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H I G H L I G H T S

• Increased air CO2 and glyphosate coin-
cided with P. parvum HAB recurring ap-
pearance.

• HAB-impacted reservoirs were of higher
salinity.

• Watersheds of HAB-impacted reservoirs
had far smaller wetland areas.

• Increased air CO2 and glyphosate may
partly drive establishment of P. parvum
HAB.

• Higher salinity and wetland deficiency
may have facilitated HAB establishment.

G R A P H I C A L A B S T R A C T

A B S T R A C TA R T I C L E I N F O

Editor: Yolanda Picó This study examined the association of air, land, and water variables with the first historical occurrence and current
distribution of toxic Prymnesium parvum blooms in reservoirs of the Brazos River and Colorado River, Texas (USA).
One impacted and one reference reservoir were selected per basin. Land cover and use variables were estimated for
the whole watershed (WW) and a 0.5-km zone on either side of streams (near field, NF). Variables were expressed
in annual values. Principal component and trend analyses were used to determine (1) differences in environmental
conditions before and after the 2001 onset of toxic blooms in impacted reservoirs (study period, 1992–2017), and
(2) traits that uniquely discriminate impacted from reference reservoirs (2001–2017). Of thirty-three variables exam-
ined, two positively aligned with the reoccurring appearance of blooms in impacted reservoirs (air CO2 and herbicide
Glyphosate) and another two negatively aligned (insecticides Terbufos and Malathion). Glyphosate use was observed
throughout the study period but a turning point for an upward trend occurred near the year of first bloom occurrence.
While the relevance of the decreased use of insecticides is uncertain, prior experimental studies reported that increas-
ing concentrations of air CO2 andwater Glyphosate can enhance P. parvum growth. Consistent with prior findings, im-
pacted reservoirs were of higher salinity than reference reservoirs. In addition, their watersheds had far lower wetland
cover at NF andWW scales. The value of wetlands in reducing harmful algal bloom incidence by reducing nutrient in-
puts has been previously recognized, but wetlands can also capture pesticides. Therefore, a diminished wetland cover
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could magnify Glyphosate loads flowing into impacted reservoirs. These observations are consistent with a scenario
where rising levels of air CO2 and Glyphosate use contributed to the establishment of P. parvum blooms in reservoirs
of relatively high salinity and minimal wetland cover over their watersheds.

1. Introduction

Prymnesium parvum is a unicellular, mixotrophic haptophyte of world-
wide distribution found in marine waters, estuaries, and brackish inland
waters (Granéli et al., 2012; Roelke et al., 2016). This species can produce
compounds that are toxic tofishes and other aquatic organisms. In the USA,
harmful algal blooms (HABs) of P. parvum were first documented in the
Pecos River and other locations in Texas in the 1980s, but a large range ex-
pansion and intensification of the blooms were observed throughout the
south-central region of the country in the 2000s (Roelke et al., 2016). Im-
pacts to the economy and ecological integrity of affected areas have been
considerable (Oh and Ditton, 2005, 2008; Southard et al., 2010;
VanLandeghem et al., 2013).

Various abiotic environmental variables are known to influence
P. parvum growth and bloom formation. Its abundance has been positively
correlated with salinity in the range of ~1 to 10–12 psu (Guo et al., 1996;
Hambright et al., 2010, 2014; Lemley et al., 2019; Patiño et al., 2014;
Roelke et al., 2011; VanLandeghem et al., 2015a). As salinity rises further,
however, the salinity-abundance association becomes negative (Guo et al.,
1996; Israël et al., 2014; Lemley et al., 2019; Rashel and Patiño, 2017). The
concentration of certain ions in brackish waters, such as sulfate, also may
influence P. parvum growth independently of salinity (Moestrup, 1994;
Patiño et al., 2014; Rashel and Patiño, 2019). Other water quality factors
known to influence P. parvum growth are nutrient levels and temperature,
asmost toxic blooms in the USA occur in eutrophic waters during the cooler
months of the year (Roelke et al., 2016). Among atmospheric variables,
there is evidence suggesting that the timing (relative to bloom season)
and intensity of precipitation may influence the development of blooms
(Clayton et al., 2021), and that rising levels of atmospheric CO2 could en-
hance their intensity (Rashel, 2020).

Pesticides carried into streams and lakes by precipitation runoff could
also influence the spatial distribution and development of HABs. Various
pesticides are known to inhibit phytoplankton growth (DeLorenzo et al.,
2001; Halstead et al., 2014; Rumschlag et al., 2022; Smedbol et al., 2018;
Staley et al., 2015) and potentially could suppress P. parvum abundance.
However, P. parvum is relatively resistant to the herbicide Atrazine (Flood
and Burkholder, 2018; Yates and Rogers, 2011), suggesting that surfacewa-
ters containing Atrazine could selectively favor P. parvum growth. More-
over, P. parvum is not only tolerant to Glyphosate – the most widely used
herbicide in the USA and globally (Benbrook, 2016) – but its growth is en-
hanced by low, environmentally relevant concentrations of this herbicide
(Dabney and Patiño, 2018).

Little information is available concerning the association between HAB
occurrence and the types of land use over the watersheds of affected water
bodies. The few studies available that examined this association focused
primarily on nutrient sources (Beaver et al., 2014; Marion et al., 2017;
Rose et al., 2019) or their spatial coverage was limited to a single lake
(Ware, 2012). Harmful algal blooms commonly occur within or down-
stream of urban or agricultural areas, in part because these areas are
major sources of nutrients (Beaver et al., 2014; Clayton et al., 2021;
Marion et al., 2017; Rose et al., 2019; Ware, 2012). In the Southern Great
Plains of the USA, which includes Texas, however, many major reservoirs
are eutrophic or hypereutrophic regardless of their status as having been
impacted or not by P. parvum (Patiño et al., 2014). The latter observation
suggests that a nutrient-rich condition is by itself insufficient to explain
the distribution of P. parvum blooms.

