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RESEARCH Open Access

Air pollution exposure and gestational
diabetes mellitus among pregnant women
in Massachusetts: a cohort study
Abby F. Fleisch1*, Itai Kloog2, Heike Luttmann-Gibson3, Diane R. Gold3,4, Emily Oken5,6 and Joel D. Schwartz3

Abstract

Background: Rodent and human studies suggest an association between air pollution exposure and type 2

diabetes mellitus, but the extent to which air pollution is associated with gestational diabetes mellitus (GDM) is less

clear.

Methods: We used the Massachusetts Registry of Vital Records to study primiparous women pregnant from

2003-2008 without pre-existing diabetes. We used satellite-based spatiotemporal models to estimate first and
second trimester residential particulate (PM2.5) exposure and geographic information systems to estimate

neighborhood traffic density. We obtained GDM status from birth records. We performed logistic regression

analyses adjusted for sociodemographics on the full cohort and after stratification by maternal age and smoking
habits.

Results: Of 159,373 women, 5,381 (3.4 %) developed GDM. Residential PM2.5 exposure ranged 1.3–19.3 μg/m3 over

the second trimester. None of the exposures were associated with GDM in the full cohort [e.g. OR 0.99 (95 % CI:
0.95, 1.03) for each interquartile range (IQR) increment in second trimester PM2.5]. There were also no consistent

associations after stratification by smoking habits. When the cohort was stratified by maternal age, women less than

20 years had 1.36 higher odds of GDM (95 % CI: 1.08, 1.70) for each IQR increment in second trimester PM2.5

exposure.

Conclusions: Although we found no evidence of an association between air pollution exposure and GDM among

all women in our study, greater exposure to PM2.5 during the second trimester was associated with GDM in the
youngest age stratum.

Keywords: Air pollution, Gestational diabetes, PM2.5, Pregnancy

Background

Gestational diabetes mellitus (GDM) complicates 2–6 %

of pregnancies worldwide and as many as 10–20 % of

pregnancies in high-risk populations [1]. GDM increases

risk of adverse perinatal outcomes such as fetal

hypoglycemia and birth trauma to mother and infant.

GDM additionally primes infants and mothers for higher

risk of cardiometabolic disease later in life [2]. Maternal

characteristics such as obesity, older age, and family his-

tory of type 2 diabetes mellitus are known to increase

risk of GDM, but up to half of women with GDM do

not have these classic determinants [3], suggesting a role

for environmental factors. Identification of environmen-

tal triggers is critical to target at-risk women and provide

opportunities for prevention.

Air pollution is one remediable environmental trigger

that may predispose susceptible pregnant women to

GDM. Automobiles and power plants emit both gasses

and particulate air pollutants. The smallest of these par-

ticules, with an aerodynamic diameter less than 2.5 μm

(PM2.5), are readily inhaled. Experimental PM2.5 expos-

ure increases insulin resistance in rodents [4, 5] through

endothelial dysfunction, inflammation, and oxidative

stress [6]. Consistent with the rodent findings, several
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epidemiologic studies have demonstrated an association

between higher air pollution exposure and increased risk

of type 2 diabetes mellitus [reviewed in [7]].

However, epidemiologic analyses of prenatal air pollu-

tion exposure and abnormal glucose tolerance in preg-

nancy are conflicting with most [8–11] but not all [12]

showing an association. Two of the prior studies were

limited by use of birth cohorts with relatively small sam-

ple sizes and few cases of GDM [8, 12] and another did

not include individual-level socioeconomic status covari-

ate data [9].

In the present analysis, our objective was to use the

Massachusetts Registry of Vital Records to evaluate the

extent to which first and second trimester residential ex-

posure to PM2.5 and neighborhood traffic density were

associated with GDM in a large cohort of pregnant

women. We hypothesized that prenatal air pollution ex-

posure would be associated with GDM.

