated.Fokas and Yortsos
[1982] derived an exact solution for one‐dimensional two‐
phase flow in a semi‐infinite, horizontal reservoir for a con-
stant flux boundary condition. Rogers et al. [1983] extended
the solution of Fokas and Yortsos [1982] to take gravitational
effects into consideration. Sander et al. [1993] derived an
exact solution to the one‐dimensional diffusion‐convection
equation for two‐phase flow in porous media with Dirichlet
boundary conditions. Sander et al. [2005] derived exact
solutions to radially symmetric two‐phase flow into an infi-

nite medium under a constant flux boundary condition. More
recently, on the basis of the work of McWhorter and Sunada
[1990], Fučík et al. [2007] derived a semianalytical solution
for one‐dimensional two‐phase flow through a homogeneous
porous medium.
[10] The objective of this study is to investigate experi-

mentally and theoretically the effects of air phase on water
flow during the drainage of a vertical sand column. Cumu-
lative outflow and vacuum in the vadose zone of the column
were measured. An attempt is made to derive solutions for
one‐dimensional, vertical air‐water two‐phase flow problem
and use the solutions to interpret the experimental data.

2. Mathematical Model

2.1. Saturated‐Unsaturated Flow

[11] The physical system first consists of a vertical cylin-
drical sand column without the finer layer on the top
(Figure 1). Flow within this column takes place in the vertical
direction only. The initial position of the water table is within
the coarse sand layer, and thus a vadose zone exists. The
column is allowed to drain at its bottom at constant head.
[12] The governing equation and auxiliary conditions are

@�

@t
¼ @

@z
K
@y
@z

� �
þ @K

@z
ð1aÞ

y z; 0ð Þ ¼ s0 � z; 0 � z � L2 ð1bÞ

y 0; tð Þ ¼ h0; t > 0 ð1cÞ

@y
@z

L2; tð Þ ¼ �1; t > 0 ð1dÞ

where � is volumetric water content, K is hydraulic conduc-
tivity, y is the pressure head or capillary pressure head, z is
the vertical coordinate given height above the bottom of the
column as datum, t is time, s0 is the initial position of the
water table, L2 is the total length of the sand column, and h0 is
the constant hydraulic head at the bottom of the column.
[13] Equation (1a) is the governing equation for one‐

dimensional vertical saturated‐unsaturated flow [e.g., Hillel,
1980; Allen and Murphy, 1986; Celia et al., 1987]. The
mixed form of Richards’ equation is used for mass con-
servation [Celia et al., 1990]. Equation (1b) is the initial
condition which gives the initial distribution of pressure
head in the column. Equation (1c) represents the constant‐
head boundary condition at the bottom of the column.
Equation (1d) is the no‐flow boundary condition at the col-
umn top.

2.2. Air‐Water Two‐Phase Flow Approximate
Solutions

2.2.1. Water Flow
[14] A finer layer is then placed on the top of the sand

column (Figure 1). The rate of discharge of water per unit
cross‐sectional area at any given time is given by Darcy’s
law:

qw ¼ Ks
h� ha � h0

h
; ð2Þ

KUANG ET AL.: AIR AND WATER FLOWS IN A VERTICAL COLUMN W04506W04506

2 of 12



where qw is the rate of discharge per unit cross‐sectional area,
Ks is the saturated hydraulic conductivity of the coarse sand,
h is the saturated column length at any given time (i.e., the
position of the surface of saturation), and ha is the vacuum in
the vadose zone expressed as a height of water column of a
reference water density, which is defined as

ha ¼ pa0 � pa
�w0g

; ð3Þ

in which pa0 is the atmospheric pressure, pa is the air pressure
in the vadose zone of the column, rw0 is the reference water
density, and g is the gravitational acceleration. It is assumed
that there is no vertical air pressure gradient in the vadose
zone in the coarse sand. The vertical drainage from the fine
sand layer is also neglected. The rate of discharge per unit
cross‐sectional area is equal to the falling rate of the surface of
saturation multiplied by the specific yield of the coarse sand
[e.g., Ligon et al., 1962]:

qw ¼ �Sy
dh

dt
; ð4Þ

where Sy is the specific yield of the coarse sand, which is
approximated as a constant.

