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ABSTRACT

The novel SARS-CoV-2 coronavirus that emerged in the city of Wuhan, China, last

year has since become the COVID-19 pandemic across all continents. To restrict the

spread of the virus pandemic, the Government of India imposed a lockdown from

25 March 2020. In India, Kannur district was identified as the first “hotspot” of virus

transmission and a “triple-lockdown” was implemented for a span of twenty days

from 20 April 2020. This article highlights the variations of surface O3, NO, NO2,

CO, SO2, NH3, VOC’s, PM10, PM2.5 and meteorological parameters at the time of

pre-lockdown, lockdown and triple-lockdown days at Kannur town in south India

using ground-based analyzers. From pre-lockdown days to triple-lockdown days,

surface O3 concentration was found to increase by 22% in this VOC limited

environment. NO and NO2 concentrations were decreased by 61% and 71%

respectively. The concentration of PM10 and PM2.5 were observed to decline

significantly by 61% and 53% respectively. Reduction in PM10 during lockdown and

triple-lockdown days enhanced the intensity of solar radiation reaching the lower

troposphere, and increased air temperature and reduced the relative humidity.

Owing to this, surface O3 production over Kannur was found to have increased

during triple-lockdown days. The concentration of CO (67%), VOCs (61%), SO2

(62%) and NH3 (16%) were found to decrease significantly from pre-lockdown days

to triple-lockdown days. The air quality index revealed that the air quality at the

observational site was clean during the lockdown.
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INTRODUCTION
Air pollution is a major environmental issue that affects people in developed and

developing countries alike. Particulate matters (PM10 and PM2.5), oxides of nitrogen (NO

and NO2), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO) and volatile organic
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compounds (VOC’s) are the most common atmospheric air pollutants encountered in our

daily life (Chen & Kan, 2008; Guo et al., 2019). At the ground level, O3 is a major secondary

air pollutant and greenhouse gas, produced from its precursor gases in the presence of

solar radiation, and it plays a crucial role in air quality (Yadav et al., 2016; Lu et al., 2018;

Ding et al., 2020; Maji, Beig & Yadav, 2020; Resmi et al., 2020). Particulate matters are

complex mixture of organic and inorganic substances found in the ambient air, and

they play a vital role in the radiation budget of the atmosphere via the scattering and

absorption processes (Qu et al., 2017, 2018). The major anthropogenic sources of PM10

and PM2.5 are vehicular emission, industry, building construction, quarrying and mining

cement plants, ceramic industries and burning of fossil fuel power plants (Cheng et al.,

2006; Liu et al., 2015). Guo et al. (2017) revealed that, in India more than one million

people died in 2015 due to particulate matter pollution.

Carbon monoxide is an important trace pollutant that influences the oxidizing capacity

of the atmosphere, and the concentration of the surface O3 by removing hydroxyl radicals,

the primary oxidant in the troposphere (Duncan & Logan, 2008; Yadav et al., 2019a).

The main CO sources in the atmosphere are anthropogenic and natural (Lawrence &

Lelieveld, 2010). Inhalation of CO is considered very toxic to humans because it can cause

acute intoxication (Kinoshita et al., 2020). VOC’s emitted in the atmosphere consist of

saturated and unsaturated hydrocarbons, aromatic hydrocarbons, and halogenated

organic compounds (Liu et al., 2008;Montero-Montoya, Lopez-Vargas & Arellano-Aguilar,

2018). These are emitted into the atmosphere by a number of industrial activities such as

petrochemical process, storage, distribution, paint, solvent, combustion processes and

motor vehicle exhaust (Franco et al., 2015; Yadav et al., 2019b). Isoprene and

monoterpenes are another reactive natural VOC’s commonly found in the lower

atmosphere, which are mainly emitted by biogenic sources like trees and plants (Fuentes

et al., 2000; Menchaca-Torre, Mercado-Hernandez & Mendoza-Domínguez, 2015). These

hydrocarbons play a crucial role in the photochemical production of O3 and other oxidants

in the lower atmosphere (Atkinson, 2000; Srivastava, Sengupta & Dutta, 2005).