Methods

Study population and design

We obtained data on registered live births in Massachusetts

from January 1, 2003 through December 31, 2008 and

latitude and longitude of each residential address at

the time of delivery from the Massachusetts Registry

of Vital Records and Statistics (http://www.mass.gov/

eohhs/gov/departments/dph/programs/admin/dmoa/

vitals/). We obtained data only for births associated

with a Massachusetts residential address. Daily PM2.5 ex-

posure estimates were available as of January 1, 2003, so

we included mothers in this analysis whose last menstrual

period (LMP) occurred on or after January 1, 2003, which

enabled us to create the early pregnancy PM2.5 exposure

estimates detailed below. Of the 362,148 women who met

these inclusion criteria, we restricted the dataset to

161,144 nulliparous women to ascertain only independent

observations in our analysis, as the Massachusetts Registry

of Vital Records provides a unique ID for each birth rather

than each woman. We further restricted our analysis to

mothers who delivered at greater than 28 weeks gestation

and thus had opportunity for GDM screening, and who

did not have a prior history of diabetes. Our final sample

included 159,373 women (Fig. 1). The study was approved

by the Massachusetts Department of Public Health

and the Institutional Review Boards of the participat-

ing institutions.

Exposure assessment

We used each woman’s residential address at the time of

delivery to estimate daily PM2.5 exposure throughout the

pregnancy. To create PM2.5 exposure estimates, we used

a hybrid satellite-based spatiotemporal model developed

by our group, which has been previously described in

detail [13]. This model incorporates aerosol optical

depth data from the MODIS Satellite and classic land

use regression techniques to generate daily PM2.5 expos-

ure estimates at the resolution of a 1x1km spatial grid.

To create residential exposure estimates, each residential

address was linked to the grid in which it was located.

The mean daily “out-of-sample” ten-fold cross-validation

of the model was excellent (R2 = 0.88).

To obtain first trimester exposure estimates, we aver-

aged daily exposures from the date of LMP through 12th

week of gestation. To obtain second trimester exposure

estimates, we averaged daily exposures from the 13th

through 24th week of gestation. To create these time

windows, we used the birth certificate clinical estimate

of gestational age rather than the estimate calculated

based on reported LMP because the former has been

shown to be a more accurate predictor of gestational age

in birth registries [14], and its use is recommended by

the American College of Obstetrics and Gynecology for

public health research studies [15].

Our dataset included an estimate of residential traffic

density [annual average daily traffic (vehicles/day) times

length of road (km) within 100 m of the participants’

residential address at the time of birth] from the Massa-

chusetts Executive Office of Transportation 2002 road

inventory, which we used for consistency with prior ana-

lyses of this cohort [16, 17]. While our daily estimates of

PM2.5 were temporally and spatially resolved, estimates

of neighborhood traffic density were only spatially

resolved.

Outcome assessment

Routine clinical screening for GDM is recommended for

pregnant women in Massachusetts at the end of the

second trimester of gestation (24–28 weeks). If serum

glucose one hour after a non-fasting 50 g oral glucose

challenge test (GCT) is ≥ 140 mg/dL, women are re-

ferred for a 3-hour fasting 100-g oral glucose tolerance

test (OGTT). As per American Diabetes Association

(ADA) criteria, pregnant women are classified as having

GDM if they have ≥ 2 of the following abnormal

values on the OGTT: blood glucose > 95 mg/dL at

baseline, > 180 mg/dL at 1 h, > 155 mg/dL at 2 h,

or > 140 mg/dL at 3 h [18]. For this analysis, we ob-

tained maternal GDM designation from the birth

records.

Assessment of covariates

We also retrieved data on other maternal characteristics

(age, race/ethnicity, education, smoking status, prenatal

insurance, Kotelchuck prenatal care index) as well as

infant sex and date of birth directly from birth

records. For consistency with prior analyses of this

cohort [16, 17], we used data from the 2000 United States

Census [19] to calculate median annual household
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income, percent open space, and median value of owner-

occupied housing for the census tract associated with each

residential address at the time of birth. We abstracted me-

dian annual household income and median value of

owner-occupied housing directly from the Census, and we

calculated percent open space by intersecting 2000 Census

tract boundaries with information on land use for recre-

ation and conservation from MassGIS [20].

