Supplementary material

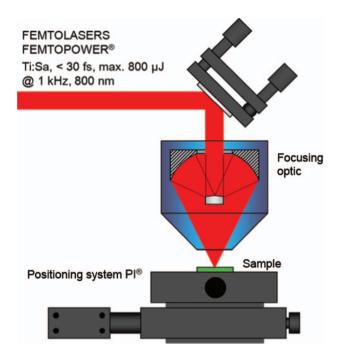


Figure S1. Schematic sketching of the femtosecond ablation system.

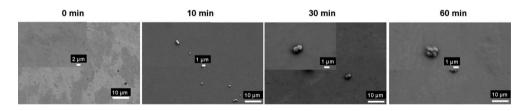


Figure S2. Representative SEM images of *S. aureus* CIP 65.8 adhesion on polished and lotus-like Ti after incubation for 0 min, 10 min, 30 min and 60 min.

	Retained cells ^a $\times 10^5$ [number of cells mm ⁻²]		Biovolume of EPS production (μm)	
Bacterial strains	As-received	Lotus-like	As-received	Lotus-like
S. aureus CIP 65.8 ^T S. aureus ATCC 25923 S. epidermidis ATCC 14990 ^T Planococcus maritimus KMM 3738	$\begin{array}{c} 0.47 \pm 0.06 \\ 1.58 \pm 0.80 \\ 1.72 \pm 0.46 \\ < dl^a \end{array}$	$\begin{array}{c} 11.09 \pm 1.51 \\ 2.44 \pm 0.56 \\ 8.73 \pm 2.70 \\ 0.53 \pm 0.13 \end{array}$	$\begin{array}{c} 2.33 \pm 0.49 \\ 3.00 \pm 0.60 \\ 4.50 \pm 1.00 \\ < \mathrm{dl} \end{array}$	$\begin{array}{r} 8.69 \ \pm \ 1.96 \\ 6.30 \ \pm \ 2.80 \\ 7.00 \ \pm \ 1.47 \\ 0.20 \ \pm \ 0.09 \end{array}$

^aBelow detection limit.

Table S2. Extended set of surface roughness parameters of control and lotus-like Ti surfaces over scanning areas of $10 \ \mu m \times 10 \ \mu m$ and $5 \ \mu m \times 5 \ \mu m$.

	Surfaces	S _a (nm)	S_{q} (nm)	S _{max} (nm)	$S_{ m sk}$	$S_{ m ku}$	$S_{ m dr}$ (%)
10 μm 5 μm ×	As-received Ti Lotus–like Ti As-received Ti Lotus–like Ti	$257.74 \pm 41.84 \\ 1.01 \pm 0.16$	$\begin{array}{c} 4.68 \pm 0.76 \\ 328.74 \pm 53.37 \\ 2.26 \pm 0.37 \\ 121.58 \pm 19.74 \end{array}$	$\begin{array}{c} 120.60 \pm 19.58 \\ 2392.60 \pm 388.42 \\ 71.68 \pm 11.64 \\ 945.37 \pm 153.47 \end{array}$	-0.43 ± 0.07	211.05 ± 34.26	$\begin{array}{c} 0.13 \pm 0.02 \\ 42.70 \pm 6.93 \\ 0.24 \pm 0.02 \\ 50.09 \pm 8.13 \end{array}$

Table S3. Adhesion kinetics of the polished and lotus-mimicked superhydrophobic Ti surfaces by S. aureus CIP 65.8.

	Retained c [number of	$ells^a \times 10^4$ cells mm ⁻²]	Biovolume of EPS production (μ m)	
Incubation time	As-received	Lotus-like	As-received	Lotus-like
10 min 30 min 60 min	${<}dl^b$ ${<}dl$ ${<}dl$	$\begin{array}{c} 0.3 \ \pm \ 0.07 \\ 9.1 \ \pm \ 0.9 \\ 12.7 \ \pm \ 4.3 \end{array}$	< dl < dl < dl	$\begin{array}{c} 1.1 \ \pm \ 0.2 \\ 1.4 \ \pm \ 0.8 \\ 1.5 \ \pm \ 0.6 \end{array}$

^aCell densities have estimated errors of $\sim 15-20\%$ due to local variability in the surface coverage; ^bbelow detection limit.

