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Abstract: Cooking stoves produce significant emissions of PM2.5 in homes, causing major health
impacts in rural communities. The installation of chimneys in cooking stoves has been documented
to substantially reduce indoor emissions compared to those of traditional open fires. Majority of the
emissions pass through chimneys to the outdoors, while some fraction of the emissions leak directly
into the indoor air, which is defined as fugitive emission. Indoor PM2.5 concentrations are then the
result of such fugitive emissions and the infiltration of outdoor neighborhood pollutants. This study
uses a combination of the one-contaminant box model and dispersion models to estimate the indoor
PM2.5 household concentration. The results show that the contributions of outdoor infiltration to
indoor PM2.5 concentrations increase with higher packing densities and ventilation rates. For a case
study, under WHO recommended ventilation conditions, the 24 h average mass concentration is
~21 µg/m3, with fugitive concentration accounting for ~90% of the total exposure for highly packed
communities. These results help to identify the potential benefits of intervention strategies in regions
that use chimney stoves.

Keywords: dispersion model; health risk assessment; particulate matter; indoor air quality; cook
stove; biomass burning

1. Introduction

Globally, many rural communities rely on traditional biomass burning stoves to meet
household energy demands, both indoors [1] and outdoors [2], which result in a significant
burden of disease [2–4]. WHO announced that an estimated 3.2 million deaths per year were
attributed to household air pollution in 2020 [5]. In addition, many studies have reported
high health risk associated with traditional open-fire cooking [6,7]. A large portion of the
rural population utilizes traditional stoves for household needs because of socioeconomic
factors including availability of fuel, the cost of the stove, and a lack of alternative energy
sources such as LPG [3]. The necessity of reducing pollutants associated with stove burning
has led to the development of technologies to improve combustion efficiency. The change of
behavior in the kitchen can also reduce PM2.5 exposure. Although there are many different
stove types, the combination of a burning chamber and a flue/chimney are commonly
used in many areas of the world, in which majority of the emissions are exhausted from
the chimney to the outdoor environment. Indoor PM2.5 concentrations are the result of
the fraction of the emissions that leak directly into the indoor air [8], combined with the
outdoor infiltrated pollutants. The outdoor neighborhood pollutants quantified in this
study are from chimney emissions of an individual home and upstream neighborhood
homes [9]. Often, the stacks for household chimneys installed in these regions are short,
resulting in neighborhood pollution, and substantial emissions accumulate in the vicinity
of homes, which enables infiltration back indoors [10,11]. The current study focuses on the
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contributions of neighborhood pollution to indoor air pollution associated with different
housing packing densities, which have not previously been well characterized.

Epidemiological studies have indicated that PM2.5 exposure can cause adverse health
impacts through heart, respiratory, and other chronic diseases [12]. Biomass fuel burning
is recognized as a major cause of chronic obstructive pulmonary disease, especially for
individuals in developing countries [13]. Estimating the risk of exposure that can lead to
health problems is vital to inform risk abatement strategies. The current analysis evaluates
the outdoor neighborhood pollution distributions, outdoor to indoor infiltration, indoor
stove fugitive contamination, and the associated PM2.5 exposure risk [14]. Subsequently,
EPA health risk assessment [15] was applied to quantify the inhalation risk of PM2.5 to
the female population of different age groups to contribute to the development of control
strategies for air quality management in and around rural communities where solid fuels
are used for cooking.