Sulfur dioxide is released into the atmosphere through both natural and anthropogenic

emissions. Natural sources are mainly by volcanic eruptions while anthropogenic sources

include the combustion of all sulfur containing fuels like oil coal and diesel used for the

power generation for industrial activities (Mallik & Lal, 2014; Zhang et al., 2017).

Industrial and traffic emissions are the major ammonia (NH3) sources in an urban

environment (Pandolfi et al., 2012; Phan et al., 2013).

Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV2) is the pathogenic

agent of Covid-19, a disease first reported from Wuhan Hubei Province of China in

December 2019. It was declared a global pandemic by the World Health Organization

(WHO) on 11 March 2020 (Al-Qahtani, 2020). The course of the disease is often mild

undistinguishable from severe pneumonia which eventually lead to acute respiratory

distress syndrome (ARDS) and death (Lu, Stratton & Tang, 2020). India reported the first

confirmed case of coronavirus infection on 30 January 2020 in the southern state of Kerala

(Gautam & Hens, 2020). To stop the spread of the virus pandemic, many countries have

decided to enforce lockdown measures, even as they caused a severely downturn on the

Resmi et al. (2020), PeerJ, DOI 10.7717/peerj.9642 2/20

http://dx.doi.org/10.7717/peerj.9642
https://peerj.com/


global economy. Subsequently, the Government of India imposed a countrywide lockdown

to implement the Break-the-Chainmission to curtail its spread for 21 days in its first phase,

and extended up to a second spell of 19 days and a final third phase of 14 days up to May

17 for a total of 54 days. As a result, tightened restrictive measures (i.e., closure all

academic institutes, industries, markets, malls and all public places, non-essential

businesses, limitation of motorized transports, shut down of Indian railway network,

cancelation of inbound and outbound flights) were implemented throughout the nation to

impose social distancing.

A substantial enhancement in the air quality in the lockdown period from all over the

world were reported. Air pollution in China was significantly reduced as more people

quarantined to prevent the social spread of Covid-19 (Dutheil, Baker & Navel, 2020;

Muhammad, Long & Salman, 2020;Wang & Su, 2020). Bao & Zhang (2020) reported that

the concentrations of SO2, PM2.5, PM10, NO2 and CO over 44 cities in northern China

have decreased significantly by 6.76%, 5.93%, 13.66%, 24.67% and 4.58%, respectively due

to vehicular restrictions during lockdown period. In addition to these, they conclude

that these reduction in air pollutants caused a decrease in air quality index (AQI) by 7.80%

over these cities in China. Likewise, Community Multi-scale Air Quality Model (CMAQ)

analysis carried out by Wang et al. (2020) found that, PM2.5 concentration over different

parts of urban areas in China were significantly reduced in lockdown period. The findings

of Shi & Brasseur (2020) showed that particulate matter pollution decreased by an average

of 35 percent and nitrogen dioxide decreased by an average of 60 percent in northern

China after the lockdowns began on January 23. However, the study found the average

surface O3 concentration increased by a factor of 1.5–2 over the same time period.

Bauwens et al. (2020) also observed a substantial decrease of NO2 column by 40% over

cities in China and 20–38% in Western Europe and USA.

Kanniah et al. (2020) reported that PM10, PM2.5, NO2, SO2 and CO concentrations were

reduced to 26–31%, 23–32%, 63–64%, 9–20% and 25–31%, respectively in urban regions of

Malaysia during the lockdown period. Further, they revealed that the restricted industrial

activities imposed in lockdown period resulted a reduced concentrations of Aerosol

Optical Depth and tropospheric NO2 over East Asian region. There were reports that air

pollution was significantly reduced in Barcelona in Spain (Tobías et al., 2020) and

European region (Sicard et al., 2020) due to the lockdown to prevent Covid-19 spread.