This study provides a comprehensivemultivariate analysis of the associ-
ation of air, land, and water variables with the first historical appearance
and current spatial distribution of toxic blooms of P. parvum in major reser-
voirs of the Southern Great Plains. Study sites include P. parvum-impacted

and reference (non-impacted) reservoirs of the Brazos River and Colorado
River basins (Texas), which are among the most severely affected basins
in North America (VanLandeghem et al., 2013, 2015a). Other studies of
these two basins examined associations of water quality, lake inflow, and
selected biotic variables with P. parvum presence and bloom formation
(Clayton et al., 2021; Dawson et al., 2015; Patiño et al., 2014; Roelke
et al., 2007, 2011, 2013, 2016; VanLandeghem et al., 2012, 2015a,
2015b, 2015c), and a study of Lake Texoma (Red River, Texas and
Oklahoma, USA) reported the association of near-field land cover types
with P. parvum (Ware, 2012). However, watershed-scale studies of total-
environmental associations (including pesticides) have not been conducted
for P. parvum.

The first objective of this study was to determine overall differences in
environmental conditions before and after the 2001 onset of toxic blooms
in the impacted reservoirs of the study area (Southard et al., 2010), under
the working hypothesis that some of these temporal differences may be
causally associated with the first appearance and subsequent recurrence
of blooms. The period of record (POR) for this objective (1992–2017)
was delimited by the availability of pesticide data (Section 2.3.3), which
is an important variable for this study. The second objective was to charac-
terize environmental traits that discriminate or separate impacted from
reference reservoirs since the first appearance of toxic blooms (POR,
2001–2017), under the working hypothesis that attributes that are exclu-
sively shared by impacted reservoirs may explain their susceptibility to
P. parvum. The temporal scale of the environmental data used in this
study was annual and also determined by the available scales of two impor-
tant variables – pesticides and land cover (Section 2.3). While the annual
scale of these data precluded their close integration with infra-annual
bloom occurrences (sometimes lasting only a few weeks), environmental
data at annual scales are adequate to address the present study objectives,
which are framed within long-term temporal and landscape scales of toxic
P. parvum bloom distributions. The goal of this study is to inform efforts
of land and water managers to improve reservoir water quality and reduce
the risk of HAB incidence.

2. Methods

2.1. Study sites

Four reservoirs and their watersheds within two river basins of the
Southern Great Plains (Texas) were evaluated in this study. They are Pos-
sum Kingdom Lake and Waco Lake on the Brazos River, and E.V. Spence
Reservoir and Twin Buttes Reservoir on the Colorado River (Table 1). Pos-
sum Kingdom Lake and E.V. Spence Reservoir are mainstem reservoirs that
have experienced recurring blooms of P. parvum and associated fish-kill
events or toxicity detections since 2001 (Southard et al., 2010;
VanLandeghem et al., 2013, 2015b; Table S1). Waco Lake and Twin Buttes
Reservoir are on tributaries of their respective mainstems and have not ex-
perienced toxic blooms, and thus were designated as reference sites
(Table 1). These four reservoirs were selected based on prior studies of
the ecological impacts of P. parvum on fish communities (VanLandeghem
et al., 2013) and of long-term trends in hydrological variables and their as-
sociation with P. parvum at the landscape scale (Dawson et al., 2015; Patiño
et al., 2014). These earlier studies, however, did not address the influence
of land cover or pesticide use within the reservoir watersheds.

Possum Kingdom Lake was built in 1941 on the Brazos River (Archer,
2015). Its primary functions include municipal water supply, flood control,
recreation services, and hydropower generation (TexasWater Development
Board, 2022). The reference reservoir, Waco Lake, is on the North Bosque
River, a tributary to the Brazos River. Waco Lake was built in 1930 and
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its functions include provision of water to the City of Waco, flood control,
and recreational services (Conry, 2010).

E.V. Spence Reservoir was built in 1969 on the Colorado River, primar-
ily as a source of municipal water and for recreation (Hunt and Leffler,
2019). Twin Buttes Reservoir, the reference reservoir, was built in 1963
and is located on the Middle Concho River, a tributary to the Concho
River which, in turn, merges with the Colorado River at O.H. Ivie Reservoir
(Nickels and Mauldin, 2001). Its primary uses are as a source of water for
the City of San Angelo and for irrigation, power plant cooling, and
recreation (Texas Water Development Board, 2022; VanLandeghem et al.,
2013).

2.2. Watershed definitions

Reservoir watersheds were defined by hydrologic unit codes (HUC;
https://water.usgs.gov/GIS/huc.html) in ArcGIS version 10 (Fig. 1). The
10-digit HUC was used in most cases, but a 12-digit HUC was also used
for the Twin Buttes watershed in order to exclude the City of San Angelo,
which is downstream of the dam and therefore does not contribute inflow
(runoff) to the reservoir (Table S2).

The downstream end of all watersheds was the reservoir dam. For E.V.
Spence, the upstream end of its watershed was defined as the dam of the
next upstream reservoir on the mainstem, Lake J.B. Thomas, at approxi-
mately 200 river kilometers from the E.V. Spence dam. There is no up-
stream reservoir on the Brazos River mainstem for Possum Kingdom
Reservoir and in this case, a point approximately 200 river kilometers

upstream of the dam was considered as the watershed's upstream end. All
stream systems draining into the mainstem segments (Possum Kingdom,
E.V. Spence) or into the reference tributaries (Waco Lake, Twin Buttes)
were included within their respective watersheds.

2.3. Data acquisition

Variables used in this study included atmospheric data, land cover, ag-
ricultural pesticide use, and lake hydrology including water quality. Avail-
able periods of record (POR) differed among the various data types. To
allow inclusion of all variables in the analyses, the shortest POR available
became the POR for the study – this was for pesticides (1992 to 2017).
For the purpose of imputing missing data, however, longer PORs were se-
lectively used for some variables to increase data density and enhance the
reliability of imputed values (Section 2.4). Land cover and agricultural pes-
ticide use data are available only in annual values; therefore, all variables
for this study are presented in annual formats. Although annual values do
not allow evaluation of seasonal drivers or correlates of bloom formation,
the primary interest of this studywas to characterize ambient conditions as-
sociated with spatial and long-term temporal distributions of toxic blooms.
Hydrological variables were initially organized at seasonal scales for the
purpose of imputing missing seasonal values before estimating annual
values. Seasons were defined according to an earlier study of Colorado
River and Brazos River reservoirs (Dawson et al., 2015) as follows: Winter,
December–February; Spring, March–May; Summer, June–August; and Fall,
September–November.

Table 1
Characteristics of reservoirs from the upper Colorado River and Brazos River basins in Texas used in this study.

