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ABSTRACT Air pollution forecasting can provide reliable information about the future pollution situation,

which is useful for an efficient operation of air pollution control and helps to plan for prevention. Dynamics

of air pollution are usually reflected by various factors, such as the temperature, humidity, wind direction,

wind speed, snowfall, rainfall, and so on, which increase the difficulty in understanding the change of air

pollutant concentration. In this paper, a short-term forecasting model based on deep learning is proposed for

PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5µm) concentration, and the

convolutional-based bidirectional gated recurrent unit (CBGRU) method is presented, which combines 1D

convnets (convolutional neural networks) and bidirectional GRU (gated recurrent unit) neural networks. The

case is carried out by using the Beijing PM2.5 data set in UCI Machine Learning Repository. Comparing the

prediction results with the traditional ones, it is proved that the error of the CBGRU model is lower and the

prediction performance is better.

INDEX TERMS Air pollution forecasting, deep learning, 1D convolutional neural networks, bidirectional

gated recurrent unit.

I. INTRODUCTION

Nowadays, many cities have suffered from massive smog

attacks, which have affected people’s daily life and caused

serious harm to their health. The main component of smog is

the Particulate Matter (PM) 2.5. The primary task of dealing

with smog pollution and improving air quality is to control

PM2.5, so the PM2.5 concentration prediction is the main

content of air quality prediction. It is of great significance

to identify the evolution law of PM2.5 concentration and

achieve efficient and accurate prediction for air pollution

prevention and control.

The concentration of PM2.5 is often related to various

meteorological factors, so the prediction of PM2.5 is actu-

ally a multivariate time series prediction problem. Till now,

The associate editor coordinating the review of this manuscript and
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various air quality forecasting approaches have been pro-

posed, which can be mainly classified into the statisti-

cal methods, the shallow machine learning methods and

the deep learning methods. Statistical methods include cor-

relation coefficient method, principal component analysis

method, Newton interpolation method [1], nonlinear regres-

sion model [2], and so on. Accuracy obtained is limited in

these methods because of their inability to model non-linear

and multivariate data. Shallow machine learning methods

include multilayer perceptron (MLP), radial basis func-

tion (RBF) [3], genetic algorithm (GA) [4], support vector

machines (SVM) [5], artificial neural networks (ANN) [6],

and so on.

In recent years, with the development of deep learning and

big data technology, the use of deep learning methods for air

quality prediction has become an active research field, and the

commonly used models are recurrent neural networks (RNN)
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and its variations. Long Short-Term Memory Unit (LSTM),

as a state-of-the-art model of RNN, is used in the air quality

forecasting [7], [8]. Besides, manifold learning method and

deep belief network [9], deep uncertainty learning [10] and

Encoder-Decoder model [11] are also used for PM2.5 pol-

lution concentration. Recently, GRU (gated recurrent unit)

is applied to the PM2.5 forecasting task and is performing

well [12].

In view of the dynamic instability and long-term depen-

dence of the time series of air pollutants, a model combining

the recurrent neural networks and the convolutional neural

networks is proposed for air pollution forecasting in this

paper, which comprehensively utilizes the ability of feature

extraction of convolutional neural networks and the capability

of time series forecasting of recurrent neural networks. As a

first, the convolution neural networks is used to carry out

downsampling of data to reduce the size and complexity of

data and improve the generalization and learning ability of

the model. Then, the reduced-dimensional data are fed into

the recurrent neural networks to further mine the information

characteristics provided by different data sources in meteoro-

logical data, and establish the nonlinear relationship between

the time series of multivariable and air pollutant PM2.5.

In order to verify the effectiveness of the proposed method,

we analyze a Support Vector Regression (SVR), Gradient

Boosting Regressor (GBR), Decision Tree Regressor (DTR),

simple RNN, Long Short-Term Memory Networks (LSTM),

Gated Recurrent Unit (GRU) and bidirectional Gated Recur-

rent Unit (BGRU), and all models are compared regarding

their forecasting performance of PM2.5 concentration.