A decline in NO2, NO and an increase in surface O3 was observed at Sao Paulo in Brazil

during lockdown period (Dantas et al., 2020; Nakada & Urban, 2020). Air pollution levels

have dropped significantly in India due to a massive dip in vehicular movement and

industrial activity which have resulted in clean and fresh air (Gautam, 2020;Mahato, Pal &

Ghosh, 2020; Sharma et al., 2020).

In the meantime, Kerala state government imposed a “triple-lockdown” in Kannur from

20 April for 20 days after identifying Kannur as a “hotspot” of Covid-19 and declared it a

“red” zone in the state. The “triple-lockdown” involved a combination of technology

and human surveillance and movement restrictions ple by providing one entry and exit

point in all abodes leaving all other roads closed for traffic. People in red zones were not

allowed to leave their houses and essential items were made available local authorities
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through specific requests. Further, guards were deployed to ensure that people in the

containment zones stayed indoors during the entire period of the lockdown. During the

general lockdown and triple-lockdown periods, the skies over the polluted cities quickly

cleared and smelled of fresh air. This offered a rare occasion for investigating how the

air pollution levels responded to an extraordinary development.

In this work, we describe the trend in air pollution via monitoring the variations of

surface O3, NO and NO2, PM10 and PM2.5, CO, VOC’s including benzene, toluene, ethyl

benzene, xylene, o-xylene (collectively called BTEX), SO2, NH3, and meteorological

parameters at the time of pre-lockdown, lockdown and triple-lockdown days at Kannur

town in the Kerala state of South India.

METHODOLOGY

Observational site

Kannur was the British military headquarters on the west coast of India until 1987. Kannur

has had its industrial importance from very early days. It was an important trading center

of the 12th century with an active business relationship with European and Arab countries.

When the state of Kerala was formed in 1957, it was named Kannur town, because

administrative offices were established in the district. Kannur is the sixth-most urbanized

district in Kerala, with more than 50% of its residents living in urban areas. The district is

known for its high level of literacy and health care. Kannur experiences a summer season

from March to the end of May. This is followed by the south-west monsoon until

September. Even the smallest pollution in the atmosphere of Kannur affects the quality of

the air and subsequently the health of the people here. In the first phase of Covid-19,

Kannur district reported the highest number of cases in Kerala till 15 May. Ground based

observations were carried out at Kannur town to investigate the variations of different

trace pollutants in the atmosphere from pre-lockdown days to triple-lockdown days.

The observational site lies in a coastal belt along the Arabian Sea and is very close to the

National Highway (NH 17). Observational site at Kannur town (11.87� N 75.37� E 3 m

msl) in northern part of Kerala state. Kannur in south India is shown in the Fig. 1A and the

aerial view of Kannur town and surroundings with observational site is shown in the

Fig. 1B.

Experimental setup

Observations of trace pollutants were carried out using the respective ground based gas

analyzers from Environment S.A France. The measurements of the O3 were made using a

continuous O3 analyzer (Model O342e) with a detection limit of 0.2.ppbv. Its working

principle is based on O3 detection by direct absorption in UV light. O3 absorption

spectrum is intense in the 250 and 270 nm wavelength range. Thus, it corresponds to the

maximum range of O3 absorption at 255 nm. NO, NO2 and NH3 were measured with

the aid of gas analyzer (Model AC32e) with a detection limit of 0.2 ppbv. Its working

principle is based on the NO chemiluminescence in the presence of highly oxidizing O3

molecules. The NO in the ambient air is oxidized by O3 to form excited NO2 molecules.

The concentrations of NO, NO2 were measured based on the spectrum of the radiation
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emitted by NO2 molecules at the excited level. Particulate matters (PM10 and PM2.5) were

measured by using suspended particulate beta gauge monitor (Model MP101M).

Its working principle is based on the particle measurement by beta radiation attenuation.

The measurement consists of calculating the absorption difference between a blank

filter and a loaded filter, knowing that the beta ray absorption follows an exponential law

and is independent of the physiochemical nature of the particles.

