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Abstract: Control of air–fuel ratio (AFR) plays a key role in the minimisation of the carbon dioxide and harmful pollutant
emissions and maximisation of fuel economy. An inherent time-varying delay existing in lean-burn spark ignition (SI) engines is
a major challenge for the AFR control. Herein an unstable internal dynamics with a parameter dependent system caused by
time delay is established to represent a dominating feature of AFR. The proposed control scheme, LPV-based fuzzy control
technique, combines the features of LPV and fuzzy control to deal with the unstable internal dynamics of an AFR system with
external disturbances and a high level of uncertainty in system parameters. Based on the desired error dynamics, an LPV
dynamic error consisting of the unstable state and the AFR tracking error is determined. Subsequently, the proposed fuzzy
control algorithm through a look-up table is used to stabilise the LPV dynamic error. Then, the tracking error moves along the
desired error dynamics towards zero. The system stability is assured via Lyapunov stability criteria. Finally, the simulation results
demonstrate the effectiveness and robustness of the proposed control scheme under different operating conditions. Also,
compared with the baseline controller, i.e. proportional–integral controller with Smith predictor, demonstrates its superiority.

1 Introduction
Due to the environmental and economic concerns, lean-burn
technology has attracted a lot of attention from engineers and
scientists around the world. Lean-burn spark ignition (SI) engines
operate at a relatively high air–fuel ratio (AFR) value, i.e. higher
than stoichiometric value, resulting in less fuel consumption, and
producing less carbon dioxide emission. Consequently, a good
balance between fuel efficiency, power output, and pollution
emission can be obtained. A lean NOx trap (LNT) module
integrated with the three-way catalyst (TWC) in SI engines is
typically constructed so that the NOx pollutants can be converted
into non-polluting nitrogen. In general, it usually takes a long time
for the air–fuel mixture to reach the universal exhaust gas oxygen
(UEGO) sensor downstream the LNT module (Fig. 1) during this
process. This large time delay, which is also varying, becomes the
main challenge for the control of AFR. A large time-varying delay
will shorten the bandwidth of the closed-loop system and degrade
the system performance. In addition, it may even create instability
and cause the controller design to become a challenging task. 

Since the last decade, researchers have been continuously
proposing different approaches to resolve this time-varying related
issue for efficient controlling of AFR system. The most important
findings from these studies will be discussed here. Muske et al. [2]
proposed an adaptive and model-predictive controller for SI engine
AFR control. The model states and the system disturbance were

estimated by a Kalman filter. Shortly after, Tang et al. [3] presented
an adaptive and learning control approach for multi-input and
multi-output engine models with constant and time-varying
uncertainties. Moreover, an adaptive control method of time-delay
systems applied to SI internal combustion (IC) engine was also
proposed by Yildiz et al. [4]. This approach considered two
adaptive controller designs; one based on feedforward adaptation
while the other one was based on both feedback and feedforward
adaptation incorporating adaptive posicast controller. Besides,
Chen et al. [5] proposed a linear quadratic optimal tracking
controller based on the adaptively estimated biofuel content to
track the desired AFR for a lean burn SI engine. Further, in [6, 7],
an adaptive internal model control for AFR control was proposed
to adapt the unknown time constant of the system plant with a
time-varying delay (that makes the AFR system a parameter
dependent system), and uncertain disturbances. Recently,
Khajorntraidet et al. [8] proposed an adaptive algorithm with Smith
predictor to estimate the time delay in port injection engines. The
above studies all adopted adaptive control strategies for AFR
control. As ones know, the adaptive control may cause a larger
transient response and even instability in the face of a large and
time-varying delay. In other words, adaptive control may not be a
good solution for AFR control with a large time-varying delay.
Moreover, two more control structures were proposed to solve this
problem: an observer-based fuel-injection control strategy in [9]
and a non-linear control method based on Takagi–Sugeno
modelling of an AFR system with a variable time delay in [1].