The remainder of this article is organized in the following

way: In Section II, we highlight data description and cor-

relation analysis of PM2.5 time series. Section III outlines

the framework of the PM2.5 forecasting model based on 1D

convnets and bidirectional GRU. In Section IV, we describe

our experimental setup and results. Finally, the conclusion of

this article is given in Section V.

II. DATA AND CORRELATION ANALYSIS OF

PM2.5 TIME SERIES

A. DATA DESCRIPTION

The proposed forecasting approach is tested by using the

database from UCI machine learning repository [13], which

contains the PM2.5 data of US Embassy in Beijing located

at (116.47 E, 39.95 N) and meteorological data from Bei-

jing Capital International Airport. Although the embassy and

the airport are 17 km apart, they experience very much the

same weather. This dataset covers hourly data from Jan-

uary 1, 2010 to December 31, 2014, contains 8 characteristics

including PM2.5 concentration, dew point, temperature, air

pressure, wind direction, wind speed, snowfall, and rainfall.

Eliminate missing points in the data, the total amount of

data is 43,800 rows, select the first 30,000 rows of data

as training set, 30001-38000 rows as validation set and,

38001-43800 rows as test set. The attribute of wind direction

FIGURE 1. PM2.5 concentration change on test set.

in the data contains 4 features: NW, CV, SE and NE, which

need to be encoded as float data, assigned to −10, 0, 10 and

20 respectively. In addition, for the few missing values of

PM2.5 pollution in the data set due to sensor errors, we filled

them in accordance with the data of the previous timestamp.

Finally, the entire dataset is normalized by subtracting the

mean of each feature and dividing by the variance of each

feature:

x istd =
x i − x imean

σ ix
(1)

where, x imean and σ ix are the mean and variance of the i-th

characteristic variable, respectively. It should be noted that

the calculation of the mean and variance in this equation is

only for the training set, because in reality the distribution of

the validation set and the test set are unknown.

The Figure 1 shows the actual situation of the PM2.5 con-

centration on the test set. It can be seen from this plot that

there is no obvious periodic law in the trend of change, and

the fluctuation range is large.

B. CORRELATION ANALYSIS OF PM2.5 TIME SERIES

To develop a good prediction model, it is crucial to identify

the correlation between the various influencing factors and

the PM2.5 concentration before the model is built, which

ensures that the model uses the proper input prognostic fea-

tures for prediction. PM2.5 is affected by many measurable

factors, but not all of them are effective for the prediction task,

and the irrelevant factors will become burdensome for the

model. Therefore, we need to calculate the correlation coef-

ficient between each factor and the target feature, and judge

the correlation between PM2.5 concentration and the selected

feature indirectly via the value of the correlation coeffi-

cient. Suppose one characteristic time series is the vector

X=(x1, x2, . . . , xn), the other time series is vector Y= (y1,

y2, . . . , yn), the correlation coefficient r between them is

calculated by formula (2).

r =

n
n
∑

i=1

xiyi −
n
∑

i=1

xi
n
∑

i=1

yi

√

n
n
∑

i=1

x2i − (
n
∑

i=1

xi)2

√

n
n
∑

i=1

y2i − (
n
∑

i=1

yi)2

(2)
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TABLE 1. Correlation coefficient (R) between meteorological variables and PM2.5 concentration.

TABLE 2. Model performance with different meteorological data input.

FIGURE 2. Structure of CBGRU model for PM2.5 forecasting.

When 0< r <1, there is a positive correlation, and if −1 <

r < 0, there is a negative correlation. The absolute of r

is closer to 1, the gap between X and Y is smaller and the

correlation is greater.

For Beijing PM2.5 dataset, correlation coefficient between

each feature and PM2.5 concentration was calculated respec-

tively. As shown in Table 1, dew point, wind direction and

snowfall are positive correlation with PM2.5, while tem-

perature, air pressure, wind speed and rainfall are negative

correlation with PM2.5 concentration. It is found that all

the meteorological variables are weakly correlated with each

other, which indicates that there is no information duplication

between the meteorological variables and they can be directly

used as the input of the prediction model.

In order to select the proper input variables of fore-

casting model, corresponding experiments were performed.