Statistical analysis

We used logistic regression analyses to evaluate the as-

sociations of PM2.5 exposure and traffic density with

GDM. We considered each exposure (first trimester

PM2.5, second trimester PM2.5, and traffic density) in

separate models. We first modeled exposures in quartiles

to assess for potential non-linearity of exposure-outcome

relationships. As we did not see any clear evidence of

non-linearity, we also modeled each exposure as a con-

tinuous measure and expressed associations per 10–90

percentile increment in exposure. We first fit unadjusted

models, followed by full multivariable models for each of

the exposures. We included the following covariates po-

tentially associated with air pollution exposure [21, 22]

and/or GDM [1, 23]: maternal age (<20 years, 20–35

years, ≥ 35 years), race/ethnicity (white, black, Asian/

Pacific Islander, Hispanic, other), education (less than

high school, high school, some college, bachelor

degree, postgraduate degree), smoking habits [never,

former, current low (<10 cigarettes/day), current high

(>10 cigarettes per day)], and prenatal insurance

(public versus private); census tract median household

income (continuous), percent open space (continuous),

and median value of owner occupied housing (continu-

ous); season of birth [continuous sine and cosine of date

as in [24]]; and date of birth (continuous). Additional ad-

justment for infant sex and Kotelchuck prenatal care

index [25] did not change associations; thus, we did not

include these variables in our final models.

We also examined associations between air pollution

and GDM within strata of maternal age (<20 years,

20–35 years, ≥ 35 years) in light of data suggesting

that children and young adults have higher suscepti-

bility to air pollution [e.g. in relation to respiratory

outcomes [26]], presumably due to higher respiratory

minute volume, activity level, and time spent out-

doors [27]. Within strata of maternal age, we adjusted

for maternal age as a continuous variable. In addition,

due to evidence for a synergistic interaction between

air pollution and smoking in relation to outcomes

such as respiratory health [28, 29] and obesity [30, 31], we

also examined associations between air pollution and

GDM within strata of maternal smoking habits [never,

former, current low (<10 cigarettes/day), current high

(>10 cigarettes per day)].

Fig. 1 Study flow. Of 362,148 eligible births in Massachusetts from 2003-2008, we included 158,894–159,373 births in final analytic samples.

Trimester-specific PM2.5 exposure estimates were missing in 0.3 % of cases due to missing daily estimates when data from satellite and/or

monitoring stations were not available
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We also performed several sensitivity analyses. First,

we restricted the sample to women who delivered single-

ton infants (n = 155,501) for consistency with prior stud-

ies that examined the relationship between air pollution

and GDM among singleton pregnancies only [8–11].

Next, as age appeared to be a strong and nonlinear

negative confounder in this population, with older

women living in less polluted areas but having a

substantially increased risk of GDM (Table 1), we repre-

sented age as a cubic (age, age2, age3) rather than a

categorical term in the multivariable model to maximize

adjustment for this covariate. In addition, because

restricting to nulliparous women decreased our sample

size so substantially, we included both nulliparous and

multiparous women (n = 358,053) in multivariable ana-

lyses adjusted for parity in addition to the covariates

listed above, with the knowledge that this larger dataset

included non-independent observations. Finally, to

further investigate the association we identified be-

tween second trimester PM2.5 exposure and GDM in

the youngest mothers, we compared the exposures

and sociodemographics of young mothers with versus

without GDM. All analyses were conducted using

SAS Version 9.4 (SAS Institute Inc, Cary, NC).

Table 1 Characteristics of Massachusetts mothers, (1) overall, (2) by quartile of second trimester PM2.5 exposure, and (3) in the

subset of those with gestational diabetes mellitus (GDM)

Second trimester PM2.5
a

Characteristic Total
n = 159,373

Q1
n = 39,724

Q2
n = 39,725

Q3
n = 39,725

Q4
n = 39,725

With GDM
n = 5,381

Percent

Age

< 20 years 9 8 9 10 11 3

20–35 years 74 74 74 73 74 70

≥ 35 years 17 18 17 17 15 27

Race/ethnicityb

White 70 76 71 68 64 64

Black 7 5 7 8 9 7

Asian/Pacific Islander 8 7 8 9 9 16

Hispanic 12 9 12 13 15 10

Other 2 2 2 3 3 2

Educationc

Less than high school 11 9 10 11 13 7

High school 24 22 24 24 25 24

Some college 20 21 20 20 20 24

Bachelor degree 28 30 28 27 26 28

Postgraduate degree 17 18 17 17 17 16

Public prenatal insuranced 31 28 31 31 35 26

Smoking habitse

Never 85 84 85 85 86 86

Former 9 10 9 9 8 9

Current low (<10 cigs) 5 5 5 4 4 3

Current high (>10 cigs) 2 2 2 2 2 2

Gestational diabetes 3 4 3 3 3 100

Mean (SD)

