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Abstract

Poor air quality is a development challenge. Urbanization and industrial development alongwith

increased populations have brought clear socio-economic benefits to Low-andMiddle-Income

Countries (LMICs) but can also bring disadvantages such as decreasing air quality. A lack of reliable air

quality data in East African citiesmakes it difficult to understand air pollution exposure and to predict

future air quality trends. This work documents urban air quality and air pollution exposure in the

capital cities of Kampala (Uganda), Addis Ababa (Ethiopia) andNairobi (Kenya).We build a

situational awareness of air pollution through repeated static and dynamicmobilemonitoring in a

range of urban locations, including urban background, roadside (pavement and building), rural

background, and bus station sites, alongside vehicle-basedmeasurements including buses and

motorcycle taxis. Data suggest that themeasured particulatemattermass concentrations (PM2.5,

PM10) in all studied cities was at high concentrations, and often hazardous to humanhealth, as defined

byWHOair quality guidelines. Overall, the poorest air quality was observed inKampala, wheremean

daily PM2.5 andPM10 concentrations were significantly above theWHO limits at urban background

locations by 122%and 69% and at roadside locations by 193%and 215%, respectively. Traffic is

clearly amajor contributor to East African urban air pollution;monitoring inKampala andAddis

Ababa, onmotorcycle taxis, in buses and at bus stations indicated that drivers and commuters were

exposed to poor air quality throughout their commute. Road-related air pollution can also impact

indoor locations near roads. Using one exemplar building locatedwithinNairobi’s Central Business

District, it is shown thatmeasured outdoor PMconcentrations significantly correlate with the indoor

air quality (r=0.84). This link between roadside emissions and indoor air pollutionwithin buildings

located close to the road should be exploredmore fully. This study, through a series of case studies,

provides clear evidence that roads and traffic need to be a focus formitigation strategies to reduce air

pollution exposure in East African cities.

1. Introduction

Currently, approximately 55%of the global population lives in urban areas. By 2050 this proportion is estimated

to reach 68% (UN2018). Urbanisation has the potential to improve thewell-being of societies, yet also presents a

number of development challenges including environmental risks, with exposure determined by a range of

social, technological, environmental, and behavioural factors. Key environmental health issues include poor
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water quality and sanitation,flooding, and the dual risks of indoor and ambient air pollution exposure. Short-

and long-term exposure to air pollutants (particles or gases) generated from a range of emissions sources are

recognised to exert adverse impacts upon the human respiratory, cardiovascular,metabolic and neurological

systems throughout the life course (Kim et al 2015,Wong et al 2015, Rajak andChattopadhyay 2020, Shehab and

Pope 2019). TheWorldHealthOrganisation (WHO) reports air pollution is the greatest global environmental

health threat contributing to an estimated 7million premature deaths globally per year, withmore than 90%of

air pollution associated deaths occurring in Low- andMiddle-IncomeCountries (LMICs), mainly in Asia and

Africa (WHO2014, 2016, GBDRisk Factor Collaborators 2018).Most work has looked at long term impacts of

air pollution on health, however, short-term exposure to PM2.5 has been shown to increase risk of

cardiovascular, respiratory,metabolic and neurological diseases and emergency admissions to hospitals

(Orellano et al 2020); and ambulance dispatches (Sangkharat et al 2019).

East African countries are undergoing rapid economic development, industrialisation and socio-

demographic transition, with associated environmental degradation including significant increases in ambient

air pollutant levels (Cohen et al 2017, Pope et al 2018, Rajé et al 2018, Kalisa et al 2019, Abera et al 2020,

deSouza, 2020). Available evidence suggests that air pollutionwill continue toworsen in future years and exert

an increasing toll on population health inmany cities of East Africa (Petkova et al 2013, Gaita et al 2014, Pope

et al 2018, Rajé et al 2018, Singh et al 2020). In recent years, efforts have beenmade to understand the air

pollution condition, sources and their exposure in East African countries (Vliet andKinney 2007, Kume et al

2010, Gaita et al 2014, Schwander et al 2014,Ngo et al 2015, Egondi et al 2016, Amegah andAgyei-Mensah 2017,

deSouza et al 2017, Pope et al 2018, Gatari et al 2019,Woolley et al 2020, 2021). However, there is still a paucity of

air pollution data andwell-established airmonitoring networks in East African cities, which results in difficulties

in understanding both air quality trends and their influences upon public health (Petkova et al 2013,

Kiggundu 2015, deSouza et al 2017, Pope et al 2018, Singh et al 2020). To establish a nuanced and targeted urban

air qualitymanagement strategy, information on the temporal and spatial variation in air pollution is required.