As shown in Table 2, we constructed the prediction model

by gradually reducing the input variables (Detailed modeling

is described in Section IV). The error results of different

models are compared by three measures (The smaller the

error measure value, the better the prediction effect of the

model), they are root mean square error (RMSE), mean abso-

lute error (MAE) and symmetric mean absolute percent error

(SMAPE). It is found that the model performed better with

inputs of pollution, dew point, wind direction, wind speed

and temperature than with inputs of only the first four. But

when the pressure is increased as input, the performance of

the model begins to decline, and the performance is even

worse when all the weather factors in the data set are taken

as inputs. This phenomenon is consistent with what is shown

in Table 1, the correlation coefficients of air pressure, snow-

fall and rainfall are quite small, unrelated inputs increase

the model’s complexity and the difficulty of learning useful

features. So, dew point, historical PM2.5, temperature, wind

direction and wind speed are selected as the input variables

of the forecasting model.

III. METHODOLODIES

A. CBGRU MODEL FOR PM2.5 FORECASTING

The historical meteorological data and PM2.5 concentration

data are used as model inputs, the future PM2.5 concen-

tration is used as output to perform multi-step prediction.

Figure 2 shows the structure of forecasting model.

The model consists of three parts. In the first part, the

one-dimensional convolutional neural networks (convnets)

performs local feature learning and dimensionality reduction
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on five input variables, the original data is processed by

convolution and pooling to form low-dimensional feature

sequences. Second, the feature sequences is fed into the bidi-

rectional GRU neural networks, which reset gate and update

gate constantly adjust their parameters in a large amount of

training, so that it can learn the time dependence relationship

between the information extracted from the convolutional

neural networks. At the end of the model, the fully connected

layers is stacked, the last layer contains only one neuron with-

out any activation function, generating the predicted value of

the PM2.5 concentration. Theoretically, the innovation of this

method is the combination of the local feature extraction abil-

ity and lightness of convnets with the time series prediction

ability of GRU by using 1D convnet as a preprocessing step

before a GRU. On the other hand, by processing a sequence

both way, a bidirectional GRU is able to catch patterns that

may have been overlooked by a one-direction GRU.

B. 1D CONVNETS FOR LOCAL TREND FEATURES

LEARNING

The 1D convnets is used for local trend features learn-

ing. Convnets can perform convolution operation, extracting

features from local input patches, allowing for representation

modularity and data efficiency. These properties make con-

vnets not only excellent in computer vision, but also suitable

for sequence processing [14]. In this forecasting case, time

can be treated as a spatial dimension just like the height or

width of a two-dimensional image. The local perception and

weight sharing feature of convnets can reduce the number of

parameters for processing multivariate time series, thereby

improving learning efficiency. With the peculiarity of tempo-

ral translation invariants [15], a pattern learned at a certain

position in a sequence can be identified at other locations

later, because the same input transformation is performed for

each subsequence.

As shown in the Figure 3, using a convolution window in

each convolutional layer to process the meteorological and

PM2.5 time series, it is possible to learn sequence fragments

within a window size, and should be able to identify these

subsequences anywhere in the entire time series, so that the

local trend change features of themultivariate time series over

time can be captured. After the 1D convolution operation,

the max pooling operation should be used for subsampling,

which outputs the maximum value of subsequences extracted

from the input time series. In this way, the length of one-

dimensional input time series is reduced.

C. BIDIRECTIONAL GATED RECURRENT UNIT FOR TIME

SERIES FORECASTING

In this paper, bidirectional Gated Recurrent Unit (GRU) is

used for processing prediction as shown in the Figure 4.

As everyone knows, RNN is a special neural network devel-

oped for processing sequence data. But there are some draw-

backs with simple RNN, like the vanishing gradient and

exploding gradient, which makes it difficult for RNN to learn

the long-term dependencies tasks. To solve these problems,

FIGURE 3. Graphical illustration of the 1D convnets processing time
series.

a custom RNN structure, i.e., LSTM and GRU, is developed.

The former can track long-term information via the gates it

contains (input gate, forget gate and output gate) [16]. The

latter is an improved version of the LSTM, which can also

learn long-term dependencies [17]. Unlike LSTM, GRU has

no memory unit and has 2 gates (update gate and reset gate)

instead of 3 gates, having a simpler architecture requires less

computation and can be trained faster. Although the structure

of GRU is not so complicated, the research shows that its

performance is comparable to LSTM [18].