Open space in census tract (%) 12 (11) 13 (11) 12 (11) 11 (11) 10 (11) 11 (11)

Median household income in
census tract ($)

51,000 (20,000) 55,000 (19,000) 52,000 (20,000) 51,000 (20,000) 47,000 (19,000) 50,000 (19,000)

Median value of owner occupied
housing in census tract ($)

198,000 (120,000) 195,000 (101,000) 193,000 (106,000) 198,000 (116,000) 205,000 (150,000) 184,000 (99,000)

aSecond trimester PM2.5 exposure quartiles mean (SD): Q1 8.2 (0.8), Q2 9.8 (0.4), Q3 11.0 (0.3), Q4 12.6 (0.8). b84 missing from total cohort; c141 missing from total

cohort; d42 missing from total cohort; e154 missing from total cohort
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Results
Population characteristics

Of the 159,373 women in the study population, 5,381

(3.4 %) had GDM. Mean (SD) maternal age at delivery

among these primiparous mothers was 28.4 (6.3) years.

70 % of women were white, 31 % had public prenatal in-

surance, and 85 % were nonsmokers (Table 1).

Mean (SD, range) PM2.5 exposure was 10.4 μg/m3 (1.7,

3.1–17.1) for the first trimester and 10.4 μg/m3 (1.7,

1.3–19.3) for the second trimester. For context, the

Environmental Protection Agency (EPA) standard for

annual PM2.5 exposure was 15 μg/m3 during the years of

the study. Neighborhood traffic density mean (SD,

range) was 1,317 (2,026, 0–37,306) vehicles/day x km of

road within 100 m of residential address. Exposures were

weakly correlated (Spearman correlation coefficients

−0.1 for first with second trimester PM2.5, and 0.2 for

traffic density with PM2.5 in either trimester) (Table 2),

consistent with the fact that PM2.5 emissions in Massa-

chusetts are primarily from regional rather than local

traffic sources [32].

Mothers with higher residential PM2.5 exposure during

the second trimester were more likely to be younger, less

educated, and nonsmokers. They were also more likely

to have public prenatal insurance and live in a census

tract with a lower median household income, less open

space, and higher median value of owner-occupied hous-

ing (Table 1). Women with GDM (vs. those without)

were more likely to be Asian/Pacific Islander. They were

also more likely to be older and have private prenatal in-

surance but live in a census tract with lower median

household income, less open space, and lower median

value of owner-occupied housing (Table 1). The distribu-

tion of characteristics with first trimester air pollution

exposure was similar.

Primary analyses

Residential PM2.5 exposure during the first and second

trimesters and neighborhood traffic density were not as-

sociated with higher odds of GDM in unadjusted or

covariate-adjusted analyses. Unadjusted odds of GDM

for women in the highest (Q4) (vs. lowest (Q1)) quartile

of exposure was 0.92 (95 % CI: 0.85, 1.00) for first tri-

mester PM2.5 exposure, 0.98 (95 % CI: 0.90, 1.05) for

second trimester PM2.5 exposure, and 1.01 (95 % CI:

0.93, 1.09) for neighborhood traffic density. Results of

adjusted models were similar [e.g. odds of GDM for Q4

vs. Q1 was 1.00 (95 % CI: 0.96, 1.04) for first trimester

PM2.5, 0.99 (95 % CI: 0.91, 1.08) for second trimester

PM2.5, and 1.03 (95 % CI: 0.95, 1.12) for traffic density].

When we represented PM2.5 and traffic density expo-

sures as continuous variables (per 10–90 percentile

range), relationships with GDM remained null (Table 3).