With increasing population numbers living in cities, existing urban infrastructure is struggling to copewith

the increased demands of urban residents. Rapid expansion and growth has led to urban and suburban sprawl

i.e. the unrestricted growth of housing, commercial development, and roads. Urban sprawl is often associated

with longer commutes and contributes to traffic congestion and air pollution. According to (Rode et al 2017),

rapid urbanisation in sub-SaharanAfrica has led to intense traffic congestion, as demand for transport has

increased faster than cities can provide. In turn,mounting dependency onmotorised transport is creating health

and safety risks, impeding economic development, and producingmore emissions (Abera et al 2020). Despite

the importance of efficient and effective urbanmobility, national and city governments often provide

disproportionate levels of investment and institutional support for private vehicle use relative to public and non-

motorised transport (Rode et al 2017).

Numerous studies have shown that road traffic emissions significantly affect the air quality of urban

environments by contributing to the ambient particulatematter (PM) levels (Giugliano et al 2005, Borrego et al

2006, Pérez et al 2010, Kinney et al 2011, Pant et al 2015).Whilst it is important to understand how air pollution

varies between types of location i.e. urban roadside, urban background and rural, it is also important to consider

howpeople engagewith the urban environment i.e. locationswhere people spend significant amounts of time or

where significant numbers of people are to be found, aswell as howpeoplemove around urban areas. Locations

with locally increased air pollution are often referred to as hotspots. The elevated pollution levels in such

locationsmay be the product of limited dispersion of pollutants (e.g. a street canyon) or high local emissions (e.g.

near a highway, railway station, airport, harbour, or in the case of this paper, a bus station or bus). Alongside

hotspots, some groupsmay be exposed to higher levels of pollution e.g. people who live andwork near busy

roads and thosewho travel or commute in heavy traffic. The exposure to air pollutants is itself influenced by

choice of transport e.g. drivers, cyclists, and pedestrians as well as the routes used.

Thework reported in this paper addresses the highlighted transport related data gaps in three East African

capitals (Addis Ababa, Kampala andNairobi). An assessment of air quality trends, sources and their exposures is

provided, through a series of air quality case studies related to transport in different geographical locations and

roadside/traffic-related hotspots.

2.Data andmethods

PMmass concentrationwasmeasured in three East African cities (Addis Ababa, Kampala andNairobi) using

low cost sensors. PMwas chosen as the study pollutant because it is recognised to exert the greatest health impact

of any air pollutant in East Africa (Pope et al 2018). PMwasmeasured in two size fractions - PM2.5 and PM10 (PM

with aerodynamic diameters less than 2.5 and 10 μmrespectively), which have relevant health-basedWHO

guideline concentrations (WHO, 2006). The effect of themeasured PMconcentrations upon healthwas
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visualized using theUS Environmental ProtectionAgency (EPA) primary health standard for PM2.5 air quality

index (AQI), which is shown in table S1 (https://www.airnow.gov/aqi/aqi-basics/ and https://www.airnow.

gov/aqi/aqi-calculator-concentration/). This EPAAQI level for health is based on dailymean average (24-

hour) concentration of PM2.5 data.

It is noted that in several of thefigures shown in the paper, the EPAAQI grading of pollutants in usedwhen

themeasurement duration is shorter than 24 h averages, and hence, strictly the AQI is not valid.However, the

AQI provides a useful visualization tool to easily observe spatial and temporal heterogeneity in pollution

concentrations.