Measurements of CO were made by using an analyzer (Model CO12e) with a detection

limit of 0.05 ppm. Its working principle is based on CO detection by absorption in infrared

light. VOC’s (BTEX) were measured, based on gas chromatography coupled with a

PID detector by using (VOC72e) analyzer. SO2 measurements were made by using a UV

fluorescent sulfur dioxide analyzer (Model AF22e) with a detection limit of 0.4 ppbv.

The ambient air to be analyzed is filtered by a hydrocarbon removing aromatic molecule

device. The hydrocarbon molecule free sample to be analyzed is sent to a reaction chamber,

to be irradiated by an UV radiation centered at 214 nm, which is the SO2 molecule

absorption wavelength. All the gas analyzers have been calibrated by using sample gases on

a regular basis. The total solar radiation was measured by LSI LASTEM Italia (DPA870)

pyranometer and surface air temperature measured by an external Pt100 sensor.

Air Quality Index (AQI) calculation

The AQI is a scale designed to help us to understand the quality of the air we breathe and it

also helps provide advice on how to improve air quality. Further, this index provides

special awareness to the public who are sensitive to air pollution (Beig, Ghude &

Deshpande, 2010). Normally air pollution levels may be higher in towns, near power plants

and large stationary emission sources. To identify the overall improvement in air quality

over Kannur, AQI was calculated and the details of AQI are available elsewhere

Figure 1 (A) Kannur in South India (B) aerial view of Kannur town and the observational site.

Full-size DOI: 10.7717/peerj.9642/fig-1
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(CPCB, 2014; Sharma et al., 2020). The AQI is divided into five categories: good (0–50),

satisfactory (51–100), moderate (101–200), poor (201–300), very poor (301–400) and

severe (401–500) respectively. The observed concentrations of PM10, PM2.5, NO2, SO2, O3,

CO and NH3 were converted into AQI using standard value. The AQI for each pollutant

was calculated by the following formula given by Sahu & Kota (2017).

AQIi ¼
IHI�ILO

BreakHI�BreakLO
�ðCi�BreakLOÞ þ ILO

Where Ci is the observed concentration of the pollutant “i”; BreakHI and BreakLO are

breakpoint concentrations greater and smaller to Ci; and IHI and ILO are corresponding

AQI ranges. Breakpoint concentration of different pollutants are provided by CPCB (2014)

and is shown in Table 1.

RESULTS AND DISCUSSION

Diurnal variation of surface O3, NO, NO2

In order to study the impact of lockdown on the variation of trace pollutants over Kannur,

the study period was divided into three spans; namely pre-lockdown period of 32 days

(1–24 March 2020 and 10–17 May 2020), lockdown period of 25 days (25 March–19 April

2020), and a triple-lockdown period of 20 days (20 April–9 May 2020). O3 concentration

at Kannur town was very low (8–20 ppbv) at night time and high (15–55 ppbv) during

the day time.

Figure 2A depict a diurnal variation of O3 in Kannur town, and it shows that O3

was observed to be high during afternoon hours due to the photolysis NO2 in the presence

of VOC’s, CO and CH4. The observed low concentration at night-time was mainly due

to the loss of O3 by the titration with NO (Nishanth et al., 2014). Diurnal variation of

O3 showed a similar pattern in pre-lockdown days, lockdown days, and triple-lockdown

days but with differences in their concentrations. The maximum concentration of O3

observed on pre-lockdown 4.74 (ppbv), lockdown days and triple-lockdown days were

(45.64 ± 4.74 days), (49.58 ± 3.1 ppbv) and (55.66 ± 2.61 ppbv) respectively. Thus, an

enhancement in O3 concentration was observed over Kannur from pre-lockdown days to

triple-lockdown and this increase is 22%.

The diurnal variations of NO and NO2 are shown in the Figs. 2B and 2C respectively.

NO concentration was observed high in night and early morning hours and found to

Table 1 Breakpoint of different pollutants for AQI calculation, by CPCB (2014).