[15] In order to solve for h, equating (2) and (4) leads to

dh

dt
¼ �Ks

Sy

h� ha � h0
h

: ð5Þ

Equation (5) is the ODE describing the time variation of the
surface of saturation. The initial condition is

h 0ð Þ ¼ s0: ð6Þ

2.2.2. Airflow
[16] The governing equation for vertical one‐dimensional

airflow is given by generalized Darcy’s law for multiphase
case

qa ¼ � kkra
�a

@pa
@z

þ �ag

� �
; ð7Þ

where qa is the volumetric flux of air, k is the intrinsic per-
meability of the porous medium, kra is the relative perme-
ability of the porousmedium to air (assumed to be a constant),
ma is the dynamic viscosity of air, and ra is the density of air.
Compared to the force caused by pressure gradients, the force
due to gravity is much smaller so it can be neglected under

Figure 1. Schematic diagram of the sand column with and without the finer layer.
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most conditions [Charbeneau, 2000]. Hence, equation (7)
can be simplified to

qa ¼ � kkra
�a

@pa
@z

: ð8Þ

From (8), the mass flux of air for a column of cross‐sectional
area A is [Charbeneau, 2000]

mf ¼ �aqaA ¼ ��aA
kkra
�a

@pa
@z

: ð9Þ

In order to integrate (9), the equation of state ra(pa) is needed.
Here air is assumed to be an ideal gas. Under isothermal
condition, Boyle’s law holds and

�a ¼ �a0
pa
pa0

; ð10Þ

where ra0 is the air density at reference state (the local
atmospheric condition and temperature). With the equation of
state given by (10), equation (9) can be integrated from the
fine sand surface to its bottom to find

mf ¼ �A
kkra
�a

�a0
pa0

p2a0 � p2a
2L1

; ð11Þ

where L1 is the thickness of the fine sand layer, which is
assumed to be relatively thin so that kra can be approximated
as a constant. The surface of the fine sand layer is in contact
with atmosphere, so the air pressure at the surface is atmo-
spheric pressure pa0. From (3),

pa ¼ pa0 � �w0gha; ð12Þ

with ha being a small correction term (i.e., rw0gha � pa0).
Substitute (12) into (11), and expanding and keeping only the
leading order term for ha leads to

mf ¼ �A
kkra
�a

�a0
L1

�w0gha: ð13Þ

Equation (13) describes the air mass flux through the fine
sand layer from the external atmosphere into the coarse sand
layer. The minus sign indicates that the flow is downward.
It should be noted that under this condition, the air mass flux
mf is a linear function of the vacuum ha.
[17] The mass of air in the vadose zone at any given time is

ma ¼ �aA L2 � hð ÞSy: ð14Þ

Substituting the equation of state (10) into (14), and then
differentiating the resulting equation with respect to t leads to

dma

dt
¼ �a0

pa0
ASy �pa

dh

dt
þ L2 � hð Þ dpa

dt

� �
: ð15Þ

Substituting (3) into (15) leads to

dma

dt
¼ �a0

pa0
ASy�w0g � ha0 � hað Þ dh

dt
� L2 � hð Þ dha

dt

� �
; ð16Þ

where the atmospheric pressure pa0 is expressed as a height of
water column of the reference water density, which is written
as

ha0 ¼ pa0
�w0g

: ð17Þ

Equation (16) is the rate of change of the air mass in the
vadose zone in the column. It must be equal to the air mass
flux into the column, i.e., the absolute value of (13). Hence,
equating (16) and the absolute value of (13) and rearranging
leads to

dha
dt

¼ � ha0 � ha
L2 � h

dh

dt
� kkra

�a

pa0
L1Sy

ha
L2 � h

: ð18Þ

The derivative dh/dt in the first term of the right‐hand side
of (18) can be replaced by (5). The resulting equation is

dha
dt

¼ Ks

Sy

ha0 � ha
L2 � h

h� ha � h0
h

� kkra
�a

pa0
L1Sy

ha
L2 � h

: ð19Þ

Equation (19) is the ODE describing the time variation of
vacuum in the vadose zone. The initial condition is