2. Materials and Methods
2.1. Background

The disability-adjusted life years (DALYs) represent the sum of years of populations
living in a status of less than good health resulting from specific causes. Figure 1 presents
the household attributed DALYs per 100,000 people according to WHO released data for
the year 2019 [16]. The DALYs are substantially higher in developing countries, where
biomass combustion supplies the majority of household primary energy [17].
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2.2. Evaluation Framework

The schematic of the study process is shown in Figure 2. The study is divided into the
estimation of outdoor and indoor air quality. For the outdoor air quality study, meteorolog-
ical parameters such as temperature, wind speed, direction, and cloud cover are required.
These required micrometeorological parameters for the dispersion model inputs are derived
from routine weather data [18,19]. Integrating the dispersion model with a meteorological
preprocessing approximation is a good alternative when the field measurements are not
available. The approximation details, together with field validation, are described in the
Supplementary Material. Figure S1 shows a good agreement of the measured friction
velocity with the approximation model output. A dispersion model is then deployed to
quantify outdoor pollutant distribution. Such outdoor pollutants near the household are
the infiltration source to the indoor environment. The indoor generated PM2.5 is from
indoor fugitive emissions. The infiltrated and the indoor-generated PM2.5, combine to form
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indoor pollution. Finally, a US EPA health risk assessment methodology [20] is utilized to
quantify the potential dose and risk quotient for long-term exposure to such pollutants.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 14 
 

household are the infiltration source to the indoor environment. The indoor generated 

PM2.5 is from indoor fugitive emissions. The infiltrated and the indoor-generated PM2.5, 

combine to form indoor pollution. Finally, a US EPA health risk assessment methodology 

[20] is utilized to quantify the potential dose and risk quotient for long-term exposure to 

such pollutants. 

 

Figure 2. Analysis flow. 

2.3. Dispersion Model 

Dispersion models are effective, widely utilized tools to evaluate atmospheric pollu-

tion level when field measurements are not available. Such models have been utilized to 

quantify pollution emitted from different sources, such as cooking, traffic, and industry 

[17,21,22]. The ability to isolate emission sources, thus targeting the sole effect of one pos-

sible source, can inform source management and relevant policymaking. Most of the 

plume models do not consider complex effects of obstacles such as buildings on the dis-

persion of pollutants in urban or suburban areas [23]. The current study compares AER-

MOD with the Quick Urban and Industrial Complex (QUIC) results to examine the influ-

ence of building morphology. QUIC accommodates building influences, rapidly enables 

detailed modeling of the flow field around buildings, and applies this generated wind 

field in a particle dispersion model. The simulation results are utilized to quantify the 

neighborhood infiltration because it estimates pollution dispersion in the vicinity of the 

buildings. AERMOD is extensively used for regulatory purposes and plays a substantial 

role in decision making [24]. AERMOD does not explicitly solve the flow features in the 

vicinity of obstacles, but accounts for obstacles through a Plume Rise Model Enhance-

ments (PRIME) model. The current analysis compares neighborhood pollution results us-

ing both approaches. The comparison of point source dispersion among Gaussian, QUIC, 

and water channel evaluation is presented in Figure S2. And the comparison of contours 

for the outdoor emission estimation of AERMOD output with QUIC output is given in 

Figure S3. 

QUIC has broad applications, primarily in modeling wind flow and dispersion pat-

terns in urban or suburban areas, providing building-scale results that can show pollutant 

concentrations and their interaction with eddies in the built environment [23,25]. QUIC is 

a fast-response dispersion model that is comprised of a wind field model QUIC-URB and 

a dispersion model QUIC-PLUME. The flow patterns modeled by QUIC-URB have been 

validated with USEPA wind tunnel measurements [26]. QUIC-PLUME has also been val-

idated through many experiments and modeling comparisons. For example, Zajic et al. 

Figure 2. Analysis flow.

