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AIR DRAG EFFECT ON A SATELLITE ORBIT
DESCRIBED BY DIFFERENCE EQUATIONS IN THE REVOLUTION NUMBER*

BY

ROBERT E. ROBERSON
Autonetics Division, North American Aviation, Inc., Downey, Calif.

Abstract. For a satellite on an orbit which is affected by air drag, difference equa-
tions are derived whose solutions express changes in orbital size and shape and give
the satellite's time behavior as functions of revolution number. The results are obtained
from a first order perturbation theory using a small air drag parameter.

Introduction. The behavior of a satellite orbit under the effects of air drag have
been discussed by Petersen [l]1, the present author [2], and others. Using the method
of variation of parameters, I derived some approximate expressions for the decay of
eccentricity with radius, the decay of radius with revolution number, and the growth
of time with revolution number. Those results appear to be especially useful for eccen-
tricities which are quite small, say e < 0.01, although a complete investigation of their
range of validity has not been investigated.

An alternative approach is available which may be preferable for larger eccentricities.
It consists of a perturbation method in a small parameter, carried only to the first
approximation, followed by the derivation of an exact relationship between values at
the beginning and the end of any orbital revolution. Thus one obtains a set of difference
equations in the values of the problem's dependent variables which occur at each full
orbital revolution.

Because the approach leads to difference equations, it appears well suited to numerical
treatment. It offers a significant advantage even when a high speed digital computer is
available, for it obviates the numerical integration around each orbital revolution
which can impose a significant burden on machine storage capacity and result in a
prohibitively long solution time. It is clear that in a conventional numerical solution
in which the satellite is followed step-wise around each revolution, even the finest
practicable integration interval and the greatest care in handling errors may not avoid
a significant accumulation of error over tens of thousands of revolutions. On the other
hand, the difference equation method developed here allows the errors for any complete
revolution to be made as small as desired without excessive difficulty.

Outline of the method. Like [2], this treatment begins with the drag law and equa-
tions of motion discussed by Petersen [l]2. The following notation is used:

r radial distance from center of earth to satellite
13 angular advance of satellite from arbitrary interially-fixed reference line in

plane of orbit
K product of earth mass and constant of gravitation

•Received March 28, 1957; revised manuscript received August 27, 1957.
'Numbers in square brackets refer to the bibliography at the end of the paper.
These apply only to the case where the aerodynamic force acts only as a drag along the line of the

velocity vector. Lift forces are assumed absent. Other assumptions are given with the notation below.
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CD drag coefficient, assumed constant
A satellite projected area on plane normal to velocity vector, assumed constant3
m satellite mass
a equatorial radius of earth
h altitude, r — a (neglecting oblateness of earth)
p(h) standard stable atmospheric density function

In these terms, the equations of motion are

P" _ ^ = -£ ~ P(h)rY2 + r^T', (1)

r/3" + 2r'f}' = P{hW(r2 + r°/3"2),/2. (2)

It is convenient to introduce auxiliary dimensionless variables

£ = a/r, (3)

V = Ka/m\ (4)
and to regard them as functions of 0. Primes henceforth denote differentiation with
respect to 0 as the new independent variable. Also define the parameter.

v = CDAa/m. (5)

The equations which are basic in the sequal then become

r + € - v, (6)
■n'/r, = f p(ar^ ~ a) (1 + (r/l)2)1/2. (7)

A key assumption is made, as in [2], that the density function is locally exponential.
That is, in a restricted neighborhood of any particular £-value, the function p(h) can be
approximated by

p(ar' - a) = ea£+a (8)

where, in general, a and S vary slowly with the £ (altitude) level at which p
is evaluated.

The following procedure is used.
1.£(/8) and ??(/3) of Eqs. 6 and 7 are expressed as power series in v (second and higher

order terms of which are subsequently neglected).
2. The zeroth approximation, elliptic motion, is found.
3. The first approximations to £(2ir), £(2ir) and t?(2tt) are found in terms of £(0).

£'(0), and j?(0) as series in increasing powers of eccentricity, under the single assumption
that p(f) can be approximated by an exponential function over the range of £ repre-
sented in one revolution, as described above.

4. These values of £(2ir), £'(2ir), rj(2ir) are used as initial conditions for the next
revolution, and the same procedure is followed.

3This is the case if the satellite is spherical, and is closely true for other vehicles whose attitude
relative to the earth is kept nearly constant by a suitable control system.
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5. The results are precisely the same for connecting the initial conditions for the
(j + l)st revolution to the initial conditions for the jth revolution.