ha 0ð Þ ¼ 0: ð20Þ

Equations (5) and (19) constitute the set of governing equa-
tions describing the flow of air and water.
[18] Substitute (12) into (11) and expand, and if both the

terms are kept, then the air mass flux changes into

mf ¼ �A
kkra
�a

�a0
L1

�w0gha 1� ha
2ha0

� �
: ð21Þ

Equating the absolute value of (21) and (16) and then repla-
cing dh/dt by (5) leads to

dha
dt

¼ Ks

Sy

ha0 � ha
L2 � h

h� ha � h0
h

� kkra
�a

pa0
L1Sy

ha
L2 � h

1� ha
2ha0

� �
:

ð22Þ

Then the set of governing equations becomes (5) and (22).

2.3. Air‐Water Two‐Phase Flow Numerical Solution

[19] The basic mass and energy balance equation describ-
ing air‐water two‐phase flow can be written in the general
form [Pruess et al., 1999]

d

dt

Z
Vn

M�dVn ¼
Z
Gn

F� � ndGn þ
Z
Vn

q�dVn: ð23Þ

The integration is over an arbitrary subdomain Vn of the
flow system under study, which is bounded by the closed
surface Gn. The quantity M appearing in the accumulation
term (left‐hand side) represents mass or energy per volume,
with � labeling the mass component of air or water. F denotes
mass flux and q denotes sinks and sources. The n is a normal
vector on surface element dGn, pointing inward into Vn.
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[20] The general form of the mass accumulation term is

M� ¼ �
X
�

S���X
�
� ; ð24Þ

where � is porosity, Sb is the saturation of phase b (i.e., the
fraction of pore volume occupied by phase b), rb is the
density of phase b, and Xb

� is the mass fraction of component
� present in phase b. The total mass of component � (air or
water) is obtained by summing over the fluid phase b (liquid
or gas).
[21] Advective mass flux of a component (air or water) is a

sum over phases, which takes the form

F� ¼
X
�

X �
� F�; ð25Þ

and individual phase fluxes are given by a multiphase version
of Darcy’s law:

F� ¼ ��u� ¼ �k
kr���
��

rP� � ��g
� �

; ð26Þ

where ub is the Darcy velocity (volume flux) in phase b,
krb is relative permeability to phase b, mb is viscosity, Pb is
the fluid pressure in phase b, and g is the vector of gravita-
tional acceleration. The pressures in liquid phase (Pl) and gas
phase (Pg) are related via the capillary pressure Pc(≤0):

Pc ¼ Pl � Pg: ð27Þ

3. Experiments

3.1. Experimental Setup

[22] For saturated‐unsaturated flow, a vertical column of
homogeneous coarse sand was drained at its bottom at con-
stant head. For air‐water two‐phase flow, a thin fine sand
layer was placed at the top of the coarse sand and the column
was drained in the same manner. The experimental sequence
is as following: (1) falling‐head test to determine the saturated
hydraulic conductivity of the coarse sand; (2) constant‐
head drainage experiment for saturated‐unsaturated flow;
(3) falling‐head test to determine the saturated hydraulic
conductivity of the fine sand; and (4) constant‐head drainage
for air‐water two‐phase flow. In the falling‐head tests, the
water level in the column was observed. In the pair of con-
stant‐head drainage experiments, cumulative outflow and
vacuum in the vadose zone were measured.
[23] The experimental setup consisted of a PVC pipe of

104 cm length and 9.5 cm inner diameter with coarse artificial
sand to a height of 80 cm (Figure 1), after placing a 4.5 cm
layer of gravel at the bottom to act as a drain. A plastic tube
was placed at the bottom of the column and connected to a
constant‐head reservoir, the height of which can be adjusted.
It was also used to saturate the column from below. Another
PVC pipe (water pipe in Figure 1), 122 cm long and 4.2 cm
inner diameter, was used to collect cumulative outflow of
water from the column. There was another plastic tube that
connected the constant‐head reservoir to the water pipe. A U
tube was placed 10 cm below the coarse sand surface to
measure the vacuum in the vadose zone. The fluid in the U

tube is tap water, which is the same as the water used to
perform the drainage experiment. Two PC cameras, which are
connected to different computers, were used to film the water
levels in the water pipe and the U tube. After the drainage
experiment, data were acquired from the video files in the
computer.