In this work, a parameter dependent system caused by an AFR
system with time-varying delay is obtained by means of Pade
approximation and normal form transformation. A suited approach,
i.e. a linear parameter-varying (LPV) technique for the parameter
dependent system was proposed. Details of the stability analysis
for this approach can be found in [10]. The following is a
representative few of the LPV technique applying to an AFR
system. Zhang et al. [11] demonstrated satisfactory stability and
disturbance rejection performance using an LPV control system for
the AFR control of a lean-burn SI engine in the presence of the
time-varying delay. Ebrahimi et al. proposed a second-order sliding
mode [12] and a parameter-varying filtered PID strategies [13] for
AFR control of lean-burn engines. The authors reported that their

Fig. 1  Schematic description of the air-fuel path in an SI engine adopted
from [1]
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proposed methods could effectively remove the effects of time-
varying delay, canister purge disturbance, and measurement noise.
Postma and Nagamune [14] used a switching LPV controller for a
time-varying first-order-plus-dead-time model, which was found
by solving a convex optimisation problem with linear matrix
inequalities (LMIs). Tafreshi et al. [15] developed a linear dynamic
parameter-varying sliding manifold based on unstable internal
dynamics to control the AFR. Yin and Liu [16] proposed a gain-
scheduled delay-dependent controller, regarding the time delay as a
time-varying parameter, to track AFR reference and minimise the
effect of disturbances.

These above studies demonstrated that an LPV technique is
capable of effectively coping with an AFR system along with large
time-varying delay for the AFR control system. Moreover, having
a robust controller combined with the LPV technique for the AFR
system is very important to tackle the issues associated with
unknown and uncertain disturbances, issues – such as unmodelled
dynamics and Pade approximation error. Since the LPV technique
sufficiently demonstrated the capacity to deal with time-varying
related challenges and a fuzzy control has characteristics of the
model-free and high level of robustness, we proposed an LPV-
based fuzzy control scheme in this work to combine the advantages
of both of these methods. To the best of our knowledge, an LPV-
based fuzzy control has not been previously introduced for such
time-varying systems. We hypothesised that the developed scheme
would effectively handle the parameter-dependent problem to
stabilise the AFR system as it incorporates both model-free
principle and highly robust control features. In summary, the
contributions of this paper include approximating the AFR system
using first-order Pade technique, obtaining an unstable internal
dynamics via the norm form transformation, constructing an LPV
approach including unstable state and AFR tracking error with the
desired dynamics, and designing a highly robust fuzzy controller
through the development of a look-up table to stabilise the LPV
dynamic error and control AFR performance.

The paper is organised as follows: an AFR dynamics is
represented and AFR control problem is stated in Section 2. In
Section 3, the LPV-based fuzzy control design is described and its
stability is proved. Simulation results and discussions are presented
in Section 4. Finally, in Section 5 some conclusions are made.

2 AFR dynamics and problem statement
In this section, an AFR dynamics characterised by a time-varying
delay and its internal dynamics are presented. In the following
stage, the problem statement on AFR control of a lean-burn engine
system is described. Fig. 1 depicts a typical SI engine system
including throttle, air path, fuel path, TWC, LNT and UEGO
sensor. The AFR is determined by the air-flow passing through the
intake manifold and the fuel injected by the fuelling system. In
general, the normalised AFR can be defined as
AFR = ṁa/ ṁfAFRs , where ṁa and ṁf are the air and fuel mass
flow rates, respectively [17]. The stoichiometric value of AFR
(AFRs) is approximately 14.7 for gasoline engines [18]. The AFR
that is lower than this stoichiometry value is known as a lean
mixture.