6. The difference equations are returned to the original physical variables of interest.
Perturbation solution. Let £', y,- (j = 1,2,...) represent values of £, d£/dp and

17 at the beginning of the jth revolution and f,(/3) and t?, (/3) represent the functions
£(/3) and t}(0) during the jth revolution. Let £, = a/r, , £( = — aFr/r,FH and r)l =
Ka/r\Vff be given initial conditions, in terms of initial radius, horizontal velocity, and
vertical velocity. However, there is no loss in generality in supposing that /3 is measured
from a point at which = 0.

Assume that £ and ?? can be expanded in power series in a small parameter (vp0),
where p0 is any value of density such that p(h)/p„ is of the order of unity in the altitude
region of interest. In particular, it may be very convenient to choose p0 = p(a£r' — <*)•
This implies the representation

m = $;o>(/3) + ("Po)*,<uo?) + (xpo)2£2)gs) + • • •, o)

17,08) = Vi°\0) + (?Po)Vil)(P) + (xpo)%<2>03) + • • • . (10)

The zeroth approximation during the jth revolution satisfies

+ tfx® = vn®, (id
vru(0) = 0. (12)

The first approximation satisfies

€r,"(0 + tf'os) = vi'Xa), (13)
w(o\ _ vrwMrm l , ra'

Vi m po$?xp) \ + U)o,w).
As initial conditions, take

= fi-i(2 v) + (i>p0)£i-l(2ir) + •
I,' = fc,°2,'( 2tt) + (,p„)£72;(27r) + ■
>?, = Vi-\( 2t) + (vPo)Vi-\(?*) + ■

and

fi(0) = f. + OWO + • • •, tf(0) = 0, 77.(0) - ih + (ppo)0 ■+•••. (16)
We begin with the first revolution, solving Eqs. 11 and 12 to obtain

vln(fi = vI , (17)

li(0>(/3) = m(l + «. cos/3), (18)

where

6! = G./u.) - 1. (19)
Using these results in Eq. 14,

i i' '["(i+" ™<*• (2°»

(14)

(3 = 2,3, •••) (15)
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Now the assumption discussed in connection with Eq. 8 enables us to simplify the
the integrand of Eq. 20 by

ptoi(l + «i cos/3)] = p(t/j) exp (jh«i«i cos#). (21)
The remainder of the integrand can be expanded easily in a power series in e, the resulting
coefficients involving the Legendre polynomials. These, in turn, can be developed in
Fourier cosine series, whence"V'+Tiy <»
where

r° = 1+4<2 + 64e< +

r _ 1 i 9 2 I JL 4 _i1 + 8 4 + 32 £ +

r - 4- — «2 + • • •2 4 + 16 +

(23)

An explicit general expression for T„ can be given, but only in a rather complicated
form. For n > 3, the constant term (independent of e) in T„ is

J_ _ V (2n - 2k - 3) Kk 4- 1)
2"-1 2_, 22"-*"3(w - k) !(n - k - 2)!*

Combining the results of Eqs. 21 and 22, Eq. 20 becomes

vll\0) = (—«i)T„(«i) [ exp (ri1alel cos (3) cosn/3 d/8. (24)
Po n-0 Jo

The integral in Eq. 24 does not have to be evaluated because we need onlv ri["(2ir),
and by [3], p. 181,

C2*/ exp (x cos 0) cos n/3 rf/3 = 2irln(x), (25)
Jo

7„(x) being the usual notation for the Bessel function of the first kind for purely imaginary
argument. Thus we have

,{"(2r) = £ (-0"r.(0/.(ni«.0. (26)
Po »-0

Next we must solve Eq. 13. The solution can be written

(iV(/3) = f sin (/J - x)vi1\x) dx (27)
Jo

ecomes

{{"(/s) = I] ( —«i)"rn(«i) / sin 03 - x) / exp (ih«i«i cos t/) cosn?/ dj/ dx,
Po n-0 */0 •'O (28)

p(v i)

which, in view of Eq. 24, becomes

Po

w pp

12 (-«i)"r„(*i) / exp (a, 17,^ cos ?/) cos w?/ [cos (/3 - y) - 1] dy.
n-0 JO
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From this it follows that

£{l)(2ir) = 2irp^ ^ ( — €i)"r„(e1)[/n+1(i71a1fI) + (n/^tM, — lJ/.Cij^ei)]. (29)
Po n-0

Similarly,

tiiy(0) = — X) (-<i)"r„(«i) [ exp (ij,a,.e, cos ?/) cos ny sin (& - y) dy. (30)
Po n-0 Jo

When /3 = 2ir, the integrand of Eq. 30 becomes an odd function of y with period 2r.
Therefore, (2t) = 0 and one concludes that, to first order in v, the second cycle
begins with the same kind of initial conditions as the first cycle, i.e., conditions appropriate
to apogee or perigee. By induction, vanishes identically in j.