Reservoir River basin Surface area at
full pool (ha)

Storage at full capacity
(m3 × 106)

Whole watershed
area (ha)

Stream network near field
area (ha)

Possum Kingdom Brazos 7250 663 965,928 171,527
Waco Brazos 3314 234 421,930 160,271
E. V. Spence Colorado 5924 632 663,392 230,325
Twin Buttes Colorado 3675 229 866,172 168,481

Fig. 1.Map of Texas showing the location of the Brazos River and Colorado River basins and the studywatershedswith their stream networks (blue areas). The small red areas
on the downstream end of the watersheds show the reservoir locations, and the inset map shows the conterminous United States highlighting the state of Texas.
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2.3.1. Atmospheric variables
Data for cumulative daily precipitation and average daily air tempera-

ture were collected for a total of eight weather stations from the National
Climatic Data Center (http://www.ncdc.noaa.gov/), two in each water-
shed. One of the stations chosen for Possum Kingdom was discontinued
in 2015 (Graham); however, a new nearby station started recording data
that same year (Graham 0.9; Table S3). The selection of stations was
based on Dawson et al. (2015) and on their available POR. Daily precipita-
tion summaries were added to obtain cumulative monthly precipitation for
each station, and the average of the two stationswas used to estimate cumu-
lative annual precipitation for each watershed. Months withmore than five
consecutive days of missing data were considered incomplete (missing
value). Average daily temperature was used to calculate average monthly
and annual temperatures. Average annual atmospheric CO2 data were
downloaded from the National Oceanic and Atmospheric Administration
(Mauna Loa, Hawaii; https://gml.noaa.gov/ccgg/trends/data.html).
Values for atmospheric CO2 are global in scope, but they were included
with site-specific variables to evaluate their potential relative contribution
to the first appearance and spatial distribution of P. parvum blooms.

2.3.2. Land cover
Annual land cover data were obtained from the Land Change Monitor-

ing, Assessment, and Projection (LCMAP, Collection 1) of the U.S. Geolog-
ical Survey (USGS) (https://www.usgs.gov/core-science-systems/eros/
lcmap). This collection is composed of raster (30-m resolution) land cover
maps that classify land into seven types: cropland, developed, grass/
shrub, barren, tree cover, water, and wetland. Because land cover near to
the streams may have higher influence on water quality than more distant
areas (Medalie et al., 2020; Tran et al., 2010), a near-field zone (NF) with a
width of 0.5 km on either side of all streams within eachwatershed was de-
veloped and land cover data for those zones were extracted. The LCMAP
maps were masked by the NF zone and whole-watershed (WW) zone poly-
gons, and area fields were added to the attribute tables to calculate the area
of each cover type for each zone using the field calculator. (Note: the term
“near field” used in this study refers to proximity to the stream network
within the watershed, and not solely to distance from or around the
reservoir.)

2.3.3. Pesticide use
The fivemost widely used agricultural herbicides, insecticides, and fun-

gicides in Texas (total of 15 pesticides) at the beginning of the study period
(Gianessi and Anderson, 1995) were selected for this study (Table S4).
County-level annual use data were obtained from the Pesticide National
Synthesis Project (PNSP) of the USGS (https://water.usgs.gov/nawqa/
pnsp/usage/maps/county-level/). The maximum available POR for pesti-
cide data at the time of this study was from 1992 to 2017. The PNSP pro-
vides two datasets, one with low-estimates (EPest-low) and the other with
high-estimates (EPest-high). They differ in that when a Crop Reporting
District (CRD) is surveyed but a particular pesticide is not reported for a
given pesticide by crop combination, their values are assumed to be zero
for the EPest-low estimates and missing for the EPest-high estimates. The
EPest-high is then calculated based on values reported by neighboring
CRDs (Baker and Stone, 2015). For this study, EPest-high estimates of
each pesticide were collected for all counties within or overlapping with
the studywatersheds (Table S5). After data processing (Section 2.4), annual
pesticide values for each watershed were assessed as the sum of all county
values corrected by the fraction of the county area within the watershed
(WW zone). Agricultural pesticide use within the NF zone was estimated
by correcting for the fraction of cropland cover within the NF zone.

2.3.4. Reservoir storage and discharge
Daily storage data were obtained from the Texas Water Development

Board (https://www.twdb.texas.gov/surfacewater/rivers/reservoirs/) and
daily discharge data from the National Water Information System Mapper
Interface of the USGS (https://maps.waterdata.usgs.gov/mapper/). Dis-
charge gages below the dam of each reservoir were used, except for Twin

Buttes Reservoir, which does not have a gage below the dam (Table S3). Av-
erage monthly values were calculated from daily values and used to obtain
average seasonal data, and when values were available for only one month,
the single value was used as representative for the season. Seasons without
data were considered missing values.

2.3.5. Reservoir water quality
Surface water quality variables initially considered include chlorophyll,

pheophytin, orthophosphate, specific conductance, dissolved oxygen, pH,
transparency, total alkalinity, total phosphorus, nitrate, ammonia nitrogen,
total Kjeldahl nitrogen, chloride, and sulfate. Data were obtained from the
SurfaceWater QualityWeb Reporting Tool of the Texas Commission on En-
vironmental Quality (https://www80.tceq.texas.gov/SwqmisPublic/index.
htm). Two stations were selected and averaged for each reservoir except for
Twin Buttes where only one station was available (Table S3). One station
was located in the upstream reach of the reservoir and the other in the
downstream reach, typically by the dam. Available monthly data were av-
eraged to obtain seasonal values, and when values were available for only
one month, the single value was used as representative for the season. As
noted by Dawson et al. (2015), temporal biases caused by uneven within-
year distribution of water quality data are assumed to occur randomly in
any given year and thus become unbiased over the long term. Seasons with-
out any datawere consideredmissing values. Air temperature was used as a
proxy for surface water temperature to avoid the need for imputation
(Sections 2.3.1 and 2.4).

2.4. Imputation of missing data

There were no missing data for air CO2 and temperature (Table S6). In
regard to precipitation, the Waco Lake watershed had complete datasets
and other watersheds only had 0.4–4%missing values. Waco Lake and Pos-
sum Kingdom Lake had complete storage datasets and other lakes had only
small fractions of missing data (1–2%; Table S6). There is no flow gage im-
mediately downstream of Twin Buttes and discharge data for this reservoir
are unavailable; other reservoirs had 0–15% missing discharge data
(Table S6). Among pesticides, Glyphosate and 2,4-D had no missing obser-
vations and several additional pesticides had near-complete datasets
(Table S6). Various other variables, however, had larger fractions of miss-
ing observations. Alkalinity, ammonia, orthophosphate, pheophytin, total
Kjeldahl nitrogen, Copper, and Maneb were excluded from further analysis
because they had >75% missing data (Table S6). Similar cut-off levels for
imputation have been used by other studies (Madley-Dowd et al., 2019;
VanLandeghem et al., 2015b).