2.1 AFR dynamics

A time-varying delay plays a key role in modelling the AFR
dynamics of lean-burn SI engines, where larger the time-varying
delays higher the difficulties in tracking the AFR. During the
engine control loop, this time-varying delay can be broken in two
parts: (i) the cycle delay (τc) due to the four strokes of the engine,
which can be expressed as τc = 720/ 360/60 v = 120/v [s] where v
denotes the engine speed in RPM, and (ii) the gas transport delay
(τg) to the UEGO sensor, which can be expressed as τg = α/ṁa,
where α is usually determined from the experimental data. The
resultant total time delay τ = τc + τg, varies depending on the
engine operating condition. Therefore, the AFR path from the fuel
injector to the UEGO sensor can be approximated by a first-order
lag with a delay [19–22] as

τsẏ(t) + y(t) = u(t − τ) (1)

where y(t) and u(t) are the measured and control input AFRs,
respectively, and τs is the UEGO time constant [1]. The infinite
dimensional time delay term in open-loop system dynamics may be
approximated by the Pade approximation, as a finite-dimensional
closed-form representation. Using a first-order Pade
approximation, (1) can be rewritten in transfer function form as

Y(s)
U(s)

≅
1 − (τ /2)s

1 + (τ /2)s 1 + τss
(2)

This transfer function is a non-minimum phase system due to the
presence of zeros in the right-half plane that is caused by the time
delay. Its state-space representation can be expressed as

ẋ1(t) = x2(t)

ẋ2(t) = − a0(τ)x1(t) − a1(τ)x2(t) + u(t)

y(t) = b0(τ)x1(t) + b1(τ)x2(t)

(3)

where a0(τ) = b0(τ) = 2(τsτ)−1, a1(τ) = (2τs + τ)(τsτ)−1, and
b1(τ) = − τs

−1 are the parameter dependent coefficients. Since the
system is a non-minimum phase, we will be focusing on the control
and stabilisation of the system's internal dynamics. Through the
normal form transformation of W = N(x(t)), where
W = ζ(t) η(t) T, x(t) = x1(t) x2(t)

T, and N(x) = y(t) x1(t)
T

[7], the associated internal dynamics can be given using Lie
notation as

η̇(t) = LfN(x(t))

ζ˙(t) = Lfh(x(t)) + Lgh(x(t))u(t)
(4)

where f (x(t)) = x2(t) −a0(τ)x1(t) −a1(τ)x2(t)
T, g(x(t)) = 0

1 T, h(x(t)) = b0(τ)x1(t) + b1(τ)x2(t), and N(x(t)) are found such that
LgN(x(t)) = 0. Thus, internal dynamics of the AFR control system
and input/output pairs are then expressed as

η̇(t) = a11(τ)η(t) + a12ζ(t) + ϕη(t)

ζ˙(t) = a21(τ)η(t) + a22(τ)ζ(t) + βu(t) + ϕζ(t)

y(t) = ζ(t)

(5)

where η(t) and ζ(t) are, respectively, state variables, a11(τ) = 2τ
−1,

a12 = − τs, a21(τ) = (8τs + 4τ)(τsτ)−2, a22(τ) = − (4τs + τ)(τsτ)−1, and
β = − τs

−1 are corresponding coefficients in terms of the above
transformation; ϕη(t) and ϕζ(t) represent the bounded external
disturbances. Evidently, the zero dynamics in (5) is unstable due to
the variable coefficient, a11(τ) > 0. Therefore, designing a
parameter-dependent controller with a high level of robustness is
essential to deal with such an unstable system with variable
parameters. In the following subsection, the specific control
problem for the AFR system is described.

2.2 Problem statement

Due to the large time-varying delay and the effect of external
disturbances and uncertainty, AFR control is a challenging task. An
LPV-based fuzzy controller design with a high level of robustness
is advantageous to control the AFR. In order to apply the LPV
approach, system dynamics needs to be known in advance. In this
paper, it is assumed that the two parameters of AFR internal
dynamics in (5), i.e.a11(τ), and a12 are known. The control objective
is to design the control input u(t) (i.e. LPV-based fuzzy control)
such that the system output y(t) asymptotically converges to the
desired AFR, y

∗(t) within a finite time, despite the presence of
bounded disturbances as well as the uncertainty in system
parameters. In the control loop, an LPV dynamic error is
constructed and then a fuzzy control algorithm based on a look-up
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table is used for the AFR internal dynamics. The overall control
configuration is shown in Fig. 2. 