Stratified analyses

When we examined the association between air pollu-

tion exposure and GDM within strata of maternal age,

we observed an association between second trimester

residential PM2.5 exposure and GDM in mothers who

were less than 20 years of age at the time of delivery

(Table 4). Within this group of women, those who lived

at a residence in the highest (Q4) versus lowest (Q1)

quartile of PM2.5 exposure during the second trimester

had 1.97 (95 % CI: 1.17, 3.32) times the odds of develop-

ing GDM. Within this stratum, odds of GDM was con-

sistently higher in Q2, Q3, and Q4 versus Q1 of second

trimester PM2.5 exposure, and for each 10–90 percentile

increment in exposure, odds of GDM was 1.76 times

higher (95 % CI: 1.16, 2.7). In mothers greater than

35 years of age at the time of delivery, those in the high-

est versus lowest quartile of PM2.5 exposure during the

first trimester had 1.18 (95 % CI: 1.00, 1.39) times the

odds of developing GDM, although Q2, Q3, and Q4 ver-

sus Q1 odds ratios did not increase monotonically, and,

in fact, the Q3 versus Q1 comparison was close to 1.

There were no other associations between prenatal pol-

lution and GDM within the age strata (Table 4).

Residential PM2.5 exposure and traffic density were

not consistently associated with GDM within strata of

maternal smoking habits. For example, for each 10–90

percentile increment in second trimester PM2.5 expos-

ure, odds of GDM was 0.97 (95 % CI: 0.89, 1.05) for

women who never smoked, 0.90 (95 % CI: 0.70, 1.16) for

women who smoked prior to pregnancy, 1.37 (95 % CI:

Table 2 Distributions of participant air pollution exposure data and correlations between exposures (Spearman r)

First trimester PM2.5 (μg/m
3) Second trimester PM2.5 (μg/m

3) Traffic densitya

Mean (SD) 10.4 (1.7) 10.4 (1.7) 1,317 (2,025)

Minimum 3.1 1.3 0

Maximum 17.1 19.3 37,306

Spearman r

First trimester PM2.5 1.0 -0.10 0.21

Second trimester PM2.5 -0.10 1.0 0.20

Traffic density 0.21 0.20 1.0

aVehicles/day x km of road within 100 m of residential address
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0.91, 2.06) for women who smoked less than 10 ciga-

rettes per day, and 0.98 (95 % CI: 0.52, 1.83) for women

who smoked more than 10 cigarettes per day (data not

shown).

Sensitivity analyses

When we restricted the sample to women with singleton

pregnancies and when we represented age as a cubic ra-

ther than a categorical term, there was no change to the

pattern of results (data not shown). When we included

multiparous women, there was no change to the pattern

of results as compared to our primary analyses with the

exception of the following: (1) we found no association

between first trimester PM2.5 and GDM in mothers

greater than 35 years of age, and (2) odds of GDM was

higher per 10–90 percentile range increment of first and

second trimester PM2.5 exposure in the subset of

mothers who smoked less than 10 cigarettes per day

during pregnancy [OR: 1.34 (95 % CI: 1.06,1.68) for first

trimester PM2.5 and 1.30 (95 % CI: 1.03,1.65) for second

trimester PM2.5] (data not shown). When we compared

young mothers with versus without GDM, sociodemo-

graphics were generally similar between the groups, al-

though those with GDM were less likely to smoke, more

likely to have attended some college, and more likely to

live in census tracts with somewhat lower median

household income, less open space, and lower median

value of owner-occupied housing. Young mothers with

versus without GDM had higher residential PM2.5 ex-

posure during the second trimester, but lower neighbor-

hood traffic density (Additional file 1).

Discussion
In our analysis of Massachusetts birth registry data from

2003-2008, pregnant women with high residential PM2.5

exposure during the first or second trimester or high

neighborhood traffic density had the same odds of devel-

oping GDM as women with lower exposures. When we

examined this association within strata of maternal age,

the youngest mothers (<20 years of age) had increased

odds of GDM when exposed to higher residential PM2.5

during the second trimester.

