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Air-filled square coaxial transmission line and its use
in microwave filters

I. Llamas-Garro, M.J. Lancaster and P.S. Hall

Abstract: A suspended coaxial transmission line with an air propagation medium is presented. The
transmission line is made only of metal, thereby avoiding dielectric and radiation losses. Short-
circuit stubs suspend the centre conductor of the coaxial structure which is used in the design of two
dual-mode narrowband microwave filters. Stacked layers of copper sheets are used to form the
square coaxial transmission line, which has low loss and low dispersion.

1 Introduction

There is currently considerable interest in using micro-
machining technology in the implementation of microwave
and millimetre-wave passive circuits and numerous struc-
tures have been presented in the literature. The objective is
to have a micromachined structure which has low
propagation loss and can be fabricated using currently
available processes. The structures should also be able to be
easily integrated with other passive and active components.

Coaxial transmission lines are compact in size, and
present low loss and low dispersion, making them a suitable
structure for the design of millimetre-wave circuits. At
millimetre-wave frequencies the use of low loss and low
dispersion micromachined devices has mainly been targeted
on the investigation of suspended microstrip lines [1–3]. The
thin centre conductor of the microstrip is usually suspended
by thin membranes. The layered coaxial structure proposed
here is more compact and has outstanding low loss
characteristics [4], compared with [1–3]. One of the few
structures that exhibits lower loss is the rectangular
waveguide. However, at the frequencies of interest, this is
too large for micromachining processes and is also
unsuitable for many applications because of its size. The
air-filled coaxial cable has the advantages of small size and
low dispersion compared with the waveguide, and has an
air propagation medium and high power characteristics. An
air-filled square coaxial transmission line can be optimised
to give a low attenuation constant by using a highly
conducting metal and by choosing an appropriate cross-
section for the coaxial line.

The complete filter is shown in Fig. 1a. It is fabricated
from five conducting plates. Layer 3 is the middle layer and
contains the centre conductor of the square coaxial cable. A
plan view of this layer is shown separately in Fig. 1b, and
consists of an input feed line which is supported by quarter-
wavelength stubs which are grounded. There is then a
capacitive gap between the feed line and the resonator.

After the resonator there is another capacitive gap to the
output transmission line. The design of the dual-mode filter
is presented in Section 3 and details of the stub-suspended
transmission line can be found in [5]. The other layers in
Fig. 1a form the outer conductor, with layers 2 and 4
providing the sidewalls and layers 1 and 5 forming the top
and bottom of the coaxial cable.

In order to demonstrate these ideas, two suspended dual-
mode narrowband filters having a 1% fractional bandwidth
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Fig. 1 Layered coaxial filter
a Five-layer coaxial assembly
b Top view of layer 3, showing the centre conductor of the coaxial
cable filter
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(FBW) centred at 9.1 and 29.75GHz will be presented; the
Ka-band filter has potential application in a local area
multipoint distribution system.

2 Design of square-cross-section cables

To obtain a low-loss coaxial transmission line, for a given
operating frequency range, the cross-sectional area of the
coaxial structure should be optimised. Figure. 2 shows an
air-filled square coaxial transmission line. The appropriate
choice of cross-section to be used in a specific design is a
trade-off between having a low attenuation constant for the
transmission line and predicting at what frequency the
higher modes will start to propagate. When higher modes
are present, these lead to a dispersive transmission line, so
for most applications it is desired to propagate only a TEM
mode. Information to calculate the presence of non-TEM
modes in square coaxial lines are given in [6].

The impedance of the square coaxial line in Fig. 2, can be
calculated by [7]:

ZO ¼
47:09ffiffiffiffi

er
p b� wð Þ
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The attenuation constant due to conductor loss for the
square coaxial line, can be calculated by [7]:
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To choose the appropriate size for the cross-section of a
transmission line, the following factors need to be taken into
account. A larger cross-sectional area for the line has the
benefit of having a low attenuation constant, as shown in
Fig. 3e. For the coaxial filters discussed in this paper, it is
desired to propagate only a TEM mode, which is the
lowest-order mode in a coaxial line. We will design out
transmission line in such a way that the frequencies at which
the higher-order modes begin to propagate is above the
filter operating frequency, which now limits the size of the
cross-section.