3 LPV-based fuzzy controller design and stability
proof
In this section, first, an LPV-based fuzzy controller is designed to
track the desired AFR values under different operating conditions.
Then, the stability of LPV-based fuzzy control system is proved.

3.1 LPV-based fuzzy controller design

In order to tackle the unstable parameter dependent system in (5),
an LPV dynamic error χ(t) including the unstable state η(t) and
AFR tracking error e(t) = y

∗(t) − ζ(t), is given as follows [10]:

χ(t) = η(t) +
∑ j = 0

n − 1
pj(τ)s j

sn + 1 + q(τ)sn
e(t) = 0 (6)

where s = d/dt and n is a positive constant to determine the system
order. The LPV coefficients pj(τ) and q(τ) can be determined using
the following desired error dynamics:

sn + 1 + ∑
j = 0

n

cjs
j e(t) = 0 (7)

where cj coefficients depends on the desired eigenvalue placement.
Then, using this definition in (6), the motion dynamics of the LPV
dynamic error along the internal dynamics in (5) yields

sn + 1 + q(τ)sn − a12
−1 ∑

j = 0

n − 1

pj(τ) s j + 1 − a11(τ)s j e(t)

= a12
−1

sn + 1 + q(τ)sn ϕ¯(t)

(8)

where ϕ¯(t) = a12y
∗(t) + ϕη(t) is a bounded smooth function, whose

kth-order time derivative is zero, i.e. dk /dtk ϕ¯(t) ≡ 0, and k < n .

Therefore, the right-hand side in (8)becomes zero and the zero
steady-state tracking error is achieved

sn + 1 + q(τ)sn − a12
−1 ∑

j = 0

n − 1

pj(τ) s j + 1 − a11(τ)s j e(t) = 0 (9)

By rearranging (9) in descending order of derivatives and equating
the corresponding coefficients with the desired characteristic
equation of the tracking error in (7), the coefficients q(τ) and pj(τ)
are determined as

q(τ) = cn + ∑
j = 0

n − 1

a11
j − n(τ)cj,

pj(τ) = a12 ∑
i = 0

j

a11
i − j − 1(τ)ci

(10)

Substitution of (10) into (6) represents the LPV dynamic error
manifold as

χ(t) = η(t) + Φ(s)e(t) = 0 (11)

where

Φ(s) =
a12∑ j = 0

n − 1 ∑i = 0

j
a11

i − j − 1(τ)cis
j

sn + 1 + cns
n + ∑ j = 0

n − 1
a11

j − n(τ)cjs
n

In addition, the time derivative is found as

χ̇(t) = η̇(t) + Φ(s)ė(t)

= a11(τ)η(t) + a12ζ(t) + ϕη(t) + Φ(s) ẏ
∗(t) − ζ˙(t)

= a11(τ)η(t) + a12ζ(t) + ϕη(t) + Φ(s)ẏ∗(t)

−Φ(s) a21(τ)η(t) + a22(τ)ζ(t) + βu(t) + ϕζ(t) = 0

(12)

In this way, the LPV dynamic error χ(t) can be determined based
on (9) such that the unstable state η(t) in the AFR internal
dynamics in (5) can be stabilised afterwards via the proposed fuzzy
control. To manipulate the preceding LPV dynamic error towards
zero, a fuzzy control based on a look-up table is proposed next.
Note that the derivative of the LPV dynamic error is substituted
with its difference, i.e. χ̇(t) ≃ χ(mTs) − χ(m − 1)Ts /Ts where m
represents the mth step and Ts denotes the sampling time. In
general, this time derivatives become more accurate when the
sampling time is smaller. The derivative approximation error is
regarded as part of the uncertainties. Fig. 3 depicts the proposed
fuzzy control block diagram that maps χ̄(t) χ̇̄(t)