2.3. Dispersion Model

Dispersion models are effective, widely utilized tools to evaluate atmospheric pol-
lution level when field measurements are not available. Such models have been utilized
to quantify pollution emitted from different sources, such as cooking, traffic, and indus-
try [17,21,22]. The ability to isolate emission sources, thus targeting the sole effect of
one possible source, can inform source management and relevant policymaking. Most
of the plume models do not consider complex effects of obstacles such as buildings on
the dispersion of pollutants in urban or suburban areas [23]. The current study compares
AERMOD with the Quick Urban and Industrial Complex (QUIC) results to examine the
influence of building morphology. QUIC accommodates building influences, rapidly en-
ables detailed modeling of the flow field around buildings, and applies this generated
wind field in a particle dispersion model. The simulation results are utilized to quantify
the neighborhood infiltration because it estimates pollution dispersion in the vicinity of the
buildings. AERMOD is extensively used for regulatory purposes and plays a substantial
role in decision making [24]. AERMOD does not explicitly solve the flow features in the
vicinity of obstacles, but accounts for obstacles through a Plume Rise Model Enhancements
(PRIME) model. The current analysis compares neighborhood pollution results using both
approaches. The comparison of point source dispersion among Gaussian, QUIC, and water
channel evaluation is presented in Figure S2. And the comparison of contours for the
outdoor emission estimation of AERMOD output with QUIC output is given in Figure S3.

QUIC has broad applications, primarily in modeling wind flow and dispersion pat-
terns in urban or suburban areas, providing building-scale results that can show pollutant
concentrations and their interaction with eddies in the built environment [23,25]. QUIC is a
fast-response dispersion model that is comprised of a wind field model QUIC-URB and a
dispersion model QUIC-PLUME. The flow patterns modeled by QUIC-URB have been vali-
dated with USEPA wind tunnel measurements [26]. QUIC-PLUME has also been validated
through many experiments and modeling comparisons. For example, Zajic et al. com-
pared QUIC-PLUME output to a Gaussian plume model output at different atmospheric
stability, with the results being in good agreement for unstable and neutral atmospheric
stabilities [27].

AERMOD was developed by the U.S. Environmental Protection Agency (EPA) in
conjunction with the American Meteorological Society (AMS) to incorporate scientific
advances into a dispersion model for regulatory applications [28]. AERMOD is a regulatory
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model with superior performance to other models in a 17 field study databases [29].
Many studies have integrated meteorological preprocessing to estimate AERMOD required
inputs. Kumar et al. integrated a weather forecast model, using data-driven predicted
meteorological data as inputs [30]. The current meteorological approximation has been
validated for different built environments including relatively uniform terrain, as well as
urban canopies [18,31].

2.4. Indoor PM2.5

The indoor fugitive emission and infiltration of outdoor pollution are the two major
sources of household pollutants (please see the schematic in Figure 3). Such external infiltra-
tion from the upstream community is determined by ventilation type, room volume, flow
direction, and nature and size of openings in walls, windows, and doors. The ventilation in
rural households is usually natural, wherein the leakage of airflow is through the openings
in the building walls, windows, and doors. The dimensionless infiltration factor of outdoor
pollution to the indoors is described by [14,32]:

Fin f =
P ∗ a
a + k

(1)

where a is the air changes per hour (ACH), P is the penetration coefficient that indicates
the fraction of outdoor pollutant passing indoors [33], and k is the pollutant deposition
rate per hour. ACH is the rate of indoor air replacement by outdoor air. It is an important
parameter that determines air ventilation in microenvironments, thus affecting indoor air
exposure [34].When particles penetrate through the building envelope, gravity, diffusion,
and inertial interaction are the major determinants of P. P shows a hill-shape distribution
with respect to particle size, and it is assumed to be 0.8 in the study case [32]. K describes
the flux of particulate matter deposited on the frames of windows, doors, walls, and other
surfaces when traveling indoors and it is adapted to be 0.53 h−1 for particle size at 2.5 µm,
based on experiments in six naturally ventilated houses [32].
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The ACH in a region can vary substantially based on the local wind speed, location,
and the closing/opening of the door and windows. Figure 4 shows different ACH measured
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in rural areas in India [7], Bangladesh [34], China [35], and Nepal [36]. When the windows
are closed, the ventilation is solely dependent on the leakage through gaps. The Literature
states that the ACH in such conditions is around 1–2 for houses with solid walls. WHO
suggested a default ACH of 21, for kitchens using biomass for cooking, to achieve the
indoor air quality standard [37]. For current analysis, indoor pollution concentration and
residents’ potential dose were estimated for ACH range of 1–25.
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Using the calculated dimensionless infiltration factor, the outdoor infiltration is then
described by:

Cb = Fin f × Cout (2)

where Cout is the outdoor PM2.5 concentration in µg/m3, which is obtained from the
dispersion model output.