Before moving on to the detailed discussion of the design
it is interesting to compare the conductor losses of various
types of transmission line to justify our choice of a square
coaxial cable. This comparison is shown in Fig. 3. Different
transmission line cross-sections are considered in Fig. 3,
these are the round coaxial (Fig. 3a), the square coaxial,
(Fig. 3b), the microstrip (Fig. 3c) and the stripline (Fig. 3d).
All transmission lines illustrated in Fig. 3 are air-filled and
we assume that there are no radiation losses, since it is
common practice to have a completely shielded microstrip
or stripline. The cross-sectional area considered for the
microstrip and stripline were chosen to be approximately
those that can be used in a practical transmission line. In
smaller areas coupling between adjacent microstrips can
become very important. This is a little arbitrary but gives an
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Fig. 2 Air-filled square coaxial transmission line
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Fig. 3 Various different types of transmission line
a Cross-section of a round coaxial cable
b Cross-section of a square coaxial cable
c Cross-section for a microstrip line
d Cross-section for a stripline transmission line
e Attenuation loss as a function of area for each transmission line
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estimate for the comparison. The thickness of the centre
conductor assumed for the microstrip and stripline is taken
to be 10mm, which is many skin depths at the comparison
frequency of 29.5GHz. The computed attenuation loss due
to the conductor, for 50O transmission lines, with different
cross-sectional areas is represented by the lines in Fig. 3e.
Here we can see that the lowest attenuation is for the round
coaxial cable, this is because it has a smooth surface-current
distribution compared with the square coaxial cable, but the
square cable is easier to fabricate using planar machined
layers as discussed in this study. The formulas to calculate
the attenuation constant for the round coaxial cable can be
found in [8], and the formulas to calculate the attenuation
constant for the microstrip and the stripline can be found
in [9].

For the Ka-band filter described in this paper, the 50O
feed lines have a total area of 5.88mm2. This gives an
attenuation of approximately 1.5dB/m; the non-TEM
modes begin to propagate at approximately 44GHz.
Similarly, for the X-band filter, the 50O feed lines have a
total area of 81mm2; this gives an attenuation of
approximately 0.053dB/m, and for this size the non-TEM
modes begin to propagate at approximately 14GHz. The
simulations to obtain the theoretical response of the filters
discussed in this paper were all performed using HFSS [10],
and all simulated responses assumed perfect conductors to
reduce the computation time.

3 Dual-mode filter design

The design procedure of the dual-mode filter follows a
conventional filter design method, which starts with a low-
pass prototype filter. The initial g values are then calculated
from these, a band-pass transformation can be applied and
the coupling coefficients between the modes of the resonator
(kc), and the external quality factor (Qe) can be calculated.
This general design procedure can be used regardless of the
physical shape of the filter, and is described in [11]. The
dual-mode filters were designed to have a narrow
bandwidth and the following design issues were taken into
account. An increase in the number of resonators makes the
insertion loss increase for a given bandwidth, and it should
also be mentioned that as the bandwidth gets narrower, for
a given filter topology, the filter insertion loss increases. The
dual-mode design presented is a compact, low loss way
to achieve this bandwidth inside an air-filled coaxial cable.
The g values of the low-pass filter were chosen to have a
small pass-band ripple at the sacrifice of filter roll-off
outside the pass-band. The filters were designed to have a
0.01dB band-pass ripple, and a 1% FBW at 9.1 and
29.75GHz. Both have a Chebycheff response. The low-pass
prototype g values, the coupling between the two resonant
modes of the resonator, and the external quality factor are
summarised in Table 1.

The cross-shaped resonator is shown in Fig. 4; it supports
itself in the coaxial transmission line by using the two stubs
that fix it in the middle of the cable and keep it grounded to

the walls, as shown in Fig. 1. The coupling between the two
resonant modes of the resonator is controlled by modifying
the dimensions A and B in Fig. 4.

The coupling coefficient between the resonant modes can
be calculated using a full-wave simulation of the whole
structure [10], by varying the dimensions A and B of the
resonator. If the dual-mode resonator is simulated with
particular values of A and B, the output from the simulation
for S12 would be similar to that in Fig. 5. The two peaks are
caused by the interaction of the two resonant modes. From
Fig. 5, the coupling coefficient is given by [11]:

kij ¼
f 2
2 � f 2

1

f 2
2 þ f 2

1

ð7Þ

where f1 and f2 are the frequencies of the two coupled peaks.
By performing several separate simulations with different
values of A and B it is possible to produce the graphs shown
in Fig. 6. These are for the Ka-band filter, for different
resonator dimensions, similar graphs can be obtained for
the X-band filter. Once this data has been produced it is
easy to read off a value of A and B to match with the
coupling coefficient kc in Table 1. The size of the capacitive
gap (dimension d in Fig. 1b), between the resonator and the
feed line needs to be adjusted to obtain the required external
Q, this is done in a similar way to the coupling coefficients
and is detailed in [11]. The dimensions of layer 3 for the
filters discussed in this paper are shown in Fig. 7. It should
be noted that there is a slight difference in the input and
output of both filters; this is because the Ka-band filter is
designed in such a way that a K connector can be mounted
directly onto the structure.