Equations 26 and 29 relate conditions at the end of the first cycle to those at the
beginning of that cycle. Moreover, because £' is zero for all j, exactly the same argument
can be used for any cycle provided the eccentricity and a-value appropriate to that
cycle a're used.

A set of interim results complete through first order terms in the perturbation param-
eter is

iy+1 = £, + 2*vp(ij,) 12 ( — *;)"r„(«,)[/„+1(1;,£*,€,) + (n/17,<*,«,• - l)In(vi«#«*)], (31)
n-0

CO

Vi+1 = Vi + 2™p(.Vi) H (—«,)nr„(«,)/„(»j,«,«,), (32)
n-0

{;+1 = + ——— jr (—e,)"rn(«,)[/n+1(?7,a,€,) + (n/ij,a,ef - 2 - e,)/„(?7,a,e,)]. (33)
Vi n-0

Equation 33 follows from the fact that is defined as £,/77, — 1 for all j. Also, for j — 1
we have the initial conditions given at the beginning of this section.

Some remarks on accuracy. The accuracy with which one can find £, rj and « from
Eqs. 31-33 depends principally upon the accuracy with which v and p are known, and is
therefore a physical problem. However, these equations do involve power series in e,
so it is of some interest to see how the errors arising from truncating these series are
related to the number of terms required.

In analyzing the orbit of artificial satellites, it should be noted that t < 0.2 is probably
almost certain, even e = 0.1 being rather large. Also, one might typically be interested
in altitudes to within one mile (£ about one part in 4000) at the end of 20,000 revolutions.
(The latter is suggested by some of the numerical work in Ref. [2].) Because errors in
the right-hand terms of Eq 31 are additive, this means that for each j the term must
be correct to about one part in a million. With e < 0.2, noting that all of the leading
coefficients of the T„ are of the order of unity, it follows that one generally must carry
e10 terms in the r„ . This accuracy normally will be adequate in Eqs. 32 and 33 as well.

Not all the T„ terms, of course, are equally important in contributing to the error,
for the coefficients of T„ in the infinite series (which converge) eventually become small.
Unfortunately, it is not easy to establish just how fast these series converge, where
they may be truncated, or how the accuracy requirements on the T„ may be decreased
with increasing n. However, some indication can be obtained by noting that the product
T)ae may be about 25 for e = 0.2. (A value of about 12 for e = 0.1 is given in [2]). The
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asymptotic expansions of /„ and 7n+1 can be used in Eq. 31, and it is found that about
twenty-five terms of the series are required before the residual drops below 10~8.

This argument must be done separately for each equation in view of the accuracy
requirements one may wish to impose on the basic dependent variables. I believe,
though, that this last result may be considered typical.

Thus the number of terms required to give high accuracy, in effect, to make the
method adequate for a much greater eccentricity than that permitted by earlier methods,
is substantial. However, it generally will be considerably easier to carry this number of
terms in a numerical computation than to do a piecewise numerical integration separately
around each orbital revolution, and to continue this through 20,000 or more revolutions.

Radial and time behavior. It is desired to return to the original physical variables
of interest, r and t. From r = a/f it follows that to within terms of the order of v2,

r>+i = r, — —r^pirii) X) (-e,)T„(«,)[/n+1(»7,a,«,) + (n/a,e,- — 1)7„(jj,q:,«,)]. (34)
a n-0

Also

dt ~ WJ V/2(/3)' (35)
Integrating dt/dfi over one revolution as was done in finding

t - t - (r&+-+,r ^
2 I_\ K ) \(1 - ef)3/2 + Jo LWXP) f!°>3(iS) J / (36)

Each of these integrals can be evaluated, albeit tediously. Doing this, and generalizing
the argument to the jth revolution,

- I, + {5-^ ,!'■(«

+ 6,(1 +2 e^)V2 E (-«,)"r.fe)[/.+l(nja,e,) + a,,«,)]}]■
(37)

Equations 31, 32, 33, 36 and 37 form a complete set of difference equations from
which the change of radius, shape and time with revolution number can be inferred. The
ij, enter this set only as auxiliary variables, and are not concerned in the final geometry
of the orbit.
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