2.1. Low cost particle sensor

Over the last few years, there has been a revolution in the use of low-cost air quality sensors, withmany different

models now available on themarket. In this study, we use theAlphasenseOptical Particle Counter (OPC-N2)

(www.alphasense.com) tomeasure PMmass concentration in the PM10 and PM2.5 fractions. This sensormodel

was chosen for a variety of reasons. Firstly, it is currently the low-cost PM sensorwith themost independent

testing in the scientific literature e.g. (Sousan et al 2016, Crilley et al 2018, Crilley et al 2020). Secondly, theOPC-

N2device is small in size (dimensions 75×60×65mm), low inweight (under 150 g), and has relatively low

power requirements (175mAwhen operating), which allows for their installation in a variety of locationswith

eithermains power or a combination of battery and solar power. Supplementary figure S1 (available online at

stacks.iop.org/ERC/3/075007/mmedia) provides a diagramwith dimensional specification. The unit cost of

thisminiaturisedOPC is also relatively low (approximately £250GBP)when compared to comparable reference

grade optical particle counter (OPC) instruments, with a cost ratio (OPC-N2: reference gradeOPCs) on the

order of 50. The cost of reference grade instruments which provide absolute PMmass concentrations

(gravimetric devices) is significantly higher again.

TheOPC-N2measures particles in the size range of 0.38 to 17μm,with amaximumparticle count of 10,000

per second. The available size range allows for capturing themass of both PM2.5 and PM10 fractions. It has a

minimum sampling time resolution of less than 1 s, but practically data is usually averaged over longer time

periods. In this study, data was sampled at a 10 s resolution, then averaged over longer timescales: hourly or

daily, dependent on the analysis required. TheOPC-N2measures size dependent PMconcentration through

measurement of the light scattering properties of the particles, this approach requires several approximations:

particles are spherical and have uniformdensity and shape. These assumptions are not valid for all particles in

the urban environment, but on average, they provide a good approximation.Measured particle number

concentrationwere converted to PMmass concentrations in the PM2.5 andPM10 size fractions via on-board-

factory calibration according to European Standard EN481 (Alphasense 2015, Sousan et al 2016). It is noted that

the on-board calibration is only valid for the conditions underwhich the instrument was calibrated.Hence,

calibration in similar conditions to the deployment conditions, as in this study, is highly recommended prior to

operational deployment.

2.2. Calibration ofOPC sensors

To ensure the accuracy and quality of PMmass data, calibration of theOPC sensors is required. Previously,

(Crilley et al 2018) demonstrated effective calibration of theOPC sensors. The calibration involves an absolute

PMconcentration scaling, which is dependent on local PMproperties. TheOPC readings also exhibit a strong

dependence on local relative humidity, especially when relative humidity is above 85%, due to the

hygroscopicity of PM, (Crilley et al 2018). There are various reference grade instruments available for calibration

but the availability of these instruments in East Africa is currently limited. It is important that these reference

instruments are properly calibrated and serviced themselves. Previous studies have shown that theOPC sensors

can suffer fromdrift and a number of other interference artefacts in addition to relative humidity (Mead et al

2013, Crilley et al 2018), which cannot be neglected.

For this work, theOPC sensors were calibrated using gravimetricmeasurements of PM2.5 and PM10.Usually,

gravimetric analysismethod is preferred over the othermethods for the calibration of light scattering

instruments because it provides an absolute weightmeasurement (O’Connor et al 2014), andweight can be

measuredwith greater accuracy than other fundamental properties. It is also necessary to ensure that calibration

is performed under optimumconditions i.e. low relative humidity. Calibration of all sensors was performed in

Nairobi using gravimetric calibration as previously described in Pope et al (2018). The observed scaling factors

between theOPC-derived PM2.5masses and gravimetric analysis were in the range of 1.8±0.40, similar to

previously observed in Pope et al (2018). The calibrationwas performed for a period of 72 h by collocating the

OPCs against anAndersenDichotomous air sampler on the top of a building in theUniversity ofNairobi (17m

above ground level). The correction/scaling factors were calculated through comparison of themass

concentrations from theOPCs and the gravimetric instrument.
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2.3.Data collection

PM2.5 and PM10mass concentrations weremeasured at three different locations (roadside, urban background

and rural)within each city over different timeframes between 2018–2019 (see table S2 and Supplementary

section 2.0). Roadsidemonitoring sites were located very close to themain roads (1–3m from road edges), where

the selected roadswere relatively openwith no adjacent high buildings and the trafficflowwere relatively high

and steady. Urban backgroundmonitoring sites were away from local / road sources, whereOPC sensors were

mounted on top of buildings. Rural background sites were located in non-urban areas that were away frompoint

and line sources of air pollution. The sampling heights of the differentmonitoring stations are not constant and

further details are provided in the supplementarymaterial. Synchronousmeasurements were not always

possible due to the lack of instrumentation. In addition to low-costmeasurements, onemonth (Sep 2019) of

hourly PM2.5 datawas used for Addis Ababa fromAirnow (www.airnow.gov), which is located at theUS

embassy. In general, each study city has two distinct rainy and two dry seasons that influence PMconcentrations

by changing PMsources and sinks, described in (Singh et al 2020).Whilst the study cities are distinct from each

other in terms of geography; climatology; politics; demographics and other factors, they share rapidly growing

population, urbanisation andmotorisation trends. Geographical, economical and climatic (including seasonal

variability) information of the study cities can be found in supplementary (section 1.0) and (Singh et al 2020).