Our findings are consistent with prior population-

based studies that have shown an association between

GDM and prenatal exposure to NOx or ozone [9–11]

but found weaker or no associations with exposure to

PM2.5 [8, 10, 11] or traffic density [8, 9, 12]. The overall

lack of a consistent association between PM2.5 exposure

and GDM in human observational studies is in contrast

to a growing body of epidemiologic literature showing

an association between PM2.5 and type 2 diabetes melli-

tus, [reviewed in [7]] and rodent studies confirming an

association between PM2.5 and insulin resistance in non-

pregnant adults [4, 33]. PM2.5 is primarily thought to

lead to insulin resistance through oxidative damage,

endothelial dysfunction, and inflammation [4, 34],

whereas the specific mechanisms of NOx and ozone-

induced insulin resistance are not as well-understood. In

one rodent study, ozone-induced insulin resistance was

associated with neuronal activation and sympathetic

stimulation [35] but not with the increase in circulating

inflammatory cytokines that has been observed following

PM2.5 exposure [4, 33]. Pregnant women may be more

vulnerable to NOx or ozone-specific mechanisms, and

the role of each of these pollutants and mechanisms of

action in relation to GDM should be studied in pregnant

rodent models.

Although prenatal residential PM2.5 exposure and traf-

fic density were not associated with GDM in analyses of

our complete study population, we found higher second

trimester PM2.5 exposure (i.e.— quartiles 2–4 vs. the

lowest quartile) to be associated with almost twice the

odds of GDM in the subset of women less than 20 years

of age. Second trimester exposures are biologically

Table 3 Unadjusted and covariate-adjusteda odds ratios (95 %

confidence intervals) for gestational diabetes mellitus versus

normal glucose tolerance

Exposure Unadjustedb Covariate-adjustedc

First trimester PM2.5

Q1 (3.1–9.3 μg/m3) 1.00 (reference) 1.00 (reference)

Q2 (9.3–10.4 μg/m3) 0.95 (0.88, 1.03) 1.00 (0.93, 1.09)

Q3 (10.4–11.5 μg/m3) 0.91 (0.84, 0.98) 0.97 (0.89, 1.05)

Q4 (11.5–17.1 μg/m3) 0.92 (0.85, 1.00) 1.00 (0.92, 1.09)

10–90 percentile range (4.3 μg/m3) 0.92 (0.86, 0.99) 1.01 (0.93, 1.09)

Second trimester PM2.5

Q1 (1.3–9.2 μg/m3) 1.00 (reference) 1.00 (reference)

Q2 (9.2–10.4 μg/m3) 0.98 (0.91, 1.06) 1.04 (0.96, 1.13)

Q3 (10.4–11.6 μg/m3) 0.90 (0.83, 0.97) 0.95 (0.88, 1.03)

Q4 (11.6–19.3 μg/m3) 0.98 (0.9, 1.05) 0.99 (0.91, 1.08)

10–90 percentile range (4.5 μg/m3) 0.96 (0.89, 1.03) 0.97 (0.90, 1.05)

Traffic densityd

Q1 (0–280) 1.00 (reference) 1.00 (reference)

Q2 (280–744) 1.02 (0.95, 1.10) 1.04 (0.96, 1.12)

Q3 (744–1,636) 0.99 (0.91, 1.07) 1.01 (0.93, 1.10)

Q4 (1,636–37,306) 1.01 (0.93, 1.09) 1.03 (0.95, 1.12)

10–90 percentile range (2,799) 1.00 (0.96, 1.04) 1.00 (0.97, 1.04)

aAdjusted for maternal characteristics (age, race/ethnicity, education, prenatal

insurance, smoking habits), census tract characteristics (median household

income, percent open space, and median value of owner occupied housing),

and timing of birth (season and date)
bSample sizes for unadjusted analyses were 158,894 for associations of first

trimester PM2.5, 158,899 for second trimester PM2.5, and 159, 373 for

traffic density
cSample sizes for covariate-adjusted analyses were 158,613 for associations of

first trimester PM2.5, 158,618 for second trimester PM2.5, and 159,025 for

traffic density
dVehicles/day x km of road within 100 m of residential address
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relevant, as GDM is a pathologic exacerbation of a