AQI category (Range) PM10 24-h PM2.5 24-h NO2 24-h SO2 24-h NH3 24-h O3 8-h CO 8-h

Good (0–50) 0–50 0–30 0–40 0–40 0–200 0–50 0–1.0

Satisfactory (51–100) 51–100 31–60 41–80 41–80 201–400 51–100 1.1–2.0

Moderate (101–200) 101–250 61–90 81–180 81–380 401–800 101–168 2.1–10

Poor (201–300) 251–350 91–120 181–280 381–800 801–1200 169–208 10.1–17

Very poor (301–400) 351–430 121–250 281–400 801–1600 1,200–1,800 209–748 17.1–34

Severe (401–500) 430+ 250+ 400+ 1,600+ 1,800+ 748+ 34+
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be low during afternoon hours. The diurnal average concentrations of NO observed during

pre-lockdown, lockdown and triple-lockdown days were (5.4 ± 1.2 ppbv), (3.5 ± 1.1 ppbv)

and (2.1 ± 0.82 ppbv) respectively. Thus, the concentration of NO was found to be

declined considerably from pre-lockdown days to triple-lockdown days, and the decrease

was 61%. The domination of O3 titration in the presence of high concentration of NO is the

primary reason for the observed low concentration of O3 during pre-lockdown days.

In pre-lockdown days, NO2 concentration was found to increase in daytime due to

enhanced emissions from vehicles and industries. The diurnal average concentrations of

NO2 observed during pre-lockdown, lockdown and triple-lockdown days were (9.6 ±

2.1 ppbv), (4.9 ± 1.8 ppbv), and (2.8 ± 0.88 ppbv) respectively. Hence, the concentration of

NO2 was found to be decreased significantly from pre-lockdown days to triple-lockdown

days and the observed decrease was 71%. Conversely, O3 concentrations observed were

higher on triple-lockdown and lockdown period than pre-lockdown period, even in the

absence of industrial activities and low traffic. Certainly, relatively lesser release of NO

during lockdown and triple-lockdown days reduces the O3 scavenging, and hence

improved the photochemical production of O3 from its other precursors.

At city-scale, VOC-NOx ratio is the key factor of O3 formation (Pusede & Cohen, 2012).

The urban areas are characterized by a low value of this ratio due to high NOx

concentrations (Beekmann & Vautard, 2010). In an environment with “VOC-limited”

Figure 2 Diurnal variation of (A) surface ozone (B) NO, (C) NO2, (D) j(NO2) between 1 March and

17 May, 2020. Full-size DOI: 10.7717/peerj.9642/fig-2
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conditions, VOCs concentration is highly sensitive in O3 formation in an environment

with high NOx emission. Likewise, the ratio of (NO2)/(NO) that depends on the local

concentration of O3, since it is produced by the photodissociation of NO2 and its sink is

titration with NO. Thus, O3 increase is due to a lower titration of O3 by NO due to the

strong reduction in local NOx emissions by road transport (Sicard et al., 2020). However,

the presence of VOC’s and NOx allows the formation of O3 through NO2 photolysis

through a complex chemistry (Monks et al., 2015).

The day time average concentrations of (NO2/NO) during pre-lockdown, lockdown and

triple-lockdown days were estimated to be (1.82 ± 0.8 ppbv), (1.38 ± 0.6 ppbv) and (0.86 ±

0.5 ppbv) which indicated a reduction of (NO2/NO) by 47% from pre-lockdown days

to triple-lockdown days. The ratio between average concentrations of BTEX and NOx

were found to be (1.2 ± 1.6 ppbv), (1.65 ± 1.1 ppbv) and (1.96 ± 0.82 ppbv) during

pre-lockdown, lockdown and triple-lockdown days respectively; with an increase of 63%

from pre-lockdown days to triple-lockdown. During the lockdown period, O3 lapse

rate due to the titration of NO might be less than its photochemical production from its

precursors, and this may be the primary reason for the enhancement in O3 observed.