Missing monthly precipitation data were imputed with the average of
all available values for the missing month within discrete 10 year-intervals
between 1990 and 2019. For example, if precipitation of May 2015 was
missing for the E.V. Spence watershed, the average of May precipitation
values from 2010 to 2019was used to impute themissing value for this wa-
tershed. Time intervals for this analysis were 1990–1999, 2000–2009, and
2010–2019.

For water quality variables and lake discharge and storage data, missing
observations in seasonal data (i.e., when all threemonths of a season had no
data) were imputed for each reservoir separately using a multiple imputa-
tion (MI) approach in IBM SPSS Statistics for Windows, Version 26 (IMB
Corp., Armonk, NY, USA). Ten complete-case datasets were created, and
their averages were used to calculate annual values. The MI procedure
uses a Markov Chain Monte Carlo Gibbs' sampling algorithm that assumes
data are missing randomly (Hopke et al., 2001; Yuan, 2011). A POR of
1985 to 2020 was used for these imputations, which is slightly longer
than the study POR (1992–2017). The extended POR increased the density
of data and was assumed to enhance the reliability of the imputed values.
For annual pesticide use values, original datasets were organized by county
for all 15 pesticides, and county-wise MI was performed as described for
water variables to impute missing values.
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2.5. Data analysis

2.5.1. Principal component analysis
Principal component analysis (PCA) is a multivariate analytical proce-

dure that reduces complex datasets of multiple variables to a lesser number
of orthogonal variables, or principal components (PCs), while retaining
most of the original variation in the data. The importance of the original
variables to each PC is measured by their factor loading value (0–|1|).
This procedure is especially useful for visual exploration of data patterns
in PC biplots, where data points that group together in multivariate space
share similar characteristics (Jolliffe, 2002, 2005). The PC or combination
of PCs that best separates data according to a grouping factor of interest
can then be used to evaluate which original variables contribute the most
to the separation. PCA was used to examine spatiotemporal patterns in
the distribution of multivariate environmental data without drawing statis-
tical inferences. The statistical significance of temporal trends in individual
variables was assessed by trend analysis (Section 2.5.2).

Some of the variables used in this study were correlated with each
other; for example, the salinity-associated variables specific conductance,
chloride, and sulfate. Inclusion of correlated (colinear) variables can inflate
estimates of the variance explained for the PC on which the variables load.
We did not eliminate correlated variables from the analysis because this
would require assuming that all associations involving these variables can
be represented in nature by any one of the correlated variables. In the
case of salinity-associated variables, however, specific effects of chloride
(Talarski et al., 2016) and salinity-independent effects of sulfate (Rashel
and Patiño, 2019) have been shown for P. parvum. This study thus reports
but does not interpret the variance explained by the selected PCs.

The first objective of this study was to establish differences in environ-
mental conditions in the impacted reservoirs before and after 2001, the
year when toxic P. parvum blooms were first reported in the impacted
lakes. To address this objective, PCA was conducted with data from E.V.
Spence Reservoir and Possum Kingdom Lake using the time periods before
(1992–2000) and after (2001–2017) the onset of blooms (POR,
1992–2017) as grouping factor. Prior to analysis, variables were normal-
ized (proc rank) using the Blommethod (Blom, 1958) in SAS 9.4 (SAS Insti-
tute Inc., Cary, NC, USA). The PCA was done in GraphPad Prism 8.4.0
(GraphPad Software, San Diego, California, USA), which allows PC selec-
tion based on Parallel Analysis – a selection method that objectively deter-
mines howmany PCs to retain. Original variableswith factor loading values
≥|0.60| in the selected PCs were interpreted in this study. Separate analy-
ses were done using WW and NF estimates of land cover and pesticide use.

The second objective of the study was to characterize environmental
traits that uniquely discriminate impacted from reference reservoirs since
toxic blooms began in 2001. To address this objective, data from all four
reservoirs were included in a PCA with the POR of 2001–2017, and the
grouping factor was reservoir classification as having been historically im-
pacted or not by toxic blooms. Data processing, PCA procedures, and data
pattern evaluations were conducted as previously described. Discharge
data were not included in this analysis because it was unavailable for
Twin Buttes Reservoir.

2.5.2. Trend analysis
Temporal trends (environmental variable vs year) were estimated to

complement and aid in the interpretation of PCA results. The nonparamet-
ric Kendall's Tau b test was calculated using Tibco Statistica 13.3 (Tibco
Software, Inc., Palo Alto, CA, USA). Kendall's Tau b coefficient (τ) provides
a measure of the strength and direction of the temporal association (Helsel
and Hirsch, 2002). This analysis was done on untransformed data (POR,
1992–2017) and separately for each site. Statistical significances of trends
within each site were estimated in GraphPad Prism using the False Discov-
ery Rate approach (Benjamini et al., 2006), which reports q-values (gener-
ated from the original p-values) with a significance threshold of 0.05
(discoveries). For land cover and pesticide use, trends were estimated
usingWW and NF data. Heat maps of τ-values were developed in GraphPad
Prism to evaluate general patterns of change across the landscape.

3. Results

Principal component analysis of data from the two impacted sites
(Possum Kingdom, E.V. Spence) included a total of thirty-three variables
and resulted in the selection of two PCs in both the NF and WW analyses
(Tables 2, S7). With few exceptions, factor loading values and patterns
were similar between the NF andWWanalyses. Thefirst component clearly
separated data from the two reservoirs and was defined by air
(e.g., precipitation), reservoir water quantity (e.g., storage), water quality
(e.g., salinity), and land cover variables (Fig. 2). (Salinity is used here to col-
lectively refer to specific conductance and the two major anions that con-
tribute to salinity in the study reservoirs – chloride and sulfate.) Several
pesticides also contributed to the separation along PC1, some as strongly
(e.g., factor loading values > |0.60|) as the other variable types (Table 2).
Principal component 2 separated data grouped according to temporal pe-
riod (1992–2000 vs 2001–2017) – and is therefore the primary interest of
this study – but the clustering of data was not as distinct as it was along
PC1 (Fig. 2). Atmospheric CO2 was the strongest contributor to PC2
(Table 2). Among the pesticides, Glyphosate, Malathion, and Terbufos
were the strongest contributors to data separation along PC2 (Table 2;
Table S7). Atmospheric CO2 and Glyphosate use values were higher since
the start of toxic blooms in 2001, while Malathion and Terbufos use were
lower (Fig. 2). Land cover, hydrological and water quality variables on
PC2 did not meet the interpretation criterion (Tables 2, S7; Fig. 2).