2.4. Influence of traffic emissions onurbanPMconcentations

Tounderstand the influence of traffic emissions on urban PMconcentrations, the urban and roadside

increments in PMconcentrations were calculated using the ‘Lenschow’ approach (Lenschow et al 2001, Pope

et al 2018). The Lenschow approach provides an estimate of the contributions of the urban background and

roadswithin the urban area to the total ambient PMmass concentration. Figure S3, provides a schematic profile

of PMmass concentrations for different background environment (urban background, roads and regional/

rural background), where it is assumed that the increment in PMmass between urban background and roadside

were due to the emissions of the road traffic adjacent to the roadside site (Gianini 2012). Similarly, the increment

in PMmass between urban background and regional/rural backgroundwere due to PMemission in the urban

environment (Gianini 2012). The roadside increment was calculated by subtracting the PMconcentrations of

the urban background site from the urban roadside site. The urban increment was calculated by subtracting the

PMconcentrations of the rural background site from the urban background site. Based on these assumptions,

this study estimated roadside and urban increment in PM2.5 and PM10 concentrations usingmeasurements

from campaign periodswhen all sites (roadside, urban and rural)were running simultaneously (table 2). The

Lenschow approach removes the influence of regional pollution fromurban pollution estimates and allows for

more direct comparison between the three study cities, whichweremeasured during different study periods. It is

noted, the Lenschow approach views the city simply, as a function of rural background, urban background, and

roadside concentrations. The approach could be extended to look at other point air pollution sources, for

example biomass andwaster burning, but the focus of this studywas on the role of roads upon urban pollution.

2.5. Case studies

A series of case studies were performed to explore air quality at different road and traffic related hotspots,

including a bus station, road routes and a roadside building, withinKampala, Addis Ababa andNairobi, where

PM2.5 concentrations were collected at 10 s time resolution using theOPC-N2 sensor. For the case studies, PM

measurements were only collected for the PM2.5 size fraction.

2.5.1. Kampala

Boda-Bodamotorcycle taxis -PM2.5 concentrations were collected on amotorcycle taxi (Boda-Boda) equipped

withOPC-N2 sensor, coupledwith aGlobal Positioning System (GPS) device. The sampling campaign consisted

of two days (30April and 2May 2019) between 07:00 to 21:00 on different road routes inKampala. The routes

takenwere dependent on the requirements of BodaBoda’s passenger pickup and drop-off locations. It is noted

that themotorcycles are a source of pollution aswell as being the location for the pollution detector.

2.5.2. Addis Ababa

Bus station –PM2.5 concentrations were collected for 8 days (5–12 Sep 2019) at the Addis Ababa International

StadiumBus Station and comparedwithmeasurements from an urban background site (Table S2). The

collected 10 s data was converted to 1 h averages. Themonitor was installed at the Addis Ababa International

StadiumBus Station, close to an assembly point for bus riders at 1.5mheight above ground. This bus station is

one of the busiest stations inAddis Ababa, which is located near to the International Stadium and surrounded by

busy roads. The bus station datawas compared to the hourlymean PM2.5 concentration data from theUS

embassy urban background site obtained viawww.airnow.gov.
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Table 1. Summary statistics ofmeasured PM2.5 and PM10 concentrations for all three East Africameasurements sites during thewholemonitoring periods, where uncertainties are at 1 standard deviation (±1σ) of themean. The range of
24 h average values are providedwithin the square brackets.