3.2. Experimental Procedure

[24] Close the valve between the U tube and the column
(valve 1). The column was first saturated slowly from below
to a certain distance above the coarse sand surface (Figure 1).
This was accomplished by raising the constant‐head reservoir
and adding water to it. Then close the valve at the bottom of
the column (valve 2) and lower the constant‐head reservoir
to a specified position. Turn on one computer and one PC
camera to film the water level in the column. A falling‐head
test began by opening valve 2. When the water level was
near the coarse sand surface, close valve 2 and save the video
file.
[25] After the falling‐head test, the water level in the col-

umn was lowered very slowly to z = 60 cm by adjusting the
constant‐head reservoir (Figure 1). After the water level was
held at this specified height for 50 min so that the column was
in hydrostatic equilibrium, close valve 2. Lower the constant‐
head reservoir further to z = 30 cm. Open valve 1. The two PC
cameras and computers were both used to film the water
levels in the water pipe and the U tube. The drainage exper-
iment commenced at the moment when valve 2 was opened.
The experiment was continued until the water level in the
water pipe was static. Save the video files.
[26] When the above two experiments were completed, a

fine sand layer of 2 cm thickness was placed on the surface of
the coarse sand. To allow air to escape from the sand during
saturation of the column from below, an air vent was placed in
the column just below the fine sand layer (Figure 1). Close
valve 1. Again, the column was saturated from below very
slowly. When water came out of the air vent, close it and
the saturation process continued until water level reached a
specified height above the fine sand surface. The constant‐
head drainage experiment for air‐water two‐phase flow was
performed. A photo of the arrangement of the equipment
is shown in Figure 2. Lower the water level in the column
to z = 60 cm by adjusting the constant‐head reservoir in the
same manner as described in experiment 2. The air vent was
opened when the water table dropped to below the fine sand
layer. The following procedures were the same as that in
experiment 2. During the experiment, the temperature was
about 25°C, and the average atmospheric pressure was about
100,439.5 Pa.
[27] The saturated hydraulic conductivity of the fine sand

was determined separately using a falling‐head permeameter.
The inner diameter of the permeameter is 4.5 cm, and the
sample length in the permeameter is 19.5 cm.
[28] The soil‐water characteristic curves of the fine and

coarse sands were determined separately. The soil‐water
characteristic curve of the fine sand was measured using a
pressure plate apparatus. The soil‐water characteristic curve
of the coarse sand was measured based on the approach
described by Lei et al. [1988] due to its coarse texture. When
the experiment reached equilibrium, the sample was then
removed, weighed, and oven‐dried to determine the water
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content. The bulk density of both the fine and coarse sands
were also determined by the method described by Tan [2005].

4. Numerical Methods

4.1. Saturated‐Unsaturated Flow

[29] The problem formulated in (1) was solved numerically
by the finite difference scheme of Celia et al. [1990], which
was proved to be accurate with perfect mass conserva-
tion [Celia et al., 1990; Pinder and Celia, 2006; Kosugi,
2008]. The soil‐water characteristic curve for the coarse sand
was chosen as the van Genuchten model [van Genuchten,
1980]

� yð Þ ¼ �r þ �s � �r

1þ � yj jð Þn½ �m ; y < 0

�s; y � 0

8<
: ð28Þ

where �r and �s are the residual and saturated volumetric
water content, respectively (cm3/cm3), a (>0, cm−1) is related
to the inverse of the air entry pressure, n (>1) is a measure of
the pore size distribution, and m = 1 − 1/n [van Genuchten,
1980]. The determined bulk density of the coarse sand is
1.65 g/cm3. The measured water content was converted to
volumetric water content by considering the bulk density.
The values of the parameters were determined using the
Marquardt‐Levenberg algorithm, which is an algorithm for
least squares estimation of nonlinear parameters. The fitted
parameters are �r = 0.0235, �s = 0.314, a = 0.0684 cm−1, and
n = 5.625. The measured and fitted soil‐water characteristic
curves are shown in Figure 3. The unsaturated hydraulic

conductivity was specified as the van Genuchten‐Mualem
(VGM) model [Mualem, 1976; van Genuchten, 1980]

K yð Þ ¼ Ks

1� � yj jð Þn�1 1þ � yj jð Þn½ ��m
n o2

1þ � yj jð Þn½ �m=2
; y < 0

Ks; y � 0

8>><
>>: ð29Þ

Figure 2. Arrangement of the equipment for experiment 4.