Table 2
Principal component analysis of near-field and whole-watershed environmental
data from Prymnesium parvum-impacted study reservoirs in Texas (period or record,
1992–2017). Factor loadings≥ |0.6| are shown for variables in the first two princi-
pal components (PC) retained by the analysis. Eigenvalues, and proportional and cu-
mulative variance are also shown for each PC. See Table S7 for full listing of loading
factors.

Variable Near field Whole watershed

PC1 PC2 PC1 PC2

Atmospheric CO2 −0.87 −0.89
Air temperature
Precipitation −0.69 −0.69
Discharge −0.89 −0.88
Storage −0.90 −0.90
Specific conductance 0.86 0.86
Chloride 0.69 0.68
Sulfate 0.90 0.90
Dissolved oxygen 0.67 0.66
pH
Total phosphorus 0.75 0.75
Chlorophyll 0.80 0.80
Transparency −0.72 −0.71
Barren 0.75 0.77
Cropland 0.77
Developed 0.74 0.75
Grass/shrub 0.89 0.88
Tree cover −0.80 −0.81
Water cover −0.91 −0.90
Wetland −0.80 −0.81
2,4-D −0.66 −0.66
Atrazine
Glyphosate 0.67 −0.61 0.66 −0.63
Metolachlor
Trifluralin 0.72 0.73
Carbaryl
Chlorpyrifos −0.65 −0.65
Dimethoate
Malathion 0.75 0.74
Terbufos 0.86 0.86
Chlorothalonil
Quintozene 0.72 0.73
Sulfur −0.60
Eigenvalue 13.9 4.8 14.4 4.5
Proportion of total variance (%) 42.0 14.6 43.7 13.7
Cumulative variance (%) 42.0 56.6 43.7 57.4
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Analysis of data from all four reservoirs (POR, 2001–2017) included a
total of thirty-two variables (discharge was excluded from this analysis be-
cause it was unavailable for Twin Buttes) and resulted in the selection of
four PCs in theNF andWWanalyses. The original variables that contributed
to each PC and the distribution of data in the biplots, however, varied be-
tween the NF andWWanalysis (Tables 3, S8; Fig. 3). In the NF analysis, sep-
aration of impacted from reference reservoirs was primarily associatedwith
PC2 for the Colorado River basin (E.V. Spence and Twin Buttes) and

primarily with PC3 for the Brazos River basin (Possum Kingdom and
Waco Lake) (Fig. 3). Salinity-associated variables (specific conductance,
chloride, sulfate), chlorophyll, wetland cover, and several pesticides con-
tributed to PC2, whereas storage, transparency, and barren areas contrib-
uted to PC3 (Table 3). The overall separation of impacted from reference
reservoirs was therefore not based on a single PC but on the combination
of PC2 and PC3 (Fig. 3). To facilitate visualization of the original variables
that contributed to the separation of impacted from reference reservoirs in
both basins combined, a polygon was traced around each of the two data
groups and factor loading vectors that best separate the polygons were in-
cluded in the biplot (Fig. 3; see Fig. S1 for the full vector plot). Inspection
of the biplot indicated that the primary variables associatedwith the overall
separation of impacted from reference reservoirs are salinity-associated
variables (higher values in impacted reservoirs) and wetland area (lower
values in impacted reservoirs) (Fig. 3). Principal component 1 was domi-
natedby a number of land cover andpesticide variables and PC4was driven
primarily by air CO2 (Table 3), but neither of these PCs individually or in
combination with other PCs yielded information useful for addressing the
study objectives.

Fig. 2. Biplots of principal components (PC) 1 and 2 from analysis of environmental
data for Prymnesium parvum-impacted reservoirs, Possum Kingdom Lake and E.V.
Spence Reservoir in Texas (period of record, 1992–2017). Data are grouped accord-
ing to time period before (1992–2000) and after (2001–2017) the first appearance
of toxic blooms. NF, near field; WW, whole watershed; DO, dissolved oxygen, P,
phosphorus.

Table 3
Principal component analysis of near-field and whole-watershed environmental
data from all fours study reservoirs in Texas (period of record, 2001–2017). Factor
loadings≥ |0.6| are shown for variables in the first four principal components (PC)
retained by the analysis. Eigenvalues and proportional and cumulative variance are
also shown for each PC. See Table S8 for full listing of factor loadings.

Variable Near field Whole watershed

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Atmospheric
CO2

−0.88 −0.85

Air
temperature

Precipitation 0.68 −0.73
Storage 0.62 −0.63 −0.66 −0.62
Specific
conductance

−0.81 0.66 −0.63

Chloride −0.76 −0.63
Sulfate −0.85 0.68 −0.60
Dissolved
oxygen

pH
Total
phosphorus

Chlorophyll −0.67
Transparency −0.76 −0.75
Barren 0.72
Cropland 0.88 0.77
Developed 0.79 0.79
Grass/shrub −0.94 0.80
Tree cover 0.94 −0.80
Water cover 0.71 −0.66 −0.70
Wetland 0.83 −0.70 0.64
2,4-D 0.88 −0.69
Atrazine 0.85 0.62
Glyphosate −0.73 0.74
Metolachlor 0.73
Trifluralin −0.79 0.83
Carbaryl 0.90 −0.80
Chlorpyrifos 0.81
Dimethoate
Malathion 0.68 0.80
Terbufos 0.81
Chlorothalonil 0.79
Quintozene −0.69 0.72
Sulfur 0.80
Eigenvalue 11.7 5.9 3.6 2.2 9.1 4.8 3.8 3.0
Proportion of
total
variance (%)

36.6 18.3 11.3 6.8 28.6 15.1 11.9 9.3

Cumulative
variance (%)