T
∈ X ⊂ ℜ2 to

ū(t) ∈ V ⊂ ℜ where χ̄(t) = gχ χ(t) and χ̇̄(t) = gχ̇ χ̇(t) . The
parameters gχ and gχ̇ are positive and chosen such that both χ̄(t)

and χ̇̄(t) are in −1, 1 . Three main parts in Fig. 3 include fuzzifier,
fuzzy inference engine based on a rule, and defuzzifier. The
fuzzifier transfers crisp points χ̄(t) and χ̇̄(t) into a fuzzy set in X
using a membership function (Fig. 4); the fuzzy inference engine
maps fuzzy sets in X to fuzzy sets in V , based on a set of IF–THEN
rules in the fuzzy rule base and the compositional rule of inference;
and the defuzzifier maps a fuzzy set in V to a crisp point in V
through the same function. 

In fuzzifier block, the fuzzy variables, i.e. crisp points χ̄(t) and
χ̇̄(t), are quantised into the following eleven qualitative fuzzy
variables (i.e. l = 11): (i) positive huge (PH), (ii) positive big (PB),
(iii) positive medium (PM), (iv) positive small (PS), (v) positive
infinitesimal (PI), (vi) zero (ZE), (vii) negative infinitesimal (NI),
(viii) negative small (NS), (ix) negative medium (NM), (x)
negative big (NB), and (xi) negative huge (NH) (Table 1).
However, it is not essential to select all these eleven fuzzy rules. A
smaller fuzzy rule set (e.g. l = 7) may lead to an acceptable
performance (e.g. [23]). While there are many types of
membership functions exists in the literature such as bell shaped,
trapezoidal shaped, and triangular shaped, we used the triangular
type in this study (Fig. 4). 

In this study, we introduced the following l fuzzy control rules
where the upper script k denotes the kth fuzzy rule:

IF χ̄(t) is F1
k and χ̇̄(t) is F2

k, THEN ū(t) is H
k (13)

where χ̄(t) and χ̇̄(t) are the inputs and ū(t) is the output of the fuzzy
logic system; F j

k and Hk (1 ≤ j ≤ 2, 1 ≤ k ≤ l) are sets in X and V ,
respectively. The inference engine is activated by the relevant
fuzzy rules to form the linguistic rule of the fuzzy control
algorithm (Table 1). If χ̄(t), χ̇̄(t)  lies on the diagonal of Table 1
(i.e. ZE), there is no control action, which is the case of keeping the
states on a dynamic manifold. However, there are control actions of
the upper triangle terms, i.e. NI to NH and on lower triangle terms,
i.e., PI to PH that makes Table 1 skew-symmetric.

In practice, the linguistic term should be converted to a non-
fuzzy value. Thus, the linguistic rule in Table 1 is defuzzified by
employing the centre of gravity method to form a look-up table that
directly relates the inputs χ̄(t) and χ̇̄(t) to the output ū(t) (Table 2).
Table 2 has been designed such that u(t) increases when χ̇(t)
increased. If χ(t) > 0, then decrease of u(t) will result in a decrease
of χ(t) χ̇(t) . However, if χ(t) < 0, then the increase of u(t) will
results in a decrease of χ(t) χ̇(t) . In other words, Table 2 has been
generated to satisfy χ(t) χ̇(t) < 0 via u(t), which results in the
decrease of Lyapunov function, i.e. V˙ (t) < 0. 