physiologic increase in insulin resistance that occurs

specifically during the second trimester of pregnancy

[36]. Also, the magnitude of our finding is similar to that

of other well-known risk factors for GDM. For example,

in a meta-analysis, overweight (vs. normal weight)

mothers had 1.83 (95 % CI: 1.58, 2.12) times the odds of

developing GDM, and those who were obese had 3.52

(95 % CI: 3.24, 3.84) times the odds [37]. Our finding of

an association between air pollution and GDM in the

youngest mothers may be because maternal age is such

a strong risk factor for GDM [1] that older women des-

tined to develop GDM will do so regardless of other fac-

tors, whereas young women are more readily influenced

by environmental exposures such as air pollution. Add-

itionally, as compared to older adults, children and

young adults have been shown to be more susceptible to

PM2.5-induced health outcomes [26], presumably as a re-

sult of higher respiratory minute volume, activity level,

and time spent outdoors [27].

We also considered alternative explanations for our

finding of an association between PM2.5 exposure and

GDM in the youngest mothers. For example, the possi-

bility that stratification could have reduced negative con-

founding by age is less likely because PM2.5 was not

associated with GDM in the other age strata, and the as-

sociation in the full cohort was null even when we in-

cluded age as a cubic term. Alternatively, our inability to

account for pre-pregnancy BMI, which was not recorded

on Massachusetts birth certificates until 2011, could

have confounded the association in the youngest

mothers. However, if there were counfounding by pre-

pregnancy BMI, we would have expected this to have af-

fected all mothers equally, rather than observing it in

the youngest age strata only, based on a prior analysis of

>170,000 women in which the association between BMI

and GDM did not vary by maternal age [38]. Another

possible explanation is differential composition of resi-

dential PM2.5 exposure by maternal age (e.g. higher

traffic-related and/or ultrafine particle component of

PM2.5 most prevalent in the lower SES neighborhoods of

the youngest mothers and also most closely related to

GDM). However, there was no association between traf-

fic density and GDM in our complete study population,

Table 4 Covariate-adjusteda odds ratios (95 % confidence intervals) for gestational diabetes mellitus versus normal glucose

tolerance, by maternal age. Estimates with 95 % confidence intervals that do not cross the null are bolded

Exposure <20 yearsb 20- < 35 yearsc ≥35 yearsd

First trimester PM2.5

Q1 (3.1–9.3 μg/m3) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Q2 (9.3–10.4 μg/m3) 0.84 (0.55, 1.29) 0.98 (0.89, 1.08) 1.08 (0.93, 1.26)

Q3 (10.4–11.5 μg/m3) 0.81 (0.52, 1.26) 0.96 (0.87, 1.06) 0.99 (0.85, 1.17)

Q4 (11.5–17.1 μg/m3) 0.72 (0.46, 1.13) 0.94 (0.85, 1.04) 1.18 (1.00, 1.39)

10–90%ile range (4.3 μg/m3) 0.78 (0.51, 1.88) 0.95 (0.87, 1.04) 1.16 (1.00, 1.35)

Second trimester PM2.5

Q1 (1.3–9.2 μg/m3) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Q2 (9.2–10.4 μg/m3) 2.12 (1.27, 3.53) 1.03 (0.94, 1.13) 1.00 (0.86, 1.16)

Q3 (10.4–11.6 μg/m3) 2.00 (1.19, 3.36) 0.95 (0.86, 1.05) 0.89 (0.76, 1.04)

Q4 (11.6–19.3 μg/m3) 1.97 (1.17, 3.32) 1.01 (0.91, 1.11) 0.88 (0.75, 1.04)

10–90%ile range (4.5 μg/m3) 1.76 (1.16, 2.69) 0.99 (0.90, 1.08) 0.88 (0.76, 1.03)

Traffic densitye

Q1 (0–280) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Q2 (280–744) 1.34 (0.83, 2.17) 1.02 (0.92, 1.12) 1.07 (0.92, 1.24)

Q3 (744–1,636) 1.12 (0.68, 1.84) 1.01 (0.91, 1.11) 1.02 (0.87, 1.19)

Q4 (1,636–37,306) 0.92 (0.55, 1.56) 1.04 (0.95, 1.15) 1.01 (0.86, 1.19)