36.6 54.9 66.2 73.0 28.6 43.7 55.6 64.9
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In theWWanalysis of all four reservoirs, PC1 separated river basins and
PC2 separated impacted from reference reservoirs (Fig. 3). The PC1-PC2
biplot thus provided clear separation of multivariate data by basin and by
lake status (impacted vs reference). Notable differences between basins
(PC1 axis) included lower values of precipitation, lake storage, water and
wetland cover, and higher values of salinity in the Colorado River than
the Brazos River (Fig. 3). Variables associated with PC2, which clearly sep-
arated impacted from reference reservoirs, included the same variables that
separated reservoir groups in the NF analysis; namely, wetland area (higher
values in reference reservoirs) and salinity-associated variables (higher

values in impacted reservoirs) (Fig. 3). In addition, impacted reservoirs
had higher levels of transparency and storage, and their watersheds had
higher levels of water cover and lower application rates of Atrazine. The
other two PCs did not associate with separation of basin or reservoir groups
– PC3was defined by cropland and developed areas and PC4 by air CO2 and
Malathion (Table 3).

Heat maps of trend coefficients for individual variables during the pe-
riod between 1992 and 2017 showed that Glyphosate use increased, and
Malathion and Terbufos use decreased at the WW and NF scales not only
in the impacted-lake watersheds but also the reference watersheds
(Fig. 4), and these trends were statistically significant (Tables S9–S12).
Scatterplots of Glyphosate use in watersheds of impacted and reference res-
ervoirs showed this herbicide was already in use since the early 1990s.
However, a turning point for an upward trend was observed in the late
1990s to early 2000s at NF or WW scales in all watersheds, except the
trend was of much lesser magnitude in the Twin Buttes reservoir, where a
clear turning point was not observed until late in the POR (Fig. S2). Carba-
ryl showed a consistent negative trend in all watersheds at the NF or WW
scales (Fig. 4) but was not statistically significant at the NF scale in the
Twin Buttes watershed (Tables S9–S12). Trends for other pesticides were
inconsistent or not statistically significant between the impacted-lake wa-
tersheds or among all watersheds (Fig. 4; Tables S9–S12). Wetland cover
generally decreased in all watersheds at the NF and WW scales (Fig. 4), ex-
cept the trend was not significant at the NF scale in the Possum Kingdom
and Twin Buttes watersheds (Tables S9–S12). Water cover significantly de-
creased in watersheds of impacted reservoirs and at the NF scale in the wa-
tershed of Twin Buttes, but significantly increased at both scales in the
Waco watershed (Fig. 4; Tables S9–S12). Cropland cover significantly de-
creased at the NF and WW scales in the E.V. Spence watershed but did
not significantly change in the other watersheds at either scale (Fig. 4;
Tables S9–S12); it should be noted, however, that Twin Buttes cropland
cover at the NF scale was 3–4 times higher in 2017 than in the preceding

Fig. 3. Biplots of principal components (PC) 2 and 3 from near-field (NF) and PC 1
and 2 from whole-watershed (WW) analysis of environmental data for all study
reservoirs in Texas (period of, 2001–2017). Prymnesium parvum-impacted reservoirs
include Possum Kingdom Lake and E.V. Spence Reservoir, and reference reservoirs
includeWaco Lake and Twin Buttes Reservoir. Data are grouped by type of reservoir
as P. parvum-impacted (Impacted) or reference (Not impacted). Polygons were
traced around each group in the NF plot and factor loading vectors that best sepa-
rate the polygons are shown (see also Fig. S1). The salinity vectors include specific
conductance, chloride, and sulfate. P, phosphorus.

Fig. 4.Kendall Tau correlation coefficient heatmap for land cover and pesticide use
variables for all four study sites in Texas at the whole-watershed (WW) and near-
field (NF) scales.
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years (not shown), which at least partly explains why NF-corrected Glyph-
osate use increased considerably in 2017 (Fig. S2). Trends in the other land
cover types were either not consistent between impacted sites or not signif-
icant (Fig. 4; Tables S9–S12). Among water variables, the only trend that
was statistically significant and changing in the same direction (negative)
in the two impacted reservoirs and in Twin Buttes was transparency
(Fig. 5; Table S13). Other water quality trends were either changing in
the opposite direction (chlorophyll) among impacted reservoirs or were
not statistically significant (Fig. 5; Table S13). Air CO2 showed a significant
positive trend from 1992 to 2017 (Fig. 5; Table S13).

Summaries of descriptive statistics for all variables analyzed in this
study are presented in Tables S14–S18.

4. Discussion

4.1. Environmental differences between the Brazos River and Colorado River ba-
sins

The Brazos River and Colorado River basins vary in their underlying ge-
ology, land cover and use, and climate. As expected from prior knowledge,
differences between the two basins over the study watersheds were
observed for precipitation (higher in the Brazos River; Dawson et al.,
2015) and land cover patterns (different ecoregions; Elliott et al., 2014).
When reservoirs within each group (i.e., impacted or reference) were
separately compared between basins, some differences in water quantity
(e.g., storage; respectively higher in Brazos River reservoirs) and quality
(e.g., salinity; higher in Colorado River reservoirs) also were noted. In addi-
tion, some differences were observed between basins in the use of several
agricultural pesticides (e.g., higher use of 2,4-D and Carbaryl in the Brazos
watersheds and higher use of Glyphosate, Trifluralin, andQuintozene in the
Colorado watersheds at theWW scales; Fig. 3). These landscape differences
between basins are not directly relevant to the study objectives but
they provide additional context to evaluate those variables associated
with the first appearance and subsequent reoccurrence of P. parvum blooms

in impacted reservoirs (Objective 1) and with overall differences in
environmental conditions between impacted and reference reservoirs
(Objective 2).