Cities Sampling locations

Sampling timeframe

(day-month-year)

24 h average PM2.5 concentration

(μgm−3)

24 h average PM10 concentration

(μgm−3)

%exceedance ofWHO24 h average PM2.5

guideline (25μgm−3)

EPAAQI ranking of air pollu-

tion situation

Roadside 9 Jul 2019–4Aug 2019 90.1±38.3 [28.0–221.7] 155.5±48.4 [66.6–296.4] 100.0 Unhealthy

Addis Ababa Urban background 9 Jul 2019–4Aug2019 47.4±19.7 [16.9–105.4] 82.9±38.21 [25.6–192.1] 86.4 Unhealthy for sensitive groups

Rural 9 Jul 2019–4Aug 2019 8.3±4.1 [3.2–22.2] 12.14±6.0 [4.73–32.3] 0.0 Good

Roadside 10Oct 2018–20Apr 2019 73.1±34.6 [34.6–199.0] 157.2±60.0 [71.3–361.2] 100.0 Unhealthy

Kampala Urban background 10Oct 2018–21Oct 2018 55.7±20.3 [28.8–96.7] 84.4±32.7 [43.2–152.0] 100.0 Unhealthy

Rural 10Oct 2018–20Apr 2019 9.3±4.1 [1.8–20.8] 19.5±9.9 [3.7–61.5] 0.0 Good

Roadside 23 Feb 2019–30Mar 2019 48.5±14.9 [25.6–108.8] 103.6±45.2 [58.6–227.0] 100.0 Unhealthy for sensitive groups

Nairobi Urban background 23 Feb 2019–30Mar 2019 31.6±15.4 [16.5–58.4] 47.1±37.2 [19.0–67.6] 41.3 Unhealthy for sensitive groups

Rural 23 Feb 2019–30Mar 2019 4.5±1.4 [3.1–6.7] 12.3±3.0 [8.8–21.7] 0.0 Good
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Public bus -PM2.5 concentrations weremeasured on board a public bus following three different routes over

the course of 1 day (15Aug 2019): Kara toMerkato (12:07pm–13:30pm), Lamberet toMerkato (17:55pm–

19:00pm) andKara to Anbessa garage (20:00pm–20:50pm) in Addis Ababa. To sample the PM2.5 concentrations

inside the bus, theOPC-N2 sensor alongwithGPS device weremounted on the passenger seat near the

entrance door.

2.5.3. Nairobi

Building near roadside-PM2.5 concentrations weremeasured at both inside (in a ground floor room) and outside

an exemplar building next to a busy road (MoiAvenue) inNairobi’s Central BusinessDistrict, for eleven days (26

July 2018 to 05Aug 2018). The buildingwas selected by twomajor criteria: i)no biomass/household burning

sources within the building, and ii) proximity of the building to a busy roadside.

3. Results and discussion

3.1. Air quality in the East African cities

Summary statistics of themeasured PM2.5 andPM10mass concentrations for allmeasurements sites during the

three study city campaigns are provided in table 1. During themeasurement periods, themean PM2.5 and PM10

concentrations were highest inKampala, followed byAddis Ababa thenNairobi for all locations (roadside,

urban and rural background) (see table 1). As expected, rural locations inKampala, Addis Ababa andNairobi

showed cleaner air quality with lowPMconcentrations compared to roadside and urban backgrounds during

the campaign. Figure 1 provides the box andwhisker plots of the hourly averaged PM2.5 and PM10mass

concentrationsmeasured at urban, rural and roadside locations inKampala, Addis Ababa andNairobi. These

box andwhisker plots provide themedian averages alongwith upper and lower quartiles of PM2.5 and PM10

mass concentrations.

The overallmeanmass concentration of PM2.5 and PM10 at both the roadside and urban background

locationswere significantly above theWHO limits for PM2.5 (25μgm−3) and PM10 (50μgm−3) for all three

study cities, as shown in table 1 and figure 1. Table 1 provides 24 h average data, whereas figure 1 uses average

hourly data to highlight the large range of PMconcentrationsmeasured during the campaigns. In particular, the

daily roadsidemean PM2.5mass concentrations exceeded theWHO limits on all days of campaigns inNairobi

andAddis Ababa, inKampala it exceeded the value 99%of the time (table 1). Onmany days of the campaign, the

dailymean PM2.5 concentrations for the urban background sites exceeded theWHO limits in Addis Ababa

(86.4%), Nairobi (41.3%) andKampala (100%).

Using the EPAAQI scale, based upon PM2.5, the results, shown in table 1 andfigure 1, show that the

measured air quality inKampala, Addis Ababa andNairobi were typically unhealthy for all residents.