Further, a strong possibility of VOCs emission from home (e.g., cleaning fireplaces,

painting) and garden activities (e.g., biomass burning) may also have contributed to the O3

increase (Su, Mukherjee & Batterman, 2003; Murphy et al., 2007; Wolff, Kahlbaum &

Heuss, 2013) in triple-lockdown days. Thus, the reduced concentration in NOx, and any

enhancement of biogenic VOC’s and their transport may have played a promising role in

the enhancement of O3 during triple-lockdown in Kannur town like other cities, which

could be confirmed only after further investigations.

Diurnal variation of photo-dissociation rate coefficient j(NO2) was computed to

estimate the strong dependance of NO2 on the observed enhancement of O3, during

lockdown and triple-lockdown days as shown in Fig. 2D. The j(NO2) values exhibited the

typical pattern of increasing gradually after sunrise, attaining a maximum value during

noontime and decreasing during evening-time. The values of j(NO2) gradually increasing

in tune with the intensity of solar radiation reaching on the surface. During pre-lockdown

days, O3 concentration was increasing in full harmony with the variation of j(NO2).

Therefore, a positive correlation is observed between O3 and j(NO2) during day time hours

and the photo-dissociation coefficients were low due to the reduced concentration of NO2

in lockdown and triple-lockdown periods. It was further observed that j(NO2) values

were decreased in pre-lockdown days and triple-lockdown days by a percentage of 16%.

This reveals that the O3 production was the result of photo-dissociation of NO2 in the

presence of biogenic VOCs during lockdown and triple-lockdown days.

Diurnal variation of particulate matters (PM10 and PM2.5)

The diurnal variations PM10 and PM2.5 during the study period are shown in the Figs. 3A

and 3B. During pre-lockdown days PM10 and PM2.5 showed two peaks; of which one peak

in the morning (07:00–10:00) hours and the other one in the late evening to night time

(19:00–22:00) hours. Further, moderate levels were observed from night till the early

morning hours due to shallow boundary layer (Yadav et al., 2014; Qu et al., 2018).
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Concentrations of particulate matters showed a morning peak followed by a decline in the

afternoon on pre-lockdown days. The observed low concentrations of particulate matters

during the afternoon hours can be attributed primarily to the dilution of particles linked

with broaden boundary layer and also lesser traffic (Stafoggia et al., 2019).

In the lockdown days, the vehicular emissions were considerably reduced, and the

observed magnitude of the morning peak was fairly small; whereas in triple-lockdown days

the peak was absent due to the roads were deserted. The diurnal average concentration of

PM10 observed on pre-lockdown days, lockdown days and triple-lockdown days were

(127.8 ± 21 µg/m3), (70.96 ± 12.6 µg/m3) and (50.2 ± 10.11 µg/m3) respectively. The

concentration of PM10 was found to decrease significantly from pre-lockdown days to

lockdown days (45%) and lockdown days to triple-lockdown days (29%). Likewise, the diurnal

average concentration of PM2.5 on pre-lockdown days, lockdown days and triple-lockdown

days were (69.4 ± 17 µg/m3), (45.5 ± 8 µg/m3) and (32.5 ± 7.5 µg/m3) respectively.

The concentration of PM2.5 was found to be decrease extensively from pre-lockdown days to

lockdown days (34%) and lockdown days to triple-lockdown days (29%).

Linear negative correlations are obtained between PM10 and solar radiation (Fig. 3C)

and surface O3 (Fig. 3D). The higher concentration of particulate matters on pre-lockdown

days can reduce the photolysis rate j(NO2) in the lower troposphere and it can decrease

photochemical production of O3 on these days. During pre-lockdown days, the observed low

Figure 3 Diurnal variation of (A) PM10 (B) PM2.5 and the scatter plot showing the linear correlation

between (C) PM10 and solar radiation (D) PM10 and surface O3.

Full-size DOI: 10.7717/peerj.9642/fig-3
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concentration of O3 indicates the different impacts of particulate matters on photolysis

frequencies. A strong negative correlation coefficient (−0.91) between PM10 and solar

radiation reveals the active daytime photochemistry over Kannur town.