4.2. Environmental variables associated with the first appearance of toxic
P. parvum booms in impacted reservoirs

Associations among a total of thirty-three air, land, and water variables
were examined for Possum Kingdom Lake (Brazos River) and E.V. Spence
Reservoir (Colorado River) watersheds. The 26-year period of analysis
(1992–2017) bracketed the year of first appearance of toxic blooms,
2001, which was then followed by a range expansion and bloom intensifi-
cation over the next 10+ years (Roelke et al., 2016). Reports of fish-kill
events seemed to decline in the 2010s, but toxic conditions linked to
P. parvum continued to develop through the end of the study period
(Table S1). Because of the temporal nature of the grouping variable for
this analysis, results represent multivariate temporal trends. Air CO2 was
one of four variables that showed a strong temporal alignment with data
group separation, and its alignment was positive. Although causal mecha-
nisms cannot be ascertained from associational studies, there is experimen-
tal evidence indicating that bloom intensity in P. parvum (Rashel, 2020) –
and also in the harmful cyanobacterium Microcystis aeruginosa (Verspagen
et al., 2014) – can be enhanced by rising levels of atmospheric CO2 within
an environmentally relevant range. In nutrient-rich waters, intense algal
blooms can cause the depletion of dissolved inorganic carbon, which conse-
quently can become the growth-limiting nutrient. Under these conditions,
higher levels of air CO2 are likely to provide relief from carbon limitation
and allow the formation of even denser blooms (Verspagen et al., 2014).
Impacted reservoirs of this study are eutrophic/hypereutrophic (Patiño
et al., 2014). Therefore, a role for increasing levels of air CO2 as a contrib-
utor to the intensification of P. parvum blooms during the first 10+ years
since their first appearance seems plausible (Table S1). This proposed rela-
tionship, however, may not be linear before or after 2001. Variability in
other conditions may also be at play. Alkalinity and nutrient (N, P) levels,
for example, can influence the development of carbon limitation during
blooms (Verspagen et al., 2014).

Three pesticides ranked equal or close to air CO2 in their strength of
alignment with temporal data separation at both NF and WW scales. They
were the herbicide Glyphosate and the insecticides Terbufos and Mala-
thion. The association was positive for Glyphosate and negative for the in-
secticides. Most herbicides (Halstead et al., 2014; Rumschlag et al., 2022)
including Glyphosate (Smedbol et al., 2018) are generally toxic to algae.
However, P. parvum is not only resistant to Glyphosate but its growth is en-
hanced by environmentally relevant concentrations of this herbicide
(Dabney and Patiño, 2018). Notably, Glyphosate at low concentrations
also enhances growth of M. aeruginosa (Zhang et al., 2016). Glyphosate
has been commercially available in the USA since 1974 and its application
rate increased dramatically after Glyphosate-tolerant crops became avail-
able in 1996 (Benbrook, 2016). In the impacted watersheds of the present
study, Glyphosate was already in use for at least 10+ years prior to 2001
and upward trends were observed in the late 1990s (E.V. Spence water-
shed) or early 2000s (Possum Kingdom watershed). These trends coincide
with the time when major range expansions and intensification of
P. parvum blooms were observed in the south-central USA (Roelke et al.,
2016). These observations are consistent with a scenario where the in-
creased use of Glyphosate over the study POR (1992–2017), and especially
since the turn of the century, may have contributed to the development of
intense P. parvum blooms in impacted reservoirs.

Terbufos and Malathion can be directly toxic to some algal species
(DeLorenzo et al., 2001; Rämö et al., 2016; Staley et al., 2015; Tien and
Chen, 2012). A mesocosm study, however, found that these two insecti-
cides indirectly caused phytoplankton abundance to increase, via their
toxic effects on grazers (Rumschlag et al., 2022). Clarification of the rele-
vance to P. parvum blooms of the decreased use of Terbufos and Malathion
during the study period would require an understanding of their toxicity
against this harmful alga. It should be noted that trend analysis confirmed

Fig. 5. Kendall Tau correlation coefficient heat map for air and water variables for
all four study sites in Texas. P, phosphorus; DO, dissolved oxygen.
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the statistical significance and direction of change for the three pesticides
during the study period – positive for Glyphosate and negative for the
insecticides.

Variables that failed to meet interpretation criteria in the multivariate
analysis but individually showed statistically significant and consistent
trends (changing in same direction) in the two impacted reservoirs or
their watersheds include use of the insecticide Carbaryl (negative trend),
which can be toxic to algae (Rumschlag et al., 2022); water cover (negative
trend) at NF andWW-scales andwetland atWW-scale, whichmay suggest a
degree of watershed desertification during the study period; and water
transparency (negative trend). The relevance of decreased transparency is
difficult to interpret because our data are reported in annual scales and
large fluctuations in transparency due to flooding (increased suspended
material) or changes in algal biomass can occur at shorter, infra-annual
scales. Transparency was not an important variable in the PCA and is not
further discussed.

Changes in the aforementioned environmental conditions in impacted
reservoirs and their watersheds were also generally observed in at least
one of the reference sites, and rising levels of air CO2 are a global phenom-
enon. Therefore, any scenario where these environmental changes are pro-
posed to have contributed to the first appearance and reoccurrence of
blooms in impacted reservoirs would also have to consider reasons why
blooms have not occurred in reference reservoirs. This question was ad-
dressed by identifying environmental conditions that are exclusively
found in impacted reservoirs and by exploring their potential association
with P. parvum.

4.3. Environmental traits unique to P. parvum-impacted reservoirs

The primary variables that served to discriminate impacted from refer-
ence reservoirs were salinity-associated variables (specific conductance,
chloride, sulfate) and wetland area at the NF scale, and they were also
among the primary variables at theWW scale. Namely, impacted reservoirs
were of higher salinity and their watersheds had smallerwetland areas both
in proximity to their stream systems and over their entirewatersheds. Salin-
ity has been previously recognized as an important variable for P. parvum
growth (Baker et al., 2007, 2009; Hambright et al., 2014; Rashel and
Patiño, 2017). Thus, the higher salinity of impacted reservoirs may be
among the most relevant of their unique traits that allowed the establish-
ment of P. parvum blooms. This conclusion is consistent with that of an ear-
lier retrospective field study that was based solely on an assessment of
water quality variables (Patiño et al., 2014). Minimum levels for bloom oc-
currence in reservoirs of the Brazos and Colorado River basins are 0.5–0.6
psu (Patiño et al., 2014; Roelke et al., 2011), and in this study the average
salinity values estimated from specific conductance (POR, 2001–2017)
were above and below this threshold for impacted (Possum Kingdom
Lake, 1.7 psu; E.V. Spence Reservoir, 2.5 psu) and reference (Waco Lake,
0.2 psu; Twin Buttes Reservoir, 0.4 psu) reservoirs, respectively. Also con-
sistent with an earlier field study (Patiño et al., 2014) is the higher level
of sulfate in impacted reservoirs, which suggests a role for this anion as a
factor contributing to the establishment of toxic blooms independently of
salinity (Rashel and Patiño, 2019).