10–90%ile range (2,799) 0.80 (0.58, 1.11) 1.01 (0.97, 1.06) 0.99 (0.92, 1.06)

aAdjusted for maternal characteristics (age, race/ethnicity, education, prenatal insurance, smoking habits), census tract characteristics (median household income,

percent open space, and median value of owner occupied housing), and timing of birth (season and date)
bSample sizes for analyses of women < 20 years of age were 14,928 for associations of first trimester PM2.5, 14,929 for second trimester PM2.5, and 14,974 for

traffic density
cSample sizes for analyses of women 20- < 35 years of age were 117,029 for associations of first trimester PM2.5, 117,031 for second trimester PM2.5, and 117,333

for traffic density
dSample sizes for analyses of women > 35 years of age were 26,656 for associations of first trimester PM2.5, 26,658 for second trimester PM2.5, and 26,718 for

traffic density
eVehicles/day x km of road within 100 m of residential address
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and we found lower rather than higher neighborhood

traffic density in the subset of young women with versus

without GDM. It is possible that our finding of an asso-

ciation between PM2.5 and GDM in the youngest

mothers may also reflect random chance, particularly

given the relatively small number of cases of GDM

(n = 179) in the youngest age stratum. Our findings

require replication in other populations of young,

pregnant women.

In our sensitivity analysis which included multiparous

women, first and second trimester PM2.5 exposure was

associated with slightly increased odds of GDM in the

subgroup who smoked less than 10 cigarettes per day

during pregnancy. Tobacco smoke contains particulates

and has previously been shown to operate synergistically

with air pollution to increase risk of obesity, another car-

diometabolic outcome [30, 31]. However, the fact that

this association was not present in the heavier smokers

(greater than 10 cigarettes per day) makes it difficult to

draw a definitive conclusion and suggests the need for

replication in other cohorts.

Use of data from the Massachusetts Registry of Vital

Records is a unique strength of our study. The registry

contains pregnancy data on all Massachusetts residents,

includes a large number of cases of GDM, and is free

from the selection bias typical of cohort studies. The

registry also contains relatively rich data on socioeco-

nomic status, as well as smoking and diabetes history.

Also, our PM2.5 model, which leveraged satellite aerosol

optical depth data, calculated estimates at a fine reso-

lution and had a high mean out-of-sample R
2.

Potential exposure and outcome misclassification are

limitations of the present study that may have biased re-

sults toward the null. We did not have information on

time-activity patterns or residential moves during preg-

nancy which could have improved accuracy of exposure

estimates. Also, traffic density estimates were for 2002

which may not have been relevant for the whole study

period. Outcome misclassification could have occurred

as a result of underreporting of GDM on the birth cer-

tificate (specificity >98 % and sensitivity 46–83 % when

compared to medical records) [39] or because women

with undiagnosed type 2 diabetes mellitus may have in-

appropriately been included in the GDM group. In

addition, based on limited information available in the

birth registry, we were unable to account for every factor

that might be related to pollution exposure and GDM

risk, such as physical activity, family history of GDM,

and maternal pre-pregnancy BMI. Also, census tract co-

variates utilized 2000 Census tract data which may not

have been relevant for the whole study period, and thus

residual confounding may exist. Also, we did not have

exposure estimates available in this dataset for other cri-

teria pollutants such as NOx or SO2. Overall PM2.5

exposure was low, and it may be that higher levels of ex-

posure are associated with greater risks.

Additional rodent studies are needed to elucidate the

extent to which individual criteria pollutants such as

PM2.5, NOx, SO2, black carbon, and ozone, and mixtures

of pollutants, are causally linked to development of

GDM and to further investigate mechanisms of action.

Large population-based studies with information on

multiple criteria pollutants and covariates are also

needed, particularly in young cohorts with otherwise low

risk of GDM.

Conclusions
Although our findings require replication, in our co-

hort, young women were at increased risk for GDM

when exposed to higher residential PM2.5 during the

second trimester of pregnancy. We otherwise found

no consistent evidence of an association between first

or second trimester residential PM2.5 exposure or

neighborhood traffic density and GDM in pregnant

women in Massachusetts with modest levels of air

pollution exposure.
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