Diurnal variation of solar radiation, air temperature, and relative humidity observed

over Kannur during the study period is shown in the Figs. 4A–4C respectively. Intensity of

solar radiation and temperature were increase by 7% and 4% from pre-lockdown days

Figure 4 Diurnal variation of (A) solar radiation (B) air temperature (C) relative humidity.

Full-size DOI: 10.7717/peerj.9642/fig-4
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to triple-lockdown days and relative humidity decreased by 8%. The increase in solar flux

is attributed to the decline in the concentration of particulate matters (Li et al., 2011) in

lockdown and triple-lockdown days, and this enhanced atmospheric temperature and

declined relative humidity at this site.

Diurnal variation of CO, BTEX, SO2 and NH3

Diurnal variation of CO, BTEX, SO2 and NH3 observed during the observational period

are shown in the Figs. 5A–5D respectively. In pre-lockdown days, the diurnal variation of

CO, BTEX and SO2 shows two distinct peaks; one peak during morning (08:00–11:00)

hours and other at late evening. The small duration of the morning peak was due to the

expansion of boundary layer height whereas the large evening peak due to the shallow

boundary layer. These peaks were associated with high traffic during the morning and

evening hours. During lockdown days, a small peak observed in the morning was due to

the presence of few vehicles; while the peak was absent in triple-lockdown days due to the

roads were deserted.

The maximum concentration of CO observed in day time on pre-lockdown days,

lockdown days, and triple-lockdown days were (642 ± 115 ppbv), (368 ± 79 ppbv) and

(210 ± 70 ppbv) respectively. The concentration of CO was found to decrease significantly

from pre-lockdown days to lockdown days, and lockdown days to triple-lockdown days.

The maximum concentration of BTEX observed in day time on pre-lockdown days,

Figure 5 Diurnal variation of (A) CO, (B) BTEX (C) SO2 (D) NH3 observed during the period.

Full-size DOI: 10.7717/peerj.9642/fig-5
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lockdown days and triple-lockdown days were (9.5 ± 1.4 ppbv), (6.7 ± 1.1 ppbv) and

(3.7 ± 0.8 ppbv) respectively. The concentration of BTEX was found to be decreased from

pre-lockdown days to lockdown days, and lockdown days to triple-lockdown days due to

absence of vehicular and industrial emissions.

The diurnal variation of SO2 was most pronounced during traffic hours over Kannur

town. The maximum concentration of SO2 observed in day time on pre-lockdown days,

lockdown days, and triple-lockdown days were (2.86 ± 0.72 ppbv), (1.82 ± 0.45 ppbv)

and (1.08 ± 0.32 ppbv) respectively. Thus the concentration of SO2 was found to be

decrease considerably from pre-lockdown days to lockdown days, and lockdown days to

triple-lockdown days. During pre-lockdown period, the daily averaged NH3

concentrations varied from 5.1 to 5.8 ppbv. Daily NH3 exhibited a temporal variation with

higher concentrations on the noon time hours; due to higher air temperatures and

lower wind speeds. High air temperatures will favor NH3 volatilization, and the low wind

speeds support the accumulation of air pollutants (Wang et al., 2015; Zhao et al., 2016).

The maximum concentration of NH3 observed in day time on pre-lockdown days,

lockdown days, and triple-lockdown days were (5.84 ± 0.52 ppbv), (5.32 ± 0.41 ppbv) and

(4.91 ± 0.32 ppbv) respectively. Like other trace pollutants, the concentration of NH3 was

also found to be decreased from pre-lockdown period to triple-lockdown days due to

complete shutdown of traffic and industrial activities in Kannur district.

AQI during the study period

The overall AQI of a day is the maximum AQI of the constituent pollutant, and the

corresponding pollutant is the dominating pollutant. Figure 6 represents the variation of

Figure 6 Air quality index for pre-lockdown, lockdown and triple lockdown period.