It is noted that themeasuredmean PM2.5 concentrations inNairobi were 30%higher in 2019when

compared to similarmeasurements performed in 2017 for the samemonths (Feb-Mar) at both roadside and

urban sites, while therewereminor differences in PM10 concentration (Pope et al 2018). The differences in

observed concentrations between the twomeasurement campaigns can be due to differences in either, or both,

Figure 1.Box andwhisker plots of the hourly averaged PM2.5 and PM10mass concentrationsmeasured at urban, rural and roadside
locations over (a)Kampala (b)Addis Ababa and (c)Nairobi.
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the sources and losses of the PM.Without detailed information on themeteorology inNairobi during the two

time periods it was impossible to state definitively whether the increased PMconcentrations were because of

increased sources of PMor decreased losses of PM, or a combination of both source and loss terms. The Singh

et al (2020) study, which uses visibility as a proxy for air pollution, suggests that PMconcentrations are

increasing by approximately 4.1%per year inNairobi. This suggests that the differences in PMduring the two

field campaignswas likely due to both increased production of PMbut also decreased PM losses during the later

Figure 2.Hourly PM2.5 concentrations andWHOair quality guidelines, where different colour backgrounds show the EPAAQI for
health.

Figure 3. Spatialmap of PM2.5 concentrationsmeasured on different road routes inKampala using Boda-Boda taxi, where, colour
coding is in accordance with the EPAdaily AQI categories.
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field campaignmeasurement period, when compared to the earlier field campaign. Increased losses can be due

to a variety ofmeteological conditions, including increasedwet and dry PMdeposition, and horizontal

dispersion bywind.

Within the daily average, the air quality situation forNairobi andAddis Ababawas ‘unhealthy for sensitive

groups’, while for Kampala was ‘unhealthy’ in reference to the EPAAQI. To enable further exploration of the

daily data, hourly diurnal profiles of PM2.5mass concentrations of urban locations are provided infigure 2.

Therewere clear differences between site types when comparing the diurnal profiles. Two peakswere evident

during themorning (05:00–10:00 EAT) and evening (16:00–00:00 EAT) periods corresponding to traffic rush

hours, indicating a possible dominant PM source related to vehicular emissions at all three sites (figure 2). The

evening rush hour periodwill also likely be impacted by the lowering of the planetary boundary layer, which

increases pollutant concentrations. The Planetary boundary layer (PBL) is the region of the lower troposphere,

where a layer of warm air is trapped under a layer of cold air, as the result of temperature inversion. The PBL is a

function of solar insolation and defines the effective volume that pollutionmixes within. The lower the planetary

boundary layer height, the smaller the effective volume and hence the greater the pollutant concentration for a

given amount of pollution.

The importance of traffic emissions are evaluated by calculating the urban and roadside increment of PM

concentrations. The results show a significant roadside and urban increment in PM2.5 and PM10 concentrations

in all study cities (table 2). Overall, themean roadside increment in PM2.5 and PM10 concentrations were 49%–

55%and 51%–65%, respectively, where Kampala showed the highest increment in roadside PM2.5 (55%) and

Table 2. Summary statistics of roadside and urban
background increment in PM2.5 and PM10 concentrations
during the campaign.

Roadside 24-hr

mean increment

in PM level (μg

m−3)

Urban back-

ground 24-hr

mean increment

in PM level (μg

m−3)

PM10 PM2.5 PM10 PM2.5

Addis Ababa 79.5 45.7 65.5 36.3

Kampala 102.0 40.3 66.0 44.6

Nairobi 65.1 23.7 26.4 20.5

Figure 4.Time series and box andwhisker plots of hourlymeanPM2.5mass concentration at International stadiumbus station and
background (USEmbassy) sites in Addis Ababa, Ethiopia.
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PM10 (65%) concentrations as compared to the two other cities. The large roadside increments in all study cities

highlight the importance of roads to the urban atmospheric environment in East African cities.

3.2. Case studieswithin the East African cities

The previous section highlights the importance of road emissions in East African cities upon PMconcentrations.

In the following sections, PM2.5 concentrations weremeasured at different road and traffic related hotspots (i.e.

bus station, road routes and roadside building)withinKampala, Addis Ababa andNairobi.