Figure 3. Soil water characteristic curves for the coarse and
fine sands.
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where Ks = 0.07423 cm/s is the saturated hydraulic conduc-
tivity of the coarse sand determined by experiment 1.
[30] The column was discretized into 161 nodes with nodal

spacing Dz = 0.5 cm. The fist node is at the bottom of the
column, and the last one is at the upper surface of the coarse
sand. The constant time step isDt = 1 s. The geometric mean
for internodal hydraulic conductivities is used herein [e.g.,
Haverkamp and Vauclin, 1979; Szymkiewicz, 2009]. The
convergence criterion is chosen as that ofHuang et al. [1996]
with dr = 0.0001 and da = 10−7. Numerical simulation was
carried out by writing a computer program, called OSUNF,
in Visual Basic for Application (VBA) based on Microsoft
Excel 2003.

4.2. Air‐Water Two‐Phase Flow Numerical Solution

[31] The numerical simulations of the air‐water two‐phase
flow drainage experiment were carried out using the EOS3
module of TOUGH2, a general‐purpose numerical simulator
for multidimensional fluid and heat flows of multiphase,
multicomponent fluid mixtures in porous and fractured media
[Pruess et al., 1999]. The soil‐water characteristic curve for
the fine sand was also chosen as the van Genuchten model,
i.e., Equation (28). The determined bulk density of the
fine sand is 1.59 g/cm3. The fitted parameters are �r = 0.0315,
�s = 0.39, a = 0.0177 cm−1, and n = 3.0086. Figure 3 shows
the measured and fitted soil‐water characteristic curves. The
saturated hydraulic conductivity of the fine sand determined
by experiment 3 is 0.004292 cm/s. The relative water per-
meability for both sands was chosen as the VGM model

krw Seð Þ ¼ S1=2e 1� 1� S1=me

� �m� 	2
Sw < Sws

1 Sw � Sws



; ð30Þ

where Se = (Sw − Swr)/(Sws − Swr), is the effective water
saturation, Sw is the water saturation, and Swr and Sws are
the residual and saturated water saturation, respectively. The
relative air permeability for both sands was specified as
[Pruess et al., 1999]

kraðS*e Þ ¼ ð1� S*e Þ2ð1� S*2e Þ; Sar > 0ð Þ ð31Þ

where S*e = (Sw − Swr)/(1 − Swr − Sar), and Sar is the residual
air saturation, the default value of Sar = 0.1 was used for both
the fine and coarse sands in the TOUGH2 simulations.

[32] The column was discretized into 164 elements with
spacing Dz = 0.5 cm. The boundary conditions were atmo-
spheric pressure and no flow of water at the top of the column
and awater pressure of 30 cm of water and no flow of air at the
bottom of the column. The columnwas initially in hydrostatic
equilibrium. The initial water table was 20 cm below the
coarse sand surface, i.e., at z = 60 cm.

4.3. Solutions of ODE for Air‐Water Two‐Phase Flow

[33] In order to solve the ODE, the relative air permeability
value kra has to be estimated. The water saturation at the
interface (z = 80 cm) is higher than that at the fine sand surface
(z = 82 cm). So the relative air permeability kra is lower at
the interface than at the fine sand surface. The airflow into
the column is mostly controlled by this lower kra. Then it is
reasonable to use the fine sand water saturation at the inter-
face to calculate the kra value. The VGMmodel for relative air
permeability [Parker et al., 1987] was chosen for the fine
sand to calculate the kravalue

kra Seð Þ ¼ 1� Seð Þ1=2ð1� S1=me Þ2m: ð32Þ

The capillary pressure head at the interface is y = −20 cm.
Substituting y into (28), calculating Sewith Sws = 1, and then
substituting Se into (32) leads to kra = 0.00245.
[34] The specific yield of the coarse sand is calculated as