The graphical illustration of GRU neural networks is

included in Figure 4. Inside a GRU, the update gate (z) spec-

ifies which information can be retained to the next state, and

the reset gate (r) specifies how the previous state information

is combined with the new input information. The calculation

formula for the next output and state value in the GRU unit is

as follows:

zt = σ (Wz ∗ [x(t), h(t − 1)]) (3)

rt = σ (Wr ∗ [x(t), h(t − 1)]) (4)

ĥ(t) = σ (Wh ∗ [x(t), (rt ∗ h(t − 1))]) (5)

h(t) = (1 − zt ) ∗ h(t − 1) + zt ∗ ĥ(t) (6)

where σ is the activation function, x(t) is the input, h(t − 1)

is the previous output, wz, wr and wh are the weights of the

update gate, reset gate, and candidate output, respectively.

The bidirectional GRU consists of two ordinary GRUs,

which process the input sequence from two directions of time

series (chronologically and antichronologically), then merge

their representations together. Factors such as air quality and

meteorological are subject to a continuous function, we can

fit a function according to the historical observation values

(time series) through the observation values to predict the

future values. In the same way, future data can be used to fit a

function to predict the value of the previous moment. For time

series forecasting tasks, we know that only historical data

can provide predictive power when making predictions, but

this method of bidirectional training model can provide more

useful information in modeling. By viewing meteorological

and PM2.5 data from two directions enables the model to

get richer representations and capture patterns that may be

VOLUME 7, 2019 76693
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FIGURE 4. Bidirectional GRU processing time series. r and z are the reset and update gate, h an h̃ are the activation and the candidate
activation of GRU neural networks.

ignored when using one-direction GRU, thereby improving

the performance of ordinary GRU.

IV. CASE STUDY

The real air quality data set described in Section II is used to

evaluate the proposed model, which performance is compare

with the other seven models. All deep models are trained

on Keras framework with TensorFlow backend, while tradi-

tional machine learning methods are implemented through

the scikit-learn library. All recurrent architecture are trained

using backpropagation through time (BPTT) with RMSprop

as an optimizer.

A. ERROR MEASURES

Loss function is defined by mean absolute error (MAE),

MAE can better reflect the actual situation of the predic-

tion error, backpropagation operation based on MAE value

in each mini-batch during training. At the same time, root

mean square error (RMSE) and symmetric mean absolute

percentage error (SMAPE) are selected as the error evaluation

metrics of themodel, which can evaluate the degree of change

and accuracy of data, measuring the prediction quality of

model. The calculation formula is as shown in equation (7),

(8) and (9).

MAE(y′,y) =
1

n

n
∑

i=1

|y′i − yi| (7)

RMSE(y′,y) =

√

√

√

√

1

n

n
∑

i=1

(y′i − yi)2 (8)

SMAPE(y′,y) =
1

n

n
∑

i=1

∣

∣y′i − yi
∣

∣

(y′i + yi)/2
(9)

where n is the total number of samples, yi is the measured

time series, and y′i is the predicted time series.

B. EXPERIMENTAL SETUP

Seven reference models were built to evaluate the perfor-

mance of the proposed model, i.e., support vector regres-

sion (SVR), gradient boosting regressor (GBR), decision

tree regressor (DTR), simple RNN, LSTM, GRU and bidi-

rectional GRU (BGRU). The training is carried out in

mini-batches with the batch size of 50, and all the models

are trained for 100 epochs. In order to avoid the overfitting

problem, Dropout is widely used between layers with the

probability of 0.2. If the loss of the past epoch is greater

than that of the current epoch, the weight matrices are stored.

Furthmore, all models used an early stopping condition dur-

ing the training, which stops the training if the validation loss

on the validation data does not change within 10 training

epochs. RMSprop,a variant of stochastic gradient descent

(SGD), is chosen as the optimizer of these models, as it is

usually a good choice for recurrent neural networks, which

taking into account previous weight updates when computing

the next weight update, rather than just looking at the current

value of the gradients. Furthermore,Momentum of RMSprop

addresses two issues with SGD: convergence speed, and local

minima. After obtaining the trained models, each data points

in testing set are tested and, MAE, RMSE and SMAPE are

calculated.