The difference in wetland cover between reference and impacted study
sites was substantial. In the Colorado River, the average wetland cover
(2001–2017) in the reference site (Twin Buttes) was 28-times larger than
in the impacted site (E.V. Spence) at the NF scale (1.42 vs 0.05%) and 17-
times larger at the WW scale (0.66 vs 0.04%) (summarized in Table S19).
In the Brazos River, wetland cover was 10- and 11-times larger in Waco
Lake than Possum Kingdom Lake watersheds at the NF (4.37 vs 0.43%)
andWW (2.34 vs 0.21%) scales, respectively. Wetlands can retain nutrients
carried by stormwater runoff (Zedler, 2003), and previous studies describ-
ing negative associations between wetland cover and HAB occurrence
(Bullerjahn et al., 2016;Ware, 2012) explained these associations primarily
on the basis of nutrient loading. Most reservoirs within the present study re-
gion, however, are eutrophic or hypereutrophic regardless of P. parvum-
impacts (Patiño et al., 2014). Also, total phosphorus concentration (annual

averages) did not contribute to the separation of impacted from reference
reservoirs. Therefore, the negative association between wetland cover and
P. parvum distribution in the present study may not be due to the long-term
differential effect of wetlands on reservoir nutrient loading. At smaller time
scales, however, greatly reduced wetland cover could still influence the
likelihood of P. parvum HAB formation in the impacted sites. Wetlands
can capture nutrients (from runoff or during flooding) in near real time
and therefore acutely influence nutrient loads at specific time points
(Mitsch and Gosselink, 2000). Watersheds with smaller wetland areas
would therefore generate stormwater runoff carrying relatively large
amounts of nutrients, which in turn could enhance the risk of blooms if
the precipitation event occurs at the appropriate time of the year. For exam-
ple, a recent study of an impounded urban stream system reported a real-
time association between a large flooding event at the beginning of the
fall bloom season and the formation of a dense P. parvum bloom (Clayton
et al., 2021).

Wetlands can also capture a wide variety of pesticides from agricultural
runoff, including Glyphosate (Vymazal and Březinová, 2015). Although the
application rate of Glyphosate also generally increased in reference water-
sheds during the study period (see also Section 4.2), their much larger wet-
land cover may retain correspondingly larger fractions of the herbicide
compared to impacted reservoirs. Given Glyphosate's positive effect on
P. parvum growth (see Section 4.2), the smaller wetland cover of impacted
sites may have served a permissive or facilitatory role in the establishment
of P. parvum blooms by allowing higher amounts of Glyphosate to reach the
reservoirs. Validation of this scenario would require direct measurement of
Glyphosate and its metabolites in the study reservoirs, as their absolute and
relative concentrations depend on distance from the application sites
(Medalie et al., 2020).

Multivariate analysis at the WW scale also showed a lower use of Atra-
zine inwatersheds of impacted sites, but the relevance of this observation is
uncertain because P. parvum seems to be resistant to this herbicide (Flood
and Burkholder, 2018; Yates and Rogers, 2011). Also, while watershed
water cover and lake storage were larger in impacted sites, these observa-
tions may be spurious as P. parvum blooms have been observed in water
bodies far smaller than those of the present study (VanLandeghem et al.,
2012; Clayton et al., 2021). Lastly, transparency was positively associated
with impacted reservoirs (WW scale only) but as already noted
(Section 4.2), in the present study the association of transparency with
P. parvum is difficult to interpret.

5. Summary and conclusions

From a pool of thirty-three air, land, and water variables examined in a
multivariate context, this study identified four that are strongly aligned in a
temporal manner with the first appearance of P. parvum blooms in major
reservoirs of the Southern Great Plains. Namely, air CO2 concentration
and agricultural use of the herbicide Glyphosate increased during a 26-
year period bracketing the first appearance of toxic P. parvum blooms in
2001, and use of the insecticides Terbufos and Malathion decreased. Al-
though there is insufficient information to judge the relevance of the de-
creased use of insecticides, prior experimental studies have found that
increasing concentrations of air CO2 (Rashel, 2020; Verspagen et al.,
2014) and water Glyphosate (Dabney and Patiño, 2018; Zhang et al.,
2016) can enhance growth of harmful algae, including P. parvum.

Salient differences between impacted and reference sites were the
higher salinity and far smaller wetland cover of the former at both the NF
andWW scales. The finding of higher salinity in impacted reservoirs is con-
sistent with earlier observations about minimum salinity requirements for
P. parvum bloom development in the study basins (Patiño et al., 2014;
Roelke et al., 2011). However, the relevance of minimal wetland coverage
to the establishment of P. parvum blooms in impacted sites may not be re-
lated to the watershed's decreased ability to retain nutrients (even if it
occurred), as is generally assumed for HABs elsewhere (Bullerjahn et al.,
2016). Reference reservoirs of the present study have been classified as eu-
trophic and are considered capable of supporting high algal biomasses

S. Tábora-Sarmiento et al. Science of the Total Environment 836 (2022) 155567

9



(Patiño et al., 2014). An alternative scenario suggested by this study is the
decreased ability of wetland-deficient watersheds to retain other HAB-
enhancing factors, such as Glyphosate.

In conclusion, results of this study are consistent with a scenario where
the first occurrence and current distribution of toxic P. parvum blooms in
reservoirs of the Southern Great Plains are the result of a combination of
changing (driving) and long-existing (permissive) factors which together
increased the risk of bloom establishment and recurrence. Driving factors
may include the rising level of air CO2 and increased use of Glyphosate. In-
dividual associations between driving factors and P. parvum blooms may
not be linear, however, as they could be influenced by various other condi-
tions thus requiring that these associations be evaluated in multivariate
context. Permissive factors may include relatively high reservoir salinity
and greatly diminished wetland cover. Research needs suggested by this
study include assessments of carbon deficiency during peak bloom condi-
tions to confirm the likelihood of future intensification of P. parvum blooms
due to the continuing rise in air CO2 concentrations, and measurements of
Glyphosate and its metabolites in reservoir environments to determine the
level of exposure to this pesticide experienced byP. parvum. Studies of other
reservoirs in the region and elsewhere would also be useful to evaluate the
general applicability of the proposed scenario and to potentially reveal ad-
ditional driving and permissive conditions.
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