Sy ¼ Vm

A s0 � h0ð Þ ; ð33Þ

where Vm is the cumulative volume of outflow at the end
of experiment 2. With the value of Vm = 581.7 cm3, the
specific yield is Sy = 0.2736.
[35] The sets of ODE were solved numerically by the

fourth‐order Runge‐Kutta method using variable time steps
[Xu, 2006] with an initial time stepDt = 1 s. A minimum time
step was set as Dtmin = 10−6 s, when the time step during
computing is less than Dtmin, and then the computing is
terminated. The convergence criterion is chosen as 10−5 m.
Numerical calculations were carried out using the program
of Xu [2006] with some modifications to account for this
specific problem.

5. Results and Discussion

5.1. Vacuum and Cumulative Outflow

[36] During the saturated‐unsaturated flow drainage exper-
iment (experiment 2), no vacuum in the vadose zone of the
column was observed in the U tube. This means that under
this condition, the air pressure in the column was almost the
same as the external atmospheric pressure. Air can flow freely
from the atmosphere into the column due to the coarse texture
of the sand. Hence, the drainage of water from the coarse sand
was quick. Most of the water was already drained in the first
500 s.
[37] During the air‐water two‐phase flow drainage exper-

iment (experiment 4), significant vacuum was observed. The
vacuum in the vadose zone of the column increased very fast,
from 0 to 2.54 kPa (26 cm of water column) at 18 s since the
drainage started, and reached a maximum value of 2.58 kPa
(26.4 cm of water column) at 31 s, then gradually returned
to zero. After 8700 s, the air pressure in the vadose zone was

Figure 4. Comparison of observed and calculated vacuum
in the vadose zone of the column in experiment 4.
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almost equal to the atmospheric pressure. The drainage of
water was slow because water was held in by the vacuum and
could not drain freely.
[38] The calculated kra = 0.00245 was first substituted

into the set of ODE to obtain a solution. Then its value was
adjusted to obtain the best fitting between theoretical and
experimental data. A comparison of the measured vacuum in
experiment 4 and the solution of ODE of (5) and (19) with a
fitted kra = 0.00136 is shown in Figure 4. The agreement
between the solution of ODE and the experimental data is
satisfactory except for the earlier stage of drainage (less than
20 s). Vacuum was also calculated using TOUGH2, and the
best result is also shown in Figure 4. The agreement between
the TOUGH2 simulation and the experimental data, how-
ever, is not so good.

[39] In the earlier stage, both the solution of ODE and the
TOUGH2 simulation give results noticeably higher than
the experimental values. This difference may be caused by
the following reasons. First, the volume of air in the left
branch of the U tube above the water level (Figure 1) is not
negligible compared to the initial volume of air in the vadose
zone. This volume of air was not considered both in the
solution of ODE and in the TOUGH2 simulation. Second, the
air pressure in the vadose zone changes very fast in this stage,
which may not be instantaneously reflected by the water level
in the U tube. Thus, the measured vacuum may be lower than
the true vacuum in the vadose zone.
[40] The cumulative outflow Vw in the saturated‐

unsaturated flow OSUNF simulation and air‐water two phase
flow TOUGH2 simulation at any given time is calculated as

Vw ¼
XN�1

i¼1

�0
i þ �0

iþ1

2
� � j

i þ � j
iþ1

2

 !
ADz; ð34Þ

where N is the total number of nodes and �0 and �j are the
volumetric water content at t = 0 and time level j, respectively.
For the air‐water two‐phase flow ODE solutions, the cumu-
lative outflow at any given time is calculated as follows:

Vw ¼ A s0 � hð ÞSy: ð35Þ

[41] Figure 5 shows a comparison between the theoretical
and experimental cumulative outflow for experiments 2 and
4. Excellent agreement is achieved for both experiments. For
the air‐water two‐phase flow drainage, the flow regime is
significantly altered by the fine sand layer, as indicated by
the data of the two experiments. The cumulative volume of
outflow in experiment 4 ismuch less than that of experiment 2
until 3 h (10,800 s) after the drainage began.