In order to achieve the best prediction performance, sev-

eral hyperparameters should be preset before building the

CBGRU prediction model. In order to prove the superiority

of CBGRU model proposed in this paper, GRU networks

was selected as the benchmark. CBGRU model based on the

structure of benchmarkwas established after the limit of GRU

prediction ability was reached. Mainly examined parameters

are lookback and number of neurons, where the lookback

specifies how many timesteps back should the input data go,

the number of neurons specifies which neuron nodes achieve

an optimal prediction effect.

First of all, the number of neurons was set to an equivalent

value chosen from a candidate set of {32, 64, 80, 128, 256}.

Several experiments were performed and the corresponding

errors (MAE and RMSE calculated by standardized data)

were recorded as shown in Table 3. The results show that with

the increase of neurons of GRU hidden layer, the forecasting

performance first improves greatly and then begins to dete-

riorate. Under the same configuration, over-fitting problems

arise when neurons exceed 80. Thus, we set the number of

neurons to 80 in the successive experiments.
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TABLE 3. Effect of the number of neuron nodes in GRU model.

TABLE 4. Effect of lookback.

Next, making neurons as a constant, changing the look-

back, we can see from Table 4 that the model is best fitted

when the lookback is 8, as indicated by the RMSE and MAE.

That is to say, a small lookback cannot guarantee evenough

long-term memory inputs for this deep learning model, but

large lookback allows for more redundant information inputs,

which is not conducive to modeling. Furthermore, the tempo-

ral correlations among the PM2.5 concentration time series

were analyzed by autocorrelation functions. For time delay k ,

the autocorrelation coefficients can be calculated as follows:

ρk =
Cov(yt , yt+k )

σytσyt+k
(10)

where yt and yt+k denote the PM2.5 concentrations at time t

and time t+ k , respectively, Cov(·) is the covariance and σ (·)

is the standard deviation. The results are shown in Figure 5.

An obvious descending trend is observed with increasing

time lag, which means earlier events have a weaker effect on

the current status. Bisides, the autocorrelation coefficients is

higher than 0.7 when the time lag is less than 7, indicating

a high temporal correlation. As a compromise, the lookback

was set to 8, which was the most appropriate setting for this

forecasting model.

After a lot of experiments, the values of each parameter are

determined. Both the meteorological data and the PM2.5 data

of the past 8 hours are used to predict the PM2.5 concentration

2 hours later. For fairness, all reference deep learning models

in this experiment used the same hidden layers and the num-

ber of neurons, the difference between these models and the

CBGRU is the absence of convolutional neural networks. For

CBGRU model, after adjusting the parameters of different

model structures and parameters, the final parameters are as

follows.

• Convolutional neural networks: Contains 2 layers of

convolutional layers with the activation functions of

FIGURE 5. Variations among the autocorrelation coefficients of
PM2.5 concentration with respect to different time lags.

TABLE 5. Comparison of model performance.

ReLu, each have 40 and 80 feature detectors, the length

of the 1D convolution window is 3. There is a MaxPool-

ing1D layer between the two convolution layers with the

pool size of 2, which halve the input tensor.

• Bidirectional GRU networks: Contains 2 layers of bidi-

rectional GRUs with 80 neurons per layer.

• Fully connected layers: contains 1 fully connected layer

with only 1 neuron.

C. FORECASTING RESULTS AND ANALYSIS

After training to convergence, the optimal model weights

of CBGRU prediction model is obtained. The evaluations

were conducted using the test set (Hourly points between

May 6, 2014 and December 30, 2014), and the predicted and

observed PM2.5 concentrations are presented in Figure 6.

It can be observed from the figure that the CBGRU model

produced results which can follow the fluctuations of actual

values during the testing set successfully.

To verify the efficiency and accuracy of the proposed

approach, several comparative models were developed for

PM2.5 prediction.