Computational Fluid Dynamic (CFD) models are at times utilized for indoor air quality
modeling [38,39]. In contrast, the current study deployed a computationally inexpensive
single zone mass balance model [40] to estimate the indoor generated PM2.5 concentration,
which is described by:

C(t) = Cb +
S

V(a + k)
+ (Cini + Cb +

S
V(a + k)

)e−(a+k)t (3)

where V is the kitchen volume, which is ~40 m3 for multiple regions [41]. S is the indoor
source emission rate in µg/h. In reality, the emission rate measurements vary widely, based
on factors such as experimental methodology, combustion facilities, and fuel properties [8].
The indoor fugitive emission is around 2–5% of the total emission, based on the laboratory
experiments, as well as field measurements [8,10,41]. Household energy needs are met
mainly by biomass fuels, including crop residues, wood, coal, etc. Usage of different
types of fuels impact the overall emission levels. Figure 5 presents the PM2.5 emission
factor (EF) of different fuel types, in the laboratory [42] and in field, in different regions
including China [8], Nepal [42], Mexico [43], and India [42]. For the same type of fuel, the
EF differences may be due to factors such as fuel shape, moisture content, and the stove
differences. With the different emission factors, one can estimate the emission inventory
based on the fuel consumption rate from the various cooking events [44].
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2.5. Health Risk Assessment

The potential dose of stove-induced PM2.5 for individuals under long-term exposure
to cooking emissions is assessed using US EPA risk assessment [20]. The potential dose (I)
in µg/kg·day of PM2.5 can be quantified as [15,45,46]:

I = CA
IR × ET × EF × ED

BW
× 1

AT
(4)

where CA is the concentration of PM2.5 in µg/m3. ET is the exposure time in h/day, which
in this study, is assumed to be 3 h exposure per day [47]. EF is the exposure frequency
(days/year). ED is the exposure duration in the study period. AT is the average time of
exposure in a day, which is ED × 365. BW is the body weight (kg). IR is the inhalation
rate (m3/h), which represents the volume of air inhaled over a specified timeframe. The
inhalation rates are typically indexed to activity levels. The inhalation rate for different
age groups, segregated by gender and the average body weight, is referred from the EPA
Exposure Factors Handbook [48]. Note that for the male gender, the potential dose results
are very similar, within 2–7%. For brevity, here we present only results calculated using
available female parameters, as in many rural locations, the primary coking activities
are carried out by women. Under moderate activity levels, for age groups from 0.5–3,
3–10, and 10–18 years old, the average body weight is 11 kg, 23 kg, and 50 kg, and the
average inhalation rate is 0.6 m3/h, 0.9 m3/h, and 1.26 m3/h, respectively, while for the
adult age groups from 18–30, 30–60, and above 60 years old, the average body weight
is 62 kg, 68 kg, and 67 kg, and the average inhalation rate is 1.32 m3/h, 1.32 m3/h, and
1.2 m3/h, respectively.

The risk quotient is often used to inform the health implications due to pollutant
exposure. The risk quotient is described by:

RQ =
I

R f D
(5)

where RfD is the reference dose of PM2.5 (µg/kg·day) and represents the safe average daily
dose. RfD is calculated from Equation (4), with a reference concentration of 5 µg/m3. If
RQ < 1, the exposure is not considered adverse to public health; if RQ > 1, the exposure is
considered detrimental to public health.
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3. Results
3.1. Outdoor Pollution Level