Figure 5. Comparison between theoretical and experimen-
tal cumulative outflow.

Figure 6. Temporal water saturation profiles with elevation above the datum for (a) experiment 2 and
(b) experiment 4.
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[42] For experiment 4, both the solutions based on
TOUGH2 and equations (5) and (19) match well with the
experimental data. A careful examination of the curves shows
that the solution based on (5) and (19) is slightly better than
TOUGH2.
[43] Generally, when fluids are drained from porousmedia,

the theory of saturated‐unsaturated flow should be used.
However, in the air‐water two‐phase flow drainage, although
the drainage of water at the water table was assumed to
be instantaneous and complete in the approximate solution
based on (5) and (19), the solution can capture the details of
the drainage process, as demonstrated by the good agreement
between the observed pressure and that calculated using the
equations (5) and (19) for experiment 4. This is mainly due
to the vacuum in the vadose zone, which decreased the rate
of discharge.
[44] In the saturated‐unsaturated flow numerical simula-

tion, the specific storage of the medium was also considered.
When a value of Ss = 10−6 m−1 [Clement et al., 1994] was
chosen, no visual difference can be found in the cumulative
outflow (data not shown), suggesting that Ss can be neglected
and that equation (1a) for the general saturated‐unsaturated
flow is appropriate.

5.2. Water Saturation Profile

[45] Figure 6 shows the vertical water saturation profiles
at different times simulated using OSUNF for experiment 2
and TOUGH2 for experiment 4. Figure 6a shows that at

earlier times there is a substantial amount of water in the
vadose zone. As time progresses, the water saturation profile
becomes closer to the steady state profile, which corresponds
to the soil‐water characteristic curve of the coarse sand.
Figure 6b shows that after the fine sand layer was placed, the
time evolution of the water saturation profile is substantially
different from Figure 6a. Clearly, the existence of the fine
sand layer greatly restricted the movement of air from the
atmosphere into the sand column. Water was held in by
the vacuum and could not drain freely by gravity.

5.3. On the Solutions of ODE for Air‐Water
Two‐Phase Flow

5.3.1. Surface of Saturation and Water Table
[46] Since the solution of ODE gives better results than

TOUGH2, it is used to analyze the drainage process of
experiment 4. Figure 7 shows the time evolution of the sur-
face of saturation and the water table calculated by the solu-
tion of ODE using (5) and (19). The water table is defined as
the surface on which the pressure is atmospheric [e.g., Bear,
1972]. Before the drainage starts, the surface of saturation and
the water table are at the same position. While the falling of
the surface of saturation is very slow and gentle, the water
table dropped very quickly from the initial position to near
the constant‐head boundary after about 10 s. This explains
the slow drainage of water from the column. At any given
time, the difference between the position of the surface of
saturation and the water table is the water column held in
by the vacuum. It should be noted that in (4), the hydraulic
head is subtracted by the vacuum ha. The presence of the
vacuum decreased the hydraulic gradient.
5.3.2. Vacuum and Falling Rate of Surface
of Saturation
[47] Figure 8 shows the relationship between vacuum and

the falling rate of the surface of saturation. At the earlier stage
of drainage (less than 10 s), the surface of saturation falls very
quickly. At the same time, vacuum in the vadose zone
increases significantly. The vacuum reaches its maximum
when the falling rate of the surface of saturation becomes very
low. The vacuum drops to zero when the falling rate of the
surface of saturation gradually becomes zero. This conclusion
is similar to that of Jiao and Li [2004] in their discussion
on tide‐induced air pressure fluctuation and that of Jiao and
Guo [2009] in their discussion on pumping‐induced airflow.

Figure 7. Time evolution of the surface of saturation and
the water table in experiment 4.

Figure 8. Time evolution of the vacuum and the falling rate
of the surface of saturation in experiment 4.