A self-supported feed line was designed to provide input
and output connections to the dual-mode filter. The design
consists of a 50O transmission line supported by two
quarter wavelength stubs, as shown in Fig. 8a. The stubs are

Table 1: Design parameters for the dual-mode filters

Filter low-pass element g values

g1¼ 0.4488 g2¼0.4077 g3¼1.1007

Qe and the coupling between modes

QeAE QeB¼44.88 kc¼ 0.023
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Fig. 4 Plan of layer 3 of the filter in Fig. 1, showing just the dual-
mode resonator
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Fig. 5 S21 simulated response for the dual-mode resonator
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one-quarter wavelength long at the centre frequency of the
filters, since this will achieve a good open circuit at the point
where it supports the transmission line at the centre
frequency of the filter. Thus, they serve only as a mechanical
support for the centre conductor of the coaxial line; of
course this limits the usable bandwidth to some extent, as
can be appreciated in Fig. 8b. This Figure shows the
simulated response [10] for just the feed line structure for the
Ka-band filter. This bandwidth is more than adequate for
the narrowband filters studied. If wider bandwidths are
required, a wideband coaxial transmission line using the
same stubs can be found in [5].

The square coaxial structure is made out of five
planar copper layers, which are machined, aligned and
compressed together to form the three-dimensional coaxial
structure. For this layered coaxial filter design, or for
any general stub supported multilayer coaxial circuit, layer
misalignment should be considered in both the design
and fabrication technique. Layer misalignment for the
filter presented in this paper is critical between layer 3 and
layers 2 and 4, because it can modify three characteristics
of the transmission line filter; the first one is the bandwidth,
as misalignment can slightly modify the dimensions
of the resonator in the middle of the structure changing
the coupling between resonant modes. The second one is
the frequency shift of the mechanical supports, since
modification of the effective lengths of the quarter-
wavelength stubs will modify the usable bandwidth.
The third one is the characteristic impedance of the
coaxial line, which can be changed by layer misalignments.
The assembly of the coaxial filters is shown in Fig. 1a.
For the Ka-band filter, all layers are 0.7mm thick,
and the overall enclosed dimensions of the filter are
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14mm� 7.5mm� 2.1mm. For the X-band filter, all layers
are 2mm thick, and the overall enclosed dimensions are
40mm� 25mm� 6mm.

The X-band filter was produced by conventional
machining, as the minimum dimension to mill was 1mm.
However the Ka-band filter requires high precision
machining, making conventional machining impossible to
use since dimensions need to be kept within a few microns
tolerance. The minimum dimensions were 0.2mm for the
filter and 0.1mm for the K connector interface. The 0.1mm
value was carefully determined in order to obtain the
appropriate external Q-value. For this particular filter, laser
machining was used which was able to provide the required
small holes with an excellent accuracy. The filter plates were
clamped together for both filters. Other methods of
construction for integrated coaxial devices are metal-coated
thick resists, such as SU8 [3], or metal-coated reactive-ion-
etched silicon wafers [12, 13].

The band-pass response of the dual-mode X-band filter is
shown in Fig. 9 where a good agreement between theory
and experiment can be observed. The measured bandwidth
increased due to layer misalignment, which slightly changed
the coupling between the two modes.

The band-pass response of the dual-mode Ka-band
filter is shown in Fig. 10 where a reasonable agreement
between theory and experiment can be observed. An
increase in the losses of this filter can be seen which is
believed to be caused by the surface roughness of the copper
plates, combined with a reduction in the quality of
the copper, caused by the laser machining process. We
are currently investigating alternative of microfabrication
techniques [14] with the objective of finding a method
of microfabrication which can produce high quality
conductive layers out of which we can form the coaxial
structure. The return loss was degraded due to layer
misalignment, which also changed the coupling between
the two modes, leading to an increase in the bandwidth
of the filter. The transition from the connector to the circuit
presented a small mismatch, which was mainly caused
by fabrication tolerances at the time of mounting
the connectors to the complete layered circuit. Never-
theless, this new type of filter has been effectively
implemented.

4 Conclusions

Layered coaxial transmission line assembly presents a
practical way of making low-loss microwave circuits, which
are compact in size. From this structure two dual-mode
narrowband filters were demonstrated. Microfabrication or
micromachining methods were devised to satisfy the design
tolerances and layer finishing requirements to produce
quality air-filled coaxial devices for millimetre-wave opera-
tion. Furthermore, millimetre-wave passive components
such as filters, antennas, coupling structures, delay lines and
phase shifters can be easily matched and integrated using
the multilayered low loss compact coaxial structure.
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