Based on the aforementioned discussion, Table 2 can be
summarised as

u(t) = guū(t) = gu χ̄τ(t) + Δ(t)sgn χ̄τ(t) (14)
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where ū(t) is the fuzzy variable of u(t); Δ(t) < 0 denotes a switch
gain, which is obtained from Table 2 depending on χ̄(t) and χ̇̄(t),
∀t; χ̄τ(t) = χ̄(t − τ(t)) and τ(t) denotes a time-varying delay with an
upper bound, τu, and gu is the output scaling factor satisfying the
following inequality:

gu ≥
f (t) + λ/gχ

Φ(s)βΔ(t)
(15)

where λ > 0 is a positive constant; and f (t) is defined as

f (t) = a11(τ)η(t) + a12ζ(t) + ϕη(t) + Φ(s)ẏ∗(t)

−Φ(s)a21(τ)η(t) − Φ(s)a22(τ)ζ(t)

−Φ(s)βgu χ̄τ(t) − Φ(s)ϕζ(t)

(16)

Although the risk of the transient response may happen, we choose
a larger output scaling factor gu since it results in a smaller tracking
error and a faster response.

In the next subsection, it is shown that once the inequality in
(15) is satisfied, the LPV dynamic error in (11) becomes
asymptotically stable. Further, the tracking error becomes
asymptotically stable under the action of the proposed LPV-based
fuzzy control.

3.2 Stability proof

The Lyapunov function is defined as

V(t) = χ̄
2(t)/2 > 0, as χ̄(t) ≠ 0. (17)

Taking its time derivative and substituting (12) into (17) yielded

Fig. 2  Proposed LPV-based fuzzy control block configuration
 

Fig. 3  Proposed fuzzy control block diagram
 

Fig. 4  Membership functions with triangular type
 

Table 1 Fuzzy control rules
χ̇̄ χ̄

PH PB PM PS PI ZE NI NS NM NB NH
NH ZE NI NS NM NM NB NB NB NH NH NH
NB PI ZE NI NS NM NM NB NB NB NH NH
NM PS PI ZE NI NS NM NM NB NB NB NH
NS PM PS PI ZE NI NS NM NM NB NB NB
NI PM PM PS PI ZE NI NS NM NM NB NB
ZE PB PM PM PS PI ZE NI NS NM NM NB
PI PB PB PM PM PS PI ZE NI NS NM NM
PS PB PB PB PM PM PS PI ZE NI NS NM
PM PH PB PB PB PM PM PS PI ZE NI NS
PB PH PH PB PB PB PM PM PS PI ZE NI
PH PH PH PH PB PB PB PM PM PS PI ZE

 

Table 2 Look-up table for the fuzzy control
χ̇̄ χ̄

1.0 0.8 0.6 0.5 0.2 0 −0.2 −0.5 −0.6 −0.8 −1.0
−1.0 0.0 −0.05 −0.2 −0.5 −0.7 −0.8 −0.9 −0.95 −1.0 −1.0 −1.0
−0.8 0.05 0.0 −0.05 −0.2 −0.5 −0.7 −0.8 −0.9 −0.95 −1.0 −1.0
−0.6 0.2 0.05 0.0 −0.05 −0.2 −0.5 −0.7 −0.8 −0.9 −0.95 −1.0
−0.5 0.5 0.2 0.05 0.0 −0.05 −0.2 −0.5 −0.7 −0.8 −0.9 −0.95
−0.2 0.7 0.5 0.2 0.05 0.0 −0.05 −0.2 −0.5 −0.7 −0.8 −0.9
0 0.8 0.7 0.5 0.2 0.05 0.0 −0.05 −0.2 −0.5 −0.7 −0.8
0.2 0.9 0.8 0.7 0.5 0.2 0.05 0.0 −0.05 −0.2 −0.5 −0.7
0.5 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0 −0.05 −0.2 −0.5
0.6 1.0 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0 −0.05 −0.2
0.8 1.0 1.0 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0 −0.05
1.0 1.0 1.0 1.0 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0
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V˙ (t) = χ̄(t) χ̇̄(t)

= gχ̇ χ̄(t)
a11(τ)η(t) + a12ζ(t) + ϕη(t) + Φ(s)ẏ∗(t)

−Φ(s) a21(τ)η(t) + a22(τ)ζ(t) + βu(t) + ϕζ(t)

(18)

Then, substituting (14) and (16) into (18) yields:

V˙ (t) = χ̄(t) χ̇̄(t)