Full-size DOI: 10.7717/peerj.9642/fig-6
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AQI during the study period over Kannur town. The highest index of 235 ± 32 which refers

to poor air quality was observed in pre-lockdown period from 1 to 5 in March, during

which the vehicular traffic was quite normal. From the figure, it is observed that the

AQI was declining from 25th March coincides with the beginning of lockdown. In the first

5 days of the lockdown its average value was changed to 128 ± 22 and then to 118 ± 20 in

the following days. Since the triple-lockdown in Kannur was implemented on 20th

April, the value of AQI further come down and reached its lowest level at 48 ± 10 due to the

ban of complete vehicles on the road. As a result, air pollution was highly reduced by which

the air became unpolluted at this site. Thus, the enhanced air quality resulted from

the triple-lockdown may prevent the virus spread in Kannur district.

CONCLUSION
The present study revealed a drastic reduction in air pollution over Kannur a town in north

of Kerala state India, which was identified as one of the “first hotspots” of COVID 19 by the

Government of India. Subsequently, a triple-lockdown was implemented from 20 April

for further twenty days that restricted the movement of people. A considerable reduction

in atmospheric air pollutants over this region was observed during the lockdown and

triple-lockdown periods at this site. The highlights of the observation are the following:

� Surface O3 concentration was increased to 22% in triple-lockdown period while NO and

NO2 concentrations were decreased to 61% and 71% from pre-lockdown days to

triple-lockdown days. The primary reason for the increase in O3 is due to the reduction

in titration of O3 with NO. The sensitivity of VOC’s (both biogenic and industrial)

could be confirmed by measuring them on a long-term basis. The calculated diurnal

profile of j(NO2) values showed a maximum reduction in triple-lockdown period due to

the decrease in NO2.

� The concentration of CO, VOC’s (BTEX), SO2 and NH3 were declined to 67%, 61%,

62% and 16% respectively from pre-lockdown days to triple-lockdown days.

� The concentration of PM10 and PM2.5 were decreased to 61% and 53% respectively.

Further, the increase in solar flux observed was mainly due to the absence of scattering

and absorption of aerosols present in the atmosphere due to lockdown.

� The AQI analysis revealed that the air quality in Kannur was quite improved during

lockdown period.

The dramatic decline in air pollution during this lockdown has significant immediate

consequences. Exposure to high levels of particulate matters and trace gases has substantial

detrimental effects on human health. Many researchers have hypothesized that the

drop in air pollution levels may currently be saving a significant amount of lives, not only

by reducing individuals’ susceptibility to COVID-19, but also by preventing world’s seven

million annual deaths due to air pollution exposure.

Yao et al. (2020) analyzed the death rate due to COVID-19 and spatial correlation

of PM10 and PM 2.5 in China, and they revealed that higher concentration of PM10 and
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PM2.5 had a positive correlation with deaths caused by COVID-19. Wu et al. (2020)

suggested that, long-term exposure to fine particulate matter (PM2.5) induced a risk of

COVID-19. Further, they found that an increase of 1 mg/m3 in PM2.5 enhanced 8%

morbidity due to COVID-19 in the United States. Fattorini & Regoli (2020) suggested

that, chronic exposure of particulate matters (PM10 and PM2.5) could aggravate the

susceptibility of COVID-19 infection. A positive correlation exhibited between

concentrations of PM10, PM2.5, SO2, NO2, CO and COVID-19 outbreak in California

(Bashir et al., 2020). It is reported, that air pollution has a positive association with

COVID-19 confirmed cases in China (Zhu et al., 2020). Thus, this improvement in air

quality during lock down might have played a vital role in bringing reduced susceptibility

of virus getting infected into the lungs. The enhancement in the air quality induced by

triple-lockdown might be one of the prime reasons by which Kerala could flatten the

transmission curve for the first time in India. This association of air quality and spread of

COVID if confirmed by future studies suggest that air quality should also be considered as

part of an integrated approach towards human health protection and prevention of the

epidemic spreads.
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