Table 5 lists the quantitative results by RMSE, MAE and

SMAPE, which gives comparative analysis of SVR, DTR,

GBR, RNN, GRU, LSTM, BGRU and our proposed model of

CBGRU. As shown in the Table 5, shallow machine learning
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FIGURE 6. PM2.5 concentration forecasting results of CBGRU model.

FIGURE 7. Scatter plots with the comparison models. (a) DTR, (b) SVR, (c) GBR, (d) RNN, (e) GRU, (f) LSTM, and (g) CBGRU.

models (SVR, DTR and GBR) have similar performance.

Compared with traditional deep learning methods (RNN,

GRU, LSTM), shallowmachine learning methods have larger

RMSE and MAE, while the SMAPE are smaller. For deep

learning methods, LSTM and GRU have similar perfor-

mance, both of them are significantly superior to RNN. Fur-

thermore, themodel error of BGRU is lower thanGRU,which

shows the bi-direction training model is improved obviously

compared with the traditional model, indicating that the bidi-

rectional model can improve the prediction performance.

More significantly, compared to other seven methods, our

model exhibited higher forecasting precision, as indicated by

the RMSE, MAE and SMAPE values. This result confirms

that our model CBGRU can learn local trend information and
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FIGURE 8. Boxplot of comparison models’ prediction deviation. The blue
solid line in the box represents the median of data, and the green
diamond represents the mean of data.

long term dependencies features of meteorological data and

PM2.5 concentration data.

In order to compare the prediction effect of each model

more intuitively, the scatter plots of observed and predictid

PM2.5 concentrations during the whole test set is illustrated

in Figure 7. It can be seen from the figure (a, b and c)

that the distribution between predicted and observed values

of shallow machine learning models (SVR, DTR, GBR) is

divergent. For deep learning methods, RNN (Figure 7 (d))

showed the worst forecasting effect, it fail at some peak and

valley values, causing the distribution between the forecasted

and observed values deviate from the diagonal. Apparently,

variants of RNN (LSTM and GRU, Figure 7 (e and f))

show better results. Compared with all the models described

above, it can be find that the model proposed in this paper

(Figure 7(g)) is more sensitive to local sharp changes (the dis-

tribution between the predicted value and the observed value

is more inclined to the diagonal), which mainly attributed to

the existence of convolution networks that capture richer local

change information.

Besides, the prediction deviation analysis is also con-

ducted. The prediction deviation is obtained by subtracting

the observed values from the predicted values of each model.

The boxplot of the prediction deviation is shown in Figure 8.

The height of the box partly reflects the fluctuation of the

deviation data, the flatter the box, the more centralized the

data is. Similarly, the shorter the whisker, the more central-

ized the data is. According to Figure 8, although the mean

and median of SVR, DTR and GBR are closer to 0, they are

highly volatile. With narrower box and whisker, the CBGRU

performs much better compared to other models.

In terms of the comparison analysis above, the proposed

method outperforms all other models, including mainstream

approaches like LSTM. It fully proves the effectiveness and

superiority of the combination of 1D convnets and bidirec-

tional GRU.

V. CONCLUSION

In this study, time series forecasting experiments on PM2.5

concentration using 1D convnets and bidirectional GRU,

which is a special type of RNN are conducted. The per-

formances of the proposed model have been investigated.

The results are compared with traditional mechine learning

models and conventional deep learning models. The results

show that the proposed method can be suitable and compet-

itive on the PM2.5 data time series forecasting. To be more

specific, compared with shallow machine learning models,

such as DTR, SVR and GBR, deep learning-based methods

exhibited better prediction performance. Furthermore, com-

pared with GRU, bidirectional GRU has lower error value,

which indicates that the use of bidirectional GRU can improve

the prediction effect. This is because the bidirectional GRU

processes the time series chronologically and antichrono-

logically, it captures patterns that may be ignored by one-

direction GRUs, improving feature learning capabilities in

time series. In addition, compared with the other benchmark

models, the accuracy of the CBGRU model is significantly

improved, which shows that the convnets can help the GRU to

obtain better prediction performance, because convnets uses

its local feature learning ability and subsampling ability to

obtain a sequence pattern that is more conducive to GRU

processing.
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