= gχ χ̄(t) f (t) − Φ(s)βguΔ(t)sgn χ̄τ(t)

= gχ χ̄(t) f (t) − gχ χ̄(t)Φ(s)βguΔ(t)sgn χ̄(t)

−gχ χ̄(t)Φ(s)βguΔ(t) sgn χ̄τ(t) − sgn χ̄(t)

(19)

If the LPV dynamic error manifold is outside of the convex set Ω
(see the following remark, i.e. χ̄(t) > cs(τu), where cs(τu) is a
positive value dependent on the upper bound of time-varying delay
(τu), then sgn( χ̄τ(t)) = sgn( χ̄(t)). Besides, Φ(s)βΔ(t) > 0
(Φ(s)Δ(t) < 0, and β < 0). Therefore, as the output scaling factor
gu meets the inequality in (15), (19) becomes

V˙ (t) ≤ gχ̇ χ̄(t) f (t) − Φ(s)βguΔ(t)

≤ −λ χ̄(t)
(20)

Since λ > 0, V˙ (t) is negative definite. Thus, the LPV dynamic error
is asymptotically stable, i.e. χ̄(t) → 0 as t → ∞ . As χ̄(t) → 0, it
meets (6) and subsequently the desired error dynamics in (7) is
achieved. As a result, the tracking error e(t) is also asymptotically
stable. Moreover, the solution of inequality in (20) for the initial
time t0 and the initial value χ̄(t0) can be expressed as

t − t0 ≤
χ̄(t0) − cs(τu)

λ
(21)

where t represents the time the operating point hits the boundary of
the convex set of the LPV dynamic error manifold in (11), t0

expresses the initial time and t − t0 denotes the finite time to
approach the convex set.
 
Remark: The convex set Ω of the LPV dynamic error is stated as
Ω = χ̄(t) χ̄(t) ≤ cs(τu)  where cs(τu) is a positive value dependent
on the upper bound of time-varying delay.

Finally, the procedure for the proposed LPV-based fuzzy control
is summarised as follows:

Step 1: Design an LPV dynamic error as (6) and then determine the
varying coefficients pj(τ) and q(τ) based on the desired error
dynamics (7).
Step 2: Calculate the difference between the LPV dynamic error
values and substitute it in its derivative.
Step 3: Choose the input scaling factors, i.e. gχ and gχ̇ such that the
values of the LPV dynamic error and its derivative are located in
[−1, 1].
Step 4: Select an output scaling factor gu so that it satisfies the
upper bound of inequality (15) for the stability requirement.
Step 5: Repeat Steps 2–4 to adjust control parameters gχ, gχ̇, and gu

if the output performance is not acceptable.

4 Simulation results and discussions
To verify the effectiveness, robustness, and performance of the
proposed control scheme, the simulations under different operating
conditions were conducted. The physical and suitable control
parameters of an AFR dynamic model were considered as
τs = 0.05; gχ = 0.5; gχ̇ = 0.05; gu = 5000; and kp = 0.01. A set of
delays with an increment of 0.1 s was conducted for
0.3 s ≤ τ ≤ 2.7 s. The external periodic disturbances were,
respectively, chosen as ϕη(t) = 0.01η(t)ζ(t)cos(10t) − 0.05 and
ϕζ(t) = − 0.05sin(2t) + 0.6. A desired second-order error
dynamics ë + 1.4ė + e = 0 was chosen, i.e. the system order n = 1,
that yields p0(τ) = − 0.5τsτ and q(τ) = 1.4 + 0.5τ . Furthermore,
the desired normalised AFR values were selected as 1, 1.2 and 1.4
during the different periods. In addition, the rich and lean AFR
switching values were also chosen as 0.6 and 1.5.