Figure 9. The relative error caused by keeping only the
leading‐order term.
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5.3.3. Comparison of Solutions Using (19) and (22)
[48] Figure 9 shows the relative error caused by keeping

only the leading‐order term for ha in deriving the air mass
fluxmf. The relative error is calculated as the value using (22)
minus the value using (19) and then divideding by the value
using (19), expressed as a percentage. From Figure 9, when
(19) is used, the vacuum is always smaller than that using
(22). The relative error reaches a maximum value of 1.24% at
the end of the drainage. Since the vacuum is smaller, the
drainage of water from the column is faster. The relative error
in cumulative outflow reaches a maximum value of 0.87%
after 300 s. Clearly, the relative error is very small, sug-
gesting that keeping only the leading‐order term does not
cause significant error. This can be also seen from comparing
(19) and (22). The two equations are identical except the
brackets on the right‐hand side of (22), which is almost 1
because ha /2ha0 is much less than 1.
5.3.4. Impact of Relative Air Permeability on Vacuum
and Cumulative Outflow
[49] The relative air permeability kra is the only adjustable

parameter in the approximate solutions and is assumed to be
a constant. This may lead to some error, because physically,
its value changes with time as the water content of the fine
sand layer decreases. However, as shown in Figures 5 and 6,

a constant value is reasonable because the vacuum and
cumulative outflow calculated from the solution of ODE
using a constant kra fit well with observed data.
[50] In the calculation, the value of kra was adjusted to

obtain a best fit. In order to show the impact of different
values of kra on theoretical results, three different values were
chosen to calculate vacuum and cumulative outflow, as are
shown in Figures 10 and 11. It can be clearly seen from
Figure 10 that the smaller the value, the larger the vacuum.
The physical meaning of this parameter is that it controls the
flow of air into the column through fine sand. When kra is
lower, the flow of air into the column through the fine sand
layer is more difficult, and hence a larger vacuum will be
generated. Subsequently, the drainage of water is slower, as
shown in Figure 11. Figure 12 shows how the location of the
surface of saturation changes with time for different values
of kra.

6. Summary and Conclusions

[51] The drainage of water from a vertical sand column
with and without a fine sand layer was studied experimentally
and theoretically to investigate the impact of airflow. Both a
saturated‐unsaturated flow drainage experiment without the
fine sand layer on the top of the coarse sand and an air‐water
two‐phase flow drainage experiment with the fine sand layer
were performed. Temporal changes of vacuum and cumula-
tive outflow were observed. While there was practically no
vacuum without the fine sand layer, significant vacuum was
observed with the fine sand layer. The vacuum increased
quickly at the earlier time, reached a maximum, and then
gradually dropped to zero. Because of the suction of the
vacuum, the cumulative outflow with the fine sand layer was
much smaller than that without the layer during most of the
drainage process.
[52] On the basis of the mixed form of the Richards’

equation and a finite difference scheme, a VBA program
was developed to perform the numerical simulation of the
saturated‐unsaturated flow drainage experiment. Ordinary
differential equations were derived to describe the air‐water
two‐phase flow drainage experiment. After comparing with
the observed data, the performance of the solutions of ODE is
very satisfactory and much better than TOUGH2. Theoretical
analyses based on solutions of ODE show that the surface of

Figure 11. Theoretical results of the cumulative outflow for
different relative air permeability values compared with
experimental results.

Figure 12. Theoretical results of the surface of saturation
for different relative air permeability values.

Figure 10. Theoretical results of the vacuum for different
relative air permeability values compared with experimental
results.
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saturation in the column is much higher than the water table
during most of the drainage process because of the effect of
the vacuum. The vacuum in the vadose zone is closely related
to the falling rate of the surface of saturation.
[53] Advantages accrue from using the ODE rather than the

partial differential equations. All parameters in the ODE are
constants and can be determined quickly and accurately. It
requires only saturated hydraulic properties of the porous
medium. The only parameter that needs to be adjusted is the
relative air permeability. Furthermore, use of the Runge‐
Kutta method precludes the need for iteration with the ODE.
When partial differential equations are used, a system of
nonlinear equations is generated which are solved iteratively.
It may be concluded that the ordinary differential equation
techniques described here are valuable tools in the case of
one‐dimensional, vertical, part unsaturated and part saturated
air‐water two‐phase flow problems.
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