3.2.1. Kampala: PM exposure during Boda-Boda ride

PMmeasurements were collected on amotorcycle taxi (Boda-Boda), wheremap representations of the PM2.5

mass concentrations are shown infigure 3. The range of PM2.5 concentrationwere 1.97–176.5μgm
−3 during

thefirst day and 3.96–504.3μgm−3 during second day of campaign. For the first day, averaged over all journeys,

themean PM2.5 concentration (±1σ)was 25.2±24.1μgm−3, whereas themean concentrationwasmore than

double (51.2±42.1μgm−3) during the second day.On the second day heavy traffic jams occured onmost

routes, whichwere likely responsible for higher PMemissions. Results showed that the driver and passenger had

exposure to poor air qualitymost of the time during both days of campaign, where 22%–35%of the total travel

timewas unhealthy for sensitive groups, while an additional 17%–25%of the total travel timewas unhealthy for

all, according to the EPAdaily AQI (figure 3 and table S1).

Figure 5. Spatial distribution of PM2.5mass concentrations, whichweremeasured on a public bus (15Aug 2019) on three distinct
routes in Addis Ababa.Here, colour coding is in accordancewith the EPAdaily AQI categories.
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3.2.2. Addis Ababa: PM exposure at the bus station and on bus

3.2.2.1. Air quality at the bus station

PMair pollutionwas assessed at the Addis Ababa International Stadiumbus station and comparedwith the

backgroundmeasurement site. The time series of PM2.5 concentrations showed that the observed range of

hourly PM2.5 concentrations were between 28.4–693.2μgm
−3 at the bus station, and 11.0–150.3μgm−3 at the

background site (figure 4). The 24 hmean PM2.5 concentration at the bus station (114.4±50.1μgm−3)were

higher than at the background site (33.0±8.7μgm−3) and the bus station values always exceeded theWHO24-

hour average threshold guideline of 25μgm−3 throughout the eight days ofmeasurement. The overall daily

mean bus station PM2.5 concentrationwas found to be at an unhealthy level (using the EPAAQI) and

considerably higher (247%) than themeasured background concentration (figure 4). PM2.5 concentrations were

higher over the evening of the 11th September and earlymorning of the 12th September, compared to the rest of

the study days. This high PMperiod corresponds to the EthiopianNewYear’s Eve and celebration day. After the

end of the rainy season, EthiopianNewYear (Enkutatash) is celebratedwith traditional and cultural activities,

including bonfires andfireworks, whichwas likely responsible for high PM levels on 11th (Singh et al 2019).

3.2.2.2. Air quality on the bus

PM2.5measurements were collected on a public bus following three different routes: Kara toMerkato,

Lamberet toMerkato andKara toAnbessa garage inAddis Ababa to explore the on board PMconcentrations,

and corresponding exposure to the driver and commuters.We observed significant variability in PM2.5

concentrations during all three routes (figure 5). The overall average PM2.5 concentrationsmeasuredwere

69.5±24.5μgm−3, 69.0±27.4μgm−3, and 104.3±44.5μgm−3 during the journeys betweenKara to

Merkato, Lamberet toMerkatoandKara to Anbessa garage, respectively. The air quality was poor throughout

the extent of all three journeys, where 65%–77%of the total time of journey exposed to an unhealthy level as

defined by the EPAdaily AQI of PM2.5 pollution (figure 5 and table S1), since themeasurements weremade over

a sub 24 h period the AQI is only indicative.

3.2.3. Nairobi: Influence of traffic emission on a building’s indoor air quality

The influence of roadside PMemission upon a building’s indoor air quality was explored. Summary of PM

emissions at both inside (in a groundfloor room) and outside of a building next to a busy road (MoiAvenue) in

Nairobi’s Central BusinessDistrict is shown infigure 6. Overall, dailymean PM2.5 concentration at the

indoor (inside the building room) and outdoor (roadside) locationswere 41.0±19.5μgm−3 and 52.0±

24.25μgm−3, respectively, with both considerably in excess of theWHO threshold by 64%and 108%,

respectively (figure 6(a)). PM concentrations at both locationswere at unhealthy levels throughmost of the

campaign time, according to EPAAQI. The ratio between indoor and outdoor PM2.5 concentrations was

calculated to estimate the relative contribution of indoor and outdoor sources to the indoor air quality (Diapouli

et al 2008). Roadside PMemissionswere significantly associatedwith the indoor air quality (r=0.84), with

indoor to outdoor PM2.5 ratio of 0.78±0.16, thus highlighting the importance of road emissions upon nearby

buildings (figure 6(b)).