The proposed LPV-based fuzzy control as expressed in (14) was
applied to the internal dynamics of the AFR system with external
periodic disturbances in (5). Fig. 5a displays the response of the
LPV dynamic error which was converged towards a bounded set as
expected (close to zero). The motion profile of the LPV dynamic
error manifold in the phase plane was demonstrated (Fig. 5b).
These results showed that the motion trajectory of the LPV
dynamic error was asymptotically stable (its proof was given in
Section 3.2). In addition, the AFR tracking error was
asymptotically stable and followed the predefined desired error
dynamics. Both input and output tracking are shown in Figs. 5c and
d, respectively. It can be seen that the AFR tracking was
satisfactory in the presence of external disturbances. 

To further evaluate the extent of the robustness of the proposed
control scheme, different levels of uncertainty in determining the
time constant of the AFR internal dynamics were considered.
Results showed that adding time constants higher than the actual
time constant value lead to a little faster transient response and
almost no change in the steady-state response (Fig. 6). Conversely,
time constants lower than the actual value caused a slower transient
response (the results are not shown). These results demonstrated
that the proposed LPV-based fuzzy control scheme is not only
effectively capable of stabilising the AFR system with a large time-
varying delay but also it can compensate for external disturbances
and high level of uncertainty in the system parameters. 

In order to apply the proposed method in a practical setting,
investigating the effect of saturation in control input is necessary.
However, input saturation may make the system respond sluggish
or may increase maximum overshoot which may result in system
instability. In this simulation, as an initial step AFR of 3, i.e. 60%
of the peak value in Fig. 5d was used as the saturation level. Fig. 7
represents the AFR system responses subject to a 50% time
constant increase without and with input saturation. Evidently, the
transient response under the saturation became sluggish. Likewise,
Fig. 8 exhibits the same results under a 50% time constant
decrease. Although the input saturation indeed resulted in a more
sluggishness; they are still acceptable under the proposed LPV-
based fuzzy control. 

AFR is often run into the situation of the rich-lean-rich
switching. Thus, the switching response was examined to evaluate

Fig. 5  AFR system response with periodic disturbances under the
proposed LPV-based fuzzy control
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the performance of the proposed LPV-based fuzzy control (Fig. 9).
The results showed that the tracking performance for rich-lean-rich
AFR switching under a 50% more and less of a time constant was
still satisfactory. Based on these results, it can be concluded that
the proposed LPV-based fuzzy control can be effectively executed
under different operating conditions. 

In addition, the proposed control scheme was compared with a
baseline controller, a proportional–integral (PI) controller
C(s) = kp(1 + 1/Ts) combined with a parameter-varying Smith
predictor, Z(s) = 1/(τss + 1)(1 − e

−τs) (to compensate for the
varying time-delay), where the parameter T is chosen equal to the
time constant τs of the system. The control block diagram and
compared response are, respectively, shown in Figs. 10 and 11.
Fig. 11 shows that the baseline control always has a steady-state
error for any proportional gain, kp. These results revealed that the
proposed LPV-based fuzzy controller indeed outperformed the
baseline controller. 

5 Conclusions
Tracking of desired AFR values through the proposed LPV-based
fuzzy control for the internal dynamics of an AFR system is
achieved. Owing to the non-minimum phase characteristic caused
by the first-order Pade approximation of time-varying delay, the
internal dynamics of the AFR system has an unstable state. The
proposed solution scheme was: first, determine the LPV dynamic
error consisting of the unstable system state and AFR tracking
error with time-varying gains for handling both variables, i.e.
unstable system state and AFR tracking error; and second, use a
fuzzy control strategy to stabilise the LPV dynamic error. Results
showed that both the unstable state and the AFR tracking error
were stabilised when the proposed scheme was used. The closed-
loop system stability was guaranteed through Lyapunov stability
criteria. Finally, the simulation results demonstrated that the
proposed LPV-based fuzzy control yielded a high level of
robustness in spite of the presence of external disturbances, high
level of uncertainties and saturated control input. Moreover,
compared with a baseline controller, i.e. PI controller with Smith
predictor also displayed its advantages. Further, the performance of
rich-lean-rich AFR switching still remained satisfactory.
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