Ti surface topography and wettability

The surface topography at both micro- and nano-metric scale is evidenced to place an influence upon the adhesive behaviours of bacteria (Anselme et al. 2010; Ploux et al. 2010; Rizzello et al. 2011; Webb et al. 2011). In order to understand surface topography at the micro/nano-scale, three dimensional topography of as-received and lotus-like Ti over 10 μ m × 10 μ m is shown in Figure S2 and a comprehensive description of surface topography is evaluated by several surface parameters in Table S2. After femtosecond laser ablation, there was a significant change in the surface topography of the as-received Ti surfaces. As shown in Figure S2, lotus-like Ti surfaces exhibited deep valleys with a depth of 3.4 μ m and large plateaux with the width of 10 μ m to 20 μ m. On the top of these plateaux, there is a second tier of nanotopography with undulations of 200 nm. This two-tier topography was formed spontaneously under femtosecond laser irradiation. This 'self-organisation' effect was reported previously after femtosecond laser ablation (Vorobyev et al. 2007; Fadeeva et al. 2011). In Table S1, the S_a , S_q and S_{max} of lotus-like Ti surfaces are considerably greater than those of as-received Ti on both the 10 μ m × 10 μ m and 5 μ m × 5 μ m scanning areas. The developed surface area ratio (ie the ratio of surface area to projected area) of lotus-like Ti surfaces ($S_{\rm dr} = 42.70\%$ and 50.09% respectively for 10 $\mu m \times 10 \ \mu m$ and 5 μ m × 5 μ m scanning areas) is significantly higher than as-received Ti ($S_{\rm dr}=0.13\%$ and 0.24% respectively for $10 \ \mu m \times 10 \ \mu m$ and $5 \ \mu m \times 5 \ \mu m$ scanning areas). To provide sufficient information on the surface architecture, skewness (S_{sk}) and kurtosis (S_{ku}) were also utilised to describe the distribution of heights. On both the $10 \ \mu m \times 10 \ \mu m$ and $5 \ \mu m \times 5 \ \mu m$ scanning areas, asreceived Ti surfaces had $S_{\rm sk}$ values of 8.63 and 10.99 respectively, and $S_{\rm ku}$ values of 137.13 and 211.05 over the same scanning areas, indicative of a highly uneven distribution of peaks and valleys and a complicated surface architecture. In contrast, lotus-like Ti surfaces have $S_{\rm sk}$ values close to 0 and $S_{\rm ku}$ values close to 3, highlighting the relatively symmetric distribution of peaks and valleys across the analysed surfaces.

The wettability of lotus-like Ti surfaces was examined in a previous study in which the water contact angle was 166° (Fadeeva et al. 2011). It can be explained by the Cassie-Baxter model of wettability, in which the air component entrapped between micro/nano-structures enhances the natural surface wettability, according to:

$$\cos\theta = f_1(\cos\theta_1 + 1) - 1$$

where θ is the composite contact angle of the heterogeneous surface, f_1 is the area fraction of surface component of Ti and θ_1 is the contact angle on the projected surface of Ti (Cassie and Baxter 1944).

References

- Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L. 2010. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomaterial 6:3824–3846.
- Cassie ABD, Baxter S. 1944. Wettability of porous surfaces. Trans Faraday Soc 40:546–551.
- Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP. 2011. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir. 27:3012–3019.
- Ploux L, Ponche A, Anselme K. 2010. Bacteria/material interfaces: role of the material and cell wall properties. J Adhes Sci Technol 24:2165–2201.
- Rizzello L, Sorce B, Sabella S, Vecchio G, Galeone A, Brunetti V, Cingolani R, Pompa PP. 2011. Impact of nanoscale topography on genomics and proteomics of adherent bacteria. ACS Nano 5:1865–1876.
- Vorobyev AY, Makin VS, Guo C. 2007. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J Appl Phys 101:no. 034903.
- Webb HK, Hasan J, Truong VK, Crawford RJ, Ivanova EP. 2011. Nature inspired structured surfaces for biomedical applications. Curr Med Chem 18:3367–3375.