3.2.4. Overview of case studies and limitations

PMconcentrations weremeasured at different traffic and road related hotspots (a bus station, road routes and

roadside building) through detailedmobile and staticmonitoring case studies. Traffic-relatedmonitoring in

Figure 6. Summary of PMemissions at a building and nearby roadside, where (a) hourlymean box plot of PM2.5 concentrations (b)

Correlation between indoor (inside the building room) and outdoor (roadside)PM2.5 concentrations.
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Kampala andAddis Ababa, onmotorcycle taxis, in buses and at bus stations indicated that drivers and

commuters were exposed to hazardous levels of air pollution duringmost of the routes travelled. This is a serious

concern as a significant number of people use bus/motorbike transport for their daily commute in East Africa

(Campbell et al 2019).Monitoring in an exemplar roadside building inNairobi highlighted that road-related air

pollution can also significantly impact upon thoseworking inside buildings located near roads. The indoor air

quality in the building was found to be significantly correlatedwith roadside PMconcentrations. This highlights

that road/traffic emissions do not just influence road users. It is noted thatmany people spend significant

amounts of time indoors (i.e. office, schools, shops and homes) (Ashrae 2016), therefore the contribution of

road/traffic emissions on indoormicroenvironments is of particular concern.

Our findings indicate that key contributions to the East African urban air pollution are local sources,

predominantly traffic/road emissions. Hence, air qualitymanagement initiatives that rely solely on urban

backgroundmeasurementsmay significantly underestimate the impact of poor air quality on East African cities.

Further to this, this study highlights that hotspotmeasurement campaigns and dynamic air quality

measurement programmes can identify locationswhere air qualitymay be particularly poor orwhere

particularly vulnerable groupsmay be present. These outcomes enable the development of tailoredmitigation

strategies for improving air quality in East African cities. It is likely that social, political and economic changes

are necessary to develop a comprehensive strategy in order to address air pollution challenges in such rapidly

industrialising settings, and support sustainable economic development.

For the Lenschow type analysis the locations, heights andmeasurement periods for the rural background,

urban background and roadsidemeasurement sites, in the three study cities, were different. Since PM

concentration can vary as a function of location, height and time of year, these differences provide a limitation to

the study.

Another limitation is for themeasurements that were performed on the Boda bodamotorcycles, the

motorcycles are a source of pollution aswell as being the location for the pollution sensor and hence are not truly

independent.

The case study nature of this study introduces limitations to the strength of interpretation possible. Only a

limited number of locationsweremeasured, and themeasurement periods at the case study locationswere

relatively short.However, the case studies provide clear evidence for the role of roads as amajor source of urban

pollution in East African cities. Furthermore, they provide a blueprint for future longer term studies inmultiple

locations to identify poor air quality urban hotspots, and to discriminate between local and regional sources in

these East African cities.

4. Conclusions

This study provides a cross-sectional assessment of contemporary air quality in three East African cities of

Kampala (Uganda), Addis Ababa (Ethiopia) andNairobi (Kenya) through a series of low-cost sensor

measurements, focusing on roadside and traffic-relatedmeasurements. The keyfindings show that the daily

mean PM2.5 andPM10 concentrations at roadside and urban background locations inKampala, Addis Ababa

andNairobi were significantly above theWHOdaily health-based limits, as well as at unhealthy levels according

to the EPAAQI. During the time periodsmeasured, Kampala showed the poorest overall air quality compared to

the other study cities, withmean PM2.5 and PM10 concentrations exceedingWHO limits by approximately a

factor of 2 at urban background and a factor of 3 at roadside locations. Significant urban and roadside

increments in PMwere observed over all three East African cities, indicating a clear traffic related air pollution

contribution to the urban environments.Measurements onmotorcycle taxis and buses highlight the high

pollution levels and hence exposure possible throughmobility in East African cities. Themeasurements at the

bus station and building adjacent to the road highlight the importance of road emissions to nearby air pollution

levels.

This work providesmuch needed baseline data withwhich to improve understanding of air quality for the

capital cities of Addis Ababa, Kampala andNairobi, and the significant influence of roads and vehicles upon the

air quality.
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