A case study of neighborhood pollution attributed to chimney vented PM2.5 emissions
is conducted using QUIC model, with a wind speed of 2 m/s (at 10 m height) and a
south-southwest wind direction. The QUIC modeling results of ambient PM2.5 pollution
during the steady cooking state is shown in Figure 6. The channeling effect caused by
wind flow encountering the building obstacles will lead to accumulation of PM2.5 in the
building wakes [23]. The QUIC model enables the detection of severely impacted regions,
considering the building morphology. A typical rural village consists of regions with
different building densities. In each of these building densities, the neighborhood pollution
level varies because the effects of trapping PM2.5 near buildings differ. As indicated in
Figure 6, the maximum ground level concentration occurred in the high building density
region. Although the prevailing wind is from the south-southwest, the buildings in the high-
density region substantially disturb the flow and consequently, distribute the emissions
in different directions, while in the low-density region, the rarely disturbed flow quickly
dilutes PM2.5.
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gion, respectively.

The current analysis used an emission rate of 52 mg/min for the outdoor pollution
modeling based on field measurements, with 96% of total emissions from chimneys [41].
The mean PM2.5 in the high building density region is 21.2 ± 4.26 µg/m3. The mean PM2.5
in the low building density region is 4.57 ± 2.8 µg/m3. The high-density area is more
impacted, regardless of the wind direction, due to the building density. Hence, this region
has the highest level of PM2.5 in the communities.

Other factors, such as seasonal relative humidity, temperature, and precipitation, also
play a significant role in outdoor pollution dispersion across seasons [49]. In the Brazilian
rainforest, during the dry season, exposures to PM2.5 can be 6 times higher than during the
rainy season [15]. This lower exposure can be attributed to the leaching of air pollution to
the ground as a result of higher precipitation in the rainy season [50].



Sustainability 2023, 15, 5676 8 of 14

3.2. Indoor Pollution Level

Instead of completely switching to clean fuel, which may be impractical, many studies
have also recommended alternative actions to reduce household air pollution and exposure.
Other studies have also recommended alternative actions to reduce household air pollution
and exposure, such as increasing the natural ventilation rates [51]. Combining chimneys
with improved combustion chambers in stoves can also result in substantially reduced
overall emissions, although chimney maintenance is necessary to maintain these reduc-
tions [41]. Leakage emissions from well-maintained stoves were shown to be substantially
lower than from those in need of repair, such as the filling of cracks and the cleaning of
chimneys [52].

Despite the up to 90% reductions in indoor air concentrations of PM2.5 associated
with the installation of chimneys [53], fugitive concentration, combined with outdoor
infiltrations, still contributes to poor indoor air quality. The indoor pollutant concentration
is determined by the fugitive emission rates, room volume, particulate matter decay
rate, and the infiltration of pollution from outdoors due to ventilation. Figure 7 shows
the modeled indoor generated PM2.5 mass concentrations during 1 h of cooking under
different air exchange rates, incorporating contributions of both fugitive emissions and
neighborhood infiltration for high-packing density. The fugitive emission rate ranges from
0.26–2.6 mg/min, based on direct field measurements in different regions [8,10,41,54]. The
ACH ranges from 1–25 h−1, from poor ventilated cases, to WHO default ventilation rates
for ISO tiers.
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Figure 7. Indoor PM2.5 concentrations under different ACH incorporating fugitive emission and
neighborhood infiltration for a high-packing density neighborhood.

Infiltration of pollution from outdoors consists of both neighborhood pollution and
regional background PM2.5. The neighborhood pollution contribution to indoor concentra-
tions depends on the packing density of upstream homes. Figure 8 shows the percentage
of fugitive contribution to the total indoor air PM2.5 concentrations. At 25 ACH, for homes
in the high packing density area, the indoor generated PM2.5 accounts for 90% of the total
concentration, while for a low packing density region, the number is 98%.
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After the cooking concludes, the decay trend of the relative mass concentration
(C(t)/Cmax) under ACH = 1, 5, 10, 20, and 25 are shown in Figure 9. Studies indicated
that the building characteristics, including ventilation, orientation, the morphology of
the streets, wall construction, eave spaces, open–closed windows, etc., dominate the air
exchange rate [50,55].
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Figure 9. Influence of different ACHs on relative indoor concentration decay trend after steady
cooking events.

This case study uses a fugitive emission rate of 2.1 mg/min, which is directly mea-
sured in rural Mexico using nested hoods to capture all emissions [41]. Even at the rec-
ommended 21 ACH, the indoor pollution concentration during the 1 h steady cooking
event is 174 µg/m3, with fugitive emissions contributing 90% to indoor concentrations.
The corresponding 24 h average PM2.5 level is ~21 µg/m3 under the assumption that each
household conducts 3 h cooking each day [47]. This exceeds the 2021 WHO air quality
guideline of 15 µg/m3 for 24 h.

PM2.5 concentration levels in different rooms can be significantly lower than in other
rooms [56] and can vary by season [49]. Zuk et al. found that the kitchen concentrations
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were two times that of other rooms [56]. In addition, in many homes cooking-generated
PM2.5 may readily spread to the adjacent rooms in the house [49,57]. Since people spend
the most time in bedrooms and living rooms, having a separate kitchen can help reduce ex-
posures, although, room ventilation and location relative to the kitchen have been reported
to impact the PM2.5 level in the room [58]. Behavior changes, such as opening doors and
windows [59] and the use of extraction fans, may also reduce indoor concentrations.

3.3. Potential Dose Assessment

The inhaled dose is determined by individual behaviors and the distance from the
emission source. A number of studies have shown that personal exposures are ~50% of
indoor kitchen concentrations [52,60], as personal exposures include time spent away from
the kitchen in other environments. Figure 10 shows the potential dose estimated under
personal exposure. The risk quotient (RQ) for exposed residents is 26, 7.93, 3.96, and 2.19
under 1, 5, 10, and 20 ACH, respectively. This shows that even under high ventilation rates,
household emissions moderately contribute to total chronic exposure and may induce
respiratory health problems. Besides, the potential intake of pollutants from cooking
activity is high, and thus, the long-term exposure can significantly impact individuals who
perform the cooking.
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tion parameters.

In general, potential PM2.5 doses decreased with age groups, and children under
3 years had the highest potential dose, in agreement with other studies [15,50], because
younger children are more active and breathe more per unit of body weight.

A study of chimney stove impact conducted over a period of 12 months by Chakraborty et al.
found that the median value of PM2.5 RQ was 1.63 [61]. Although the utilization of a
chimney stove has adverse health effects, the results show a lower PM2.5 potential dose
compared to that from a traditional open fire, for which the observed RQ can be as high as
5.57 [61].

Single-zone models tend to overestimate concentrations, as the model assumes a
well-mixed environment, which may attribute to the discrepancies in the calculated and
measured concentration [62]. The overestimation of potential dose can thus be a limitation
of this approach.

4. Conclusions

The aim of this study is to provide a full-cycle analysis integrating air quality mod-
els, infiltration models, and risk assessment models to better understand the impacts of
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neighborhood pollution and stove fugitive emissions on the potential dose. The main
conclusions of this study are:

1. PM2.5 pollutants tend to accumulate in the wake of buildings, and the pollutant infil-
tration can contribute significantly to poor indoor air quality. The major contributor
to indoor pollution, however, is fugitive emissions from cooking stoves.

2. The contribution of chimney stoves to infiltration increases with higher packing
densities and may contribute to indoor pollutant concentrations.

3. Indoor concentrations from chimney stoves exceed WHO air quality guideline values
for PM2.5. The associated health risk assessment shows that the risk quotient (RQ) is
2.19, despite good ventilation conditions.
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mdpi.com/article/10.3390/su15075676/s1, Figure S1: Comparison of meteorological approximation
model output and field measurement; Figure S2: Comparison of point source dispersion among
Gaussian, QUIC, and water channel evaluation; Figure S3: Comparison of (left) AERMOD output
with (right) QUIC output for one-hour outdoor emission estimation. References [18,19,63–65] are
cited in